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Quantification of Thyroid Volume Using 3-D
Ultrasound Imaging

Eva N. K. Kollorz,∗ Dieter A. Hahn, Rainer Linke, Tamme W. Goecke, Joachim Hornegger, and Torsten Kuwert

Abstract— Ultrasound (US) is among the most popular di-
agnostic techniques today. It is non-invasive, fast, comparably
cheap, and does not require ionizing radiation. US is commonly
used to examine the size, and structure of the thyroid gland.
In clinical routine, thyroid imaging is usually performed by
means of 2-D US. Conventional approaches for measuring the
volume of the thyroid gland or its nodules may therefore be
inaccurate due to the lack of 3-D information. This work reports
a semi-automatic segmentation approach for the classification,
and analysis of the thyroid gland based on 3-D US data. The
images are scanned in 3-D, pre-processed, and segmented. Several
pre-processing methods, and an extension of a commonly used
geodesic active contour level set formulation are discussed in
detail. The results obtained by this approach are compared to
manual interactive segmentations by a medical expert in five
representative patients. Our work proposes a novel framework
for the volumetric quantification of thyroid gland lobes, which
may also be expanded to other parenchymatous organs.

Index Terms— 3-D Ultrasound, Thyroid gland, Segmentation,
Level set, Geodesic active contour.

I. INTRODUCTION

THE thyroid gland belongs to the endocrine system and is
localized in the neck just in front of the larynx. Diseases

of the thyroid gland are among the most frequent endocrine
disorders: In Germany, a large epidemiological study enrolling
96,278 subjects without prior thyroid disorder known yielded
an incidence of 18.8% for goiter, i.e. pathological enlargement
of the gland, and 23.4% for thyroid nodules [1]. This high inci-
dence of thyroid abnormalities in Germany has been attributed
to endemic iodine deficiency. In the USA, the population
receives sufficient iodine supplementation via food. Surveys
including such a large cohort of patients as in Germany are
as yet missing in North America. However, the data available
indicate a fairly high incidence of thyroid nodules also in the
USA [2]. If untreated, goiter may lead to the formation of
autonomous thyroid nodules, and possibly to hyperthyroidism.
In the case of the detection of a thyroid nodule, thyroid cancer
is one of the differential diagnoses and has to be ruled out with
fine-needle biopsy, scintigraphy, and follow-up US [3]. US has
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become the most important acquisition technique for thyroid
gland imaging [4], [5]. It is used quite frequently to screen for
thyroid diseases since it allows volumetry of the whole gland,
and its nodules and has a high sensitivity to detect thyroid
tumors.
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Fig. 1. Processing pipeline: The input for the pre-processing stage is the
acquired 3-D US volume of one lobe of the thyroid gland. The volume is
pre-processed by applying a linear ramp (to lift edges that are far away from
the skin) and filtering. Subsequent segmentation is performed, which provides
the 3-D mesh of the lobe of the thyroid.

Conventional sonography devices allow only for 2-D data
acquisitions. For thyroid US, a probe is is placed onto the
area of interest in the anterior neck. The physician then scans
the thyroid gland by looking at a multitude of continuously
varying 2-D images created by changing the position and ori-
entation of the probe. This task involves the mental association
of the 2-D images with the 3-D shape of the thyroid gland. At
the end of the process, representative slices of the gland and/
or thyroid nodules are chosen for further measurements and
diagnoses. The selection of these slices is rather subjective.
Furthermore, in clinical routine, the volumetry of the thyroid
gland or of its nodules is based on the measurement of cross-
sectional diameters on these slices, which are then entered into
a formula assuming that the thyroid gland can be modeled by
an ellipsoid. This assumption may in particular be violated in
pathology. 2-D US has a low intra- as well as interobserver
reproducibility [6], which may lead to problems in follow-
up studies: It often cannot be reliably decided if a change
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TABLE I
IMAGING PROPERTIES OF THE USED VOLUMES: L STANDS FOR THE LEFT

LOBE OF THE THYROID GLAND, R IS THE RIGHT ONE. THE SECOND

COLUMN SHOWS THE VOLUME DIMENSIONS. THE SPACING OF A VOXEL IS

MENTIONED IN THE THIRD COLUMN. GN STANDS FOR GAIN

COMPENSATION, WHICH IS ADJUSTABLE AT THE US MACHINE AND WAS

FIXED IN ALL EXPERIMENTS FOR SIMILAR IMAGE QUALITY AND GRAY

VALUES (-8). THE SWEEP ANGLE OF THE DEDICATED 3-D PROBE WAS 29◦

AND THE USED FREQUENCY CONSTITUTED 11.10 MHZ. ALL ACQUIRED

VOLUMES HAVE 8 BIT DEPTH.

Data Dimensions Voxel size Parameter settings
set no. [mm3]

1 149× 109× 199 (L) 0.247389 11.10 MHz, Gn-8, 29◦2 149× 109× 199 (R) 0.247389
3 151× 101× 199 (L) 0.245349 11.10 MHz, Gn-8, 29◦4 149× 109× 199 (R) 0.247389
5 145× 93× 199 (L) 0.254016 11.10 MHz, Gn-8, 29◦6 149× 109× 199 (R) 0.247389
7 151× 101× 199 (L) 0.245349 11.10 MHz, Gn-8, 29◦8 151× 101× 199 (R) 0.245349
9 149× 111× 199 (L) 0.247134 11.10 MHz, Gn-8, 29◦10 151× 111× 199 (R) 0.246114

in the size of the examined structures is due to limitations
in reproducibility of the employed method (due to a low
reproducibility) or by pathology itself. It is well expected that
the limitations of 2-D US imaging can be resolved through
the use of 3-D US for thyroid gland analysis. Preliminary
clinical data undermines this hypothesis [7]. Nowadays, 3-D
US scanning devices are increasingly used within the clinical
routine. The data acquired can be voxelized, which provides
the basis for a more detailed study of the thyroid gland based
on both state-of-the-art volume rendering and medical image
processing techniques. For the physician, it is now possible
to replicate the diagnosis without re-scanning the patient. By
incorporating additional 3-D information, the diagnosis may
become largely observer-independent and accurate volumetric
measurements become possible. This work proposes a semi-
automatic segmentation approach for the classification and
analysis of thyroid glands based on 3-D US data. Fig. 1
illustrates the image processing pipeline used in our frame-
work. First, a 3-D US scan of a thyroid lobe is acquired with
a dedicated 3-D probe and without any additional tracking
device. Usually one scan is sufficient to acquire an entire lobe
as we set the field of view (FOV) large enough to depict each
entire lobe. This volume is the input for the pre-processing
stage. The pre-processing module consists of an intensity
correction step and additional filtering for noise reduction. Our
main focus lies on the complete acquisition of each lobe of the
thyroid glands as an entire US volume. We concentrate on the
accuracy of the thyroid gland volume estimation. Finally, the
volume becomes the input for the segmentation step which
is based on level set methods. The result of the processing
pipeline is a 3-D mesh of the according thyroid lobe.

II. STATE-OF-THE-ART

A. Pre-processing

Our pre-processing involves intensity correction and
filtering. For the processed types of images, intensity

correction is necessary because the energy of the sound
waves degrades with increased distance from the probe.
This results in similar amplitudes at the lower border of the
lobe of the thyroid gland. The input for the segmentation is
a speed image, which is based on the gradient magnitude
strength and a sigmoid mapping. Therefore, the amplitudes
are lifted at positions farther away from the probe to boost
the gradient magnitude strength. Though a research in this
field is not extensively published, intensity correction is an
active topic of research. For example, Xiao et al. perform
intensity inhomogeneity correction, including segmentation in
one step (breast, cardiac images) [8]. They use a combination
of the maximum a posteriori (MAP) and Markov random
field (MRF) methods.

In comparison, filtering operations for noise reduction
are much more widely used in US images. Mean and median
filtering are commonly employed. More complex operations
include the “sticks” filter (short line segments) [9], [10] or
various types of diffusion filters [11], [12], [13], [14]. Calóope
et al. [15] provide a comparison of filtering operations for
US images. They present and evaluate the mean, median,
Frost and MAP filter and also the applicability of the wavelet
transformation for this task. They conclude that the modified
MAP filter performed best for their purpose. Fu et al. [12]
suggest an adaptive anisotropic diffusion approach for US
image denoising and edge enhancement, which is coherent
with the results of Krissian et al. [13]. Yu and Acton [14]
compare non-linear anisotropic diffusion with adaptive speckle
filters (Lee and Frost filter). According to Tauber et al. [16]
widely used speckle reduction filters are the Lee, Frost, Kuan
and Gamma Maximum a Posteriori (GMAP) filter. However,
they applied the anisotropic diffusion filter for the results in
their publication. Betrouni et al. [17] use an adapted noise
filter. Fieberg [18] mentions step mean, Gaussian, median,
adaptive and morphological filtering operations. Though some
US machines, (e.g. the used General Electric Voluson 730
Expert) provide Speckle Reduction Imaging (SRI), which is
only displayed and not accessible in the stored volumes. To
our knowledge, there exist no publications about the details of
the implemented methods within the commercially available
US machines.

B. Segmentation

The segmentation of the thyroid US images falls into the
category of small anatomical object segmentation from US
images like the prostate (using Transrectal US (TRUS) [19],
[20]), tumors in the breast [21], the carotid artery [22] or the
ischemic myocardium. Many popular methods for segmenting
such anatomical structures are based on level sets [17], [21],
[23], [24]. For example, Betrouni et al. [17] use elastically
deformable models for the segmentation of the prostate.
Overhoff et al. [25] make use of a region-based approach
for visualization of anatomical structures of the liver. Region
growing with thresholding and live-wire/live-lane methods
are used by Fieberg [18] in addition to morphological
segmentation methods. Sarti et al. [24] introduce a maximum

kollorz
Schreibmaschinentext
Manuscript

kollorz
Schreibmaschinentext



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. ?, NO. ?, ? 2007 3

likelihood segmentation of US images with an underlying
Rayleigh distribution model. The active contour model is
also applied in Chen et al. [21] to segment tumors within
the breast. Several segmentation methods for US images are
mentioned in Abolmaesumi and Sirouspour [23], e.g. texture
operators and mathematical morphology.

Thyroid volumetry in 3-D US is extensively addressed
in Schlögl et al. [7]. They applied an ellipsoid model for
volume measurements, manual segmentation and multiplanar
volume approximation (MVA) on slices extracted by a 2-D
US device. A manual volume measurement of the thyroid
with 3-D US with MVA is, for instance, discussed in [26],
[27]. Thyroid volume measurement with conventional 2-D
US is also addressed in [28], [29]. Compared to 2-D US,
the segmentation of 3-D US volumes is still rarely used for
clinical purposes. Overhoff et al. [25] apply 3-D US for the
visualization of structures in the liver (region-based approach).
Baillard et al. [22] use 3-D US for the segmentation of the
carotid artery (level sets). The thyroid gland segmentation has
been addressed in [7] by a manual segmentation approach.

III. MATERIAL AND METHODS

A. Image Acquisition Protocol

The scanning of the thyroid glands for this work has been
performed with a 3-D General Electric (GE) Voluson 730
Expert US system. A 5 to 12 MHz probe (RSP5-12 wide
band linear volume probe) was used for the acquisition, which
resulted in a penetration depth range of approximately 5 to 10
cm. The probe should be held steady during the 3-D scan pro-
cess, because during the scanning a fan of images is acquired
by an automatically rotating transmitter. The scanning process
for one lobe of the thyroid gland takes about five seconds. The
volumes are transferred into the cartesian coordinate system
and saved in DICOM format. In general, one 3-D volume
was acquired for each lobe. Details on the image acquisition
protocol for the individual volumes can be found in Table I.
The time-gain compensation of the US machine was adjusted
by a medical expert before we acquired the thyroid images.
In literature, US image artifacts are mainly characterized in
terms of speckle and noise. The noise contribution is vastly
described by additive models, whereas for speckle, the models
can be multiplicative [11], [12], [14] or signal-dependent [13],
[16], [30]. The latter types even include noise aspects as well,
which is the reason why they are also mentioned as speckle
noise models. Therefore, we evaluated the pre-processing
filters with both: A Rayleigh distributed signal-dependent
speckle noise model x = s+n

√
s (s: Original signal, n: Noise,

x: Noisy signal) and a Rayleigh distributed multiplicative
speckle model x = s ∗ n (n: Multiplicative speckle noise).

B. Pre-processing of US volumes

This subsection covers the application of a linear ramp as
intensity correction and different edge-enhancing diffusion
filters to reduce the noise in the acquired US volumes.

1) Applying a linear ramp: Inherent to US imaging is the
existence of a “bias field” that affects the image amplitudes.
This field appears as gradually decreasing log amplitudes
with increasing distance from the probe. This may affect
segmentation approaches that use amplitude information.
However, defining a statistical description for the tissue in
the area of interest is not a trivial task. The problem is that
the number of tissue classes, mean and standard deviation of
their amplitude values may vary in great extent. Histogram
equalization did not provide any promising results, either.
Hence, a simple method was devised: The multiplication of
a linear intensity ramp in order to approximately compensate
for the log amplitude decrease. This ramp function is used to
lift the amplitudes further away from the skin tissue where
the probe is located and cannot be handled by the time-gain
compensation. The ramp intensities are in the range of [1, 2]
and multiplied with the image amplitudes. This is done slice
by slice. The range of the ramp was determined heuristically
to improve edges at inner structures, e.g. the lower border of
the thyroid lobe.

2) Edge-enhancing diffusion: Due to the low image
quality of US data in general, it is important to reduce
noise and speckle in nearly homogeneous regions, while
preserving edges. We implemented and evaluated several
filtering approaches that have been proposed in the literature.
In the following section, we describe two representative edge-
enhancing diffusion filters which were developed specifically
for combining noise reduction with edge preservation.

Curvature flow filter (CF)
The CF filter performs edge-preserving smoothing similar
to the classical anisotropic diffusion. The filter uses a level
set formulation, where the isointensity contours in an image
are treated as level sets [31]. The functional is then evolved
under the control of a diffusion equation with a speed that is
proportional to the curvature of the contour:

∂I

∂t
= κ||∇I||, (1)

with κ denoting the curvature and ∇ the gradient operator.
To derive a numerical algorithm, one has to consider the
discretization of time t = nτ , where n ∈ N is the number
of iterations and τ the time step. This leads to

In+1 − In

τ
− κ||∇In|| = 0. (2)

Large time steps result in a greater and faster smoothing.
However, the time step has to be chosen carefully for
numerical stability reasons. Regions with high curvature
values will diffuse faster compared to regions with low
curvature. Small jagged noise artifacts will therefore
disappear more quickly, whereas large scale interfaces
will slowly evolve. Sharp boundaries between objects are
preserved.

Gradient anisotropic diffusion filter (GAD)
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In GAD the diffusion scheme is given by:
∂I

∂t
= div(c∇I), (3)

where c is the diffusivity of the equation and also called
diffusion coefficient [32], [33]. I is treated as I(x, t), x ∈ R2,
i.e. the two-dimensional image I(x) at a certain time t > 0.
The initial condition is:

I(x, 0) = I0(x), (4)

where I0 is the original image. The diffusion equation becomes
non-linear, e.g. with the following diffusivity:

c = e−
||∇I||2

2k2 , (5)

where k is the conductance parameter that allows for control-
ling the amount of diffusion near edges in the image. The
larger the values for k, the less weight is put on the gradient
magnitude.

C. Segmentation methods

Our ultimate goal is to automatically segment the entire
3-D volume of the thyroid lobe. In an early stage of our
research, we applied region growing and watershed based
segmentation with little success. Thresholding techniques
can also not deal with the poor image quality and the bias
field. Level set methods on the contrary, allow for more
flexibility and yield promising results. In this section we will
briefly introduce the geodesic active contour and the proposed
extension for the US volumes we are dealing with.

1) Geodesic active contour (GAC): GAC methods [34]
are based on level sets that are briefly illustrated in the
following. In the general N -dimensional case, the interface
Γ is represented by the zero level set of the function Φ(x, t) :
RN × [0,∞) → R such that

Γ = {x ∈ RN , t ∈ [0,∞) : Φ(x, t) = 0},
Γi = {x ∈ RN , t ∈ [0,∞) : Φ(x, t) < 0},
Γo = {x ∈ RN , t ∈ [0,∞) : Φ(x, t) > 0}, (6)

where Γi describes the region inside and Γo the region outside
of the interface Γ (for 2-D see Fig. 2). The level set function
evolves over time and leads to the partial differential equation
(PDE):

∂Φ
∂t

= F ||∇Φ||, (7)

where F is a force term responsible for growing or shrinking
and ∇Φ the gradient of the level set function.

The equation for geodesic active contours is given by:
∂Φ
∂t

=
(
γZ(x)κ− λP (x)

)||∇Φ|| − α(−∇P (x))T∇Φ (8)

where (−∇P (x)) is the advection vector field, P (x) the prop-
agation speed and Z(x) (curvature speed) a spatial modifier
term for the mean curvature κ. α, λ and γ are scalar weighting
factors. The mean curvature, κ, in 3-D is given by:

κ = −∇T · ∇Φ
||∇Φ|| . (9)

Γ

Φ
Φ( )x,t

xD
Image plane

Fig. 2. Level set algorithm illustration (2-D). The 2-D curve Γ is represented
by a 3-D level set function Φ(x, t) which intersects the image plane. The value
of Φ at some point x is defined as its distance D to the curve Γ. Positive
distance values are inside the curve, negative ones outside the curve. The
curve evolves over time t, t = 0 is the initialization.

In our experiments, we set the curvature speed equal to the
propagation speed. The term contained within the first brackets
of Eq. 8 corresponds to the force F . The interface grows if
the force F is negative and vice versa.
The propagation of the curve is driven by a speed image that
is based on the gradient magnitude image and obtained via the
sigmoid function:

Î(x) = (Îmax − Îmin) · 1

1 + e(
I(x)−ζ

ρ )
+ Îmin, (10)

which results in a non-linear mapping of the image amplitudes.
I(x) denotes the image amplitude at position x, Î(x) the
resulting intensity and Îmax (Îmin) the maximum (respectively
minimum) of the desired output intensity. Parameters ρ and ζ
∈ R are used to intensify the differences between regions of
low and high values in the speed image. In the ideal case, the
speed should be maximal in homogeneous areas and minimal
near edges. To determine values for ρ and ζ, the gradient
magnitude should be considered. ζ defines the intensity center
for the sigmoid function and ρ its width. Let cmin be the
minimum intensity value along the boundary that surrounds
the structure and c the mean value within the structure. These
two values indicate the dynamic range that has to be mapped
into the intensity interval of the speed image (e.g. [0, 1]). The
suggested values for ζ and ρ may then be:

ζ =
cmin + c

2

ρ =
c− cmin

6
.

This yields a speed image with minimal values in regions
with a large gradient magnitude and maximal values in areas
with vanishing gradients. P (x) therefore acts as a speed
parameter that lets the interface evolve more quickly in
homogeneous regions and slows down at edges.
α, λ and γ are scalar weighting factors that influence the
evolution of the zero level set. The parameter α scales the
advection vector field that influences the interface near edges
in the image. The advection vector field ideally prevents the
level set from leaking into adjacent structures by providing an
inward pointing force. The propagation scaling λ controls the
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influence of the propagation speed. The contour or surface
will grow if the value is positive, otherwise the interface will
shrink. γ weights the magnitude of the curvature values that
are calculated on the evolving interface. Large values relative
to the other parameters will lead to a smooth interface. The
interface slows down at areas with high curvature (sharp
edges) and may end up smooth at sharp corners. Due to the
computation time, a sparse field approach is used to update
the level set equation.
The root mean squared change (RMSC) of the curve is used
as a convergence criterion. The evolution of the interface
converges if the RMSC is below a specified threshold. A
small threshold value for the RMSC will result in a tight
fit of the curve, but will take more computations. In our
experiments, we used a RMSC of 0.05 as stopping criterion.
The initial contour is propagated outwards until it sticks to
the shape boundaries. This process is guided by an edge
potential map following the approach by Malladi et al. [35].
Finally, an input image defines the initialization of the level
set, which may consist of seed points or an initial curve.

2) Geodesic active contour with mean extension (GACM):
For the specific case of the thyroid 3-D US images, we
suggest the following intensity based extension of the level
set equation:

∂Φ
∂t

=
(
γZ(x)κ− λP (x)

)||∇Φ|| − α(−∇P (x))T∇Φ

+ η(I − µ0)2, (11)

where I(x) denotes the intensity of the pre-processed volume,
µ0 the mean intensity calculated in the initialization step and
η a weighting factor for the intensity regularization. This
additional term penalizes evolutions of the curve towards
image regions that deviate from the initial intensity mean
value of the anatomical structure of interest. The motivation
behind the introduction of this extension term is based on the
typical intensity appearance of the thyroid images: Usually
the intensity gradient between the thyroid and trachea regions
decreases with increasing distance from the probe. The
edge potential in critical areas may therefore be insufficient
to keep the interface within the thyroid region. This may
result for example in a curve which leaks into the trachea.
The proposed formulation ideally suppresses any leakage at
low-contrast edges and will be referred to as GACM for the
remainder of this article.

IV. EXPERIMENTAL RESULTS

Since the accuracy of our segmentation depends on the
effectiveness of our pre-processing steps, we first separately
evaluated the ability of our proposed pre-processing filters in
reducing noise and speckle while preserving edge information.
In the following the term noise is used to denote speckle and
noise. The evaluation for the segmentation itself is presented
in the next subsection.

Table II shows the required runtimes for the different

steps in the image processing chain on an AMD Athlon XP
3200+, 2.20 GHz with 1 GB RAM.

TABLE II
RUNTIMES FOR THE OPERATIONS USED IN THE PRESENTED IMAGE

PROCESSING CHAIN. VALUES STEM FROM A VOLUME OF DIMENSIONS

(149×109×199).

Operation Runtime [s]
Reading DICOM series 1.625
Applying intensity ramp 0.204
CF filtering (iterations=20, τ = 0.2) 28.000
GAD filtering (iterations=20, τ = 0.0625, k = 3) 66.391
GAC Segmentation (iterations=395) 137.828
Writing volume 0.281

A. Pre-processing

1) Evaluation criteria: The criteria for the evaluation
of the pre-processing are: The mean squared error (MSE),
the signal-to-MSE ratio (S/MSE) and the edge preservation
β [15]. The reduction of noise is analyzed with MSE and
S/MSE. For specifying the reduction assuming a multiplicative
speckle model, the input for S/MSE are the log transformed
images. The 2-D phantom image G (size: 256 × 256) was
corrupted with noise to create artificial images Ĝ for the
evaluation of the different filtering methods. This evaluation
is performed for simplicity on 2-D images, but the results
generalize on higher dimensions.

The MSE is defined by:

MSE =
1
N

N∑

i=1

(Ĝi −Gi)2, (12)

where N is the number of elements in the image, i the i-th
image point. If all noise is reduced (ideal case), MSE would
be zero.

The S/MSE is defined by:

S/MSE = 10 · log10

(
N∑

i=1

G2
i /

N∑

i=1

(Ĝi −Gi)2
)

(13)

and the edge preservation β:

β =
Γ(G∆ −G∆, Ĝ∆ − Ĝ∆)√

Γ(G∆ −G∆, G∆ −G∆) · Γ(Ĝ∆ − Ĝ∆, Ĝ∆ − Ĝ∆)
,

(14)
where G∆ expresses the high-pass filtered version of G with
3 × 3 Laplacian filter and G is the mean of the image,
respectively. This filtering detects the edges in the two images
G, Ĝ, which is an important factor for the performance of
the segmentation. Equation (14) is closely related to the
correlation coefficient. The correlation coefficient is 1 for an
increasing linear relationship, 0 for no linear relationship and
values in between indicate the degree of linear dependence
between the two variables (here: G, Ĝ). If all edges in the
pre-processed, artificially generated and noisy phantom image
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are preserved, β converges to one. Given two images G and
J , the function Γ is defined as:

Γ(G, J) =
N∑

i=1

Gi · Ji. (15)

Equations (13) and (14) are crucial for the evaluation of
filtering operations on US data, as noise has to be reduced
in homogeneous areas, whereas edges are to be preserved.
These criteria are particularly important for the processing of
the images with gradient-based segmentation approaches.

TABLE III
EVALUATION OF TWO DIFFERENT EDGE-ENHANCING DIFFUSION FILTERS:
CURVATURE FLOW (CF) AND GRADIENT ANISOTROPIC DIFFUSION (GAD).

THE FIRST SECTION SHOWS THE RESULTS FOR A SIGNAL-DEPENDENT

SPECKLE NOISE MODEL. THE SECOND SECTION EVALUATES A

MULTIPLICATIVE SPECKLE MODEL. EVALUATION CRITERIA ARE: MEAN

SQUARED ERROR (MSE), SIGNAL-TO-MSE RATIO (S/MSE) AND EDGE

PRESERVATION β . CF SHOWS THE BEST RESULTS FOR ALL THREE

EVALUATION CRITERIA. GAD PRESENTS AVERAGELY LESS EDGE

PRESERVATION THAN CF. µ DENOTES THE MEAN OF THE NOISE AND σ2

THE VARIANCE.

Filter method and MSE S/MSE [db] β
parameter settings
Best case: Min (0) Max Max (1)

Signal-dependent speckle noise model (µ=0.2100, σ2=0.0291)
Curvature flow
iterations=10, τ=0.2 0.0021 18.6594 0.6547
iterations=20, τ=0.2 0.0016 19.9542 0.7105
iterations=30, τ=0.2 0.0014 20.5563 0.7117
Gradient anisotropic diffusion
iterations=10, τ=0.125, k=4 0.0016 19.8725 0.5516
iterations=20, τ=0.125, k=4 0.0016 19.7088 0.4659
iterations=20, τ=0.125, k=1 0.0067 13.6172 0.2131

Multiplicative speckle model (µ=0.7496, σ2=0.1145)
Curvature flow
iterations=10, τ=0.2 0.0064 17.4878 0.4042
iterations=20, τ=0.2 0.0051 18.5638 0.5380
iterations=30, τ=0.2 0.0044 18.9140 0.5773
Gradient anisotropic diffusion
iterations=10, τ=0.125, k=4 0.0088 15.6476 0.0866
iterations=20, τ=0.125, k=4 0.0071 16.4090 0.0857
iterations=20, τ=0.125, k=1 0.0227 9.3240 0.0599
τ : Time step, k: Diffusivity

2) Results: The noise reduction as well as the edge
preservation properties of different filters for US imaging
are evaluated with three criteria: Mean squared error (MSE),
signal-to-MSE ratio (S/MSE) and the edge preservation
β. Several techniques were implemented and evaluated.
Representatively, the two filters with the best results
(curvature flow, gradient anisotropic diffusion) are itemized
in Table III.
GAD shows the same tendency for the signal-dependent
speckle noise model and the multiplicative speckle model,
only with different range. β has considerable lower, MSE
higher values for the speckle model than for the noise model.
It can be seen that CF filtering with 20 iterations is sufficient
for high edge preservation and high S/MSE values. 30 or
more iterations only result in higher computational times but

(a) (b)

(c) (d)

Fig. 3. Subfigure 3(a) and 3(c) are pre-processed images. The right column
shows the speed images which are important for the segmentation. The first
row shows results without applying the ramp, the second row with. The edge
at the lower right boundary of the lobe was increased. The intensity increase
can be seen in subfigure 3(c).

nearly identical values for S/MSE and β.
To acquire the presented results, the settings for filtering the
real US data were chosen as follows: For GAD 20 iterations,
time step τ = 0.0625 and k = 3; for CF 20 iterations
and a time step of τ = 0.2. The lower time step for GAD
depends on the expansion from 2-D (phantom image) to 3-D
(US volumes). Otherwise the problem would no longer be
numerically stable or a more advanced numerical solver is
needed.

Fig. 3 motivates the application of the ramp. It can be
seen that far away lying edges to the skin are increased by
multiplying a linear ramp. Some former experiments showed
that this procedure prevents from leaking. The applied
pre-processing filter for both cases in Fig. 3 is the CF filter.

B. Segmentation

1) Evaluation criteria: For evaluating the segmentation, the
standardized measurements of sensitivity and specificity were
applied. The sensitivity (SE, true positive rate) reflects the
probability of classifying voxels as thyroid gland tissue (C)
given that the tissue actually belongs to the thyroid gland (T),
whereas the specificity is the true negative rate:

SE = P (C | T )
SP = P (C | T ).

We compared the manually segmented 3-D data sets to the
results of the proposed semi-automatic segmentations. Each
manual segmentation was realized with the Random Walker
approach by Grady [36]. One segmentation for one thyroid
lobe takes approximately 5 minutes. For a direct comparison
of the results, the surfaces of the segmented structures are
extracted and represented as triangular meshes. To apply
the commonly used Hausdorff distance (HD) measures, the
meshes are regarded as point clouds with points located on the
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vertices. Given two point sets A and B, the directed Hausdorff
distance is given by:

h(A,B) = sup
a∈A

{
inf
b∈B

{d(a, b)}
}

, (16)

where a and b are the points of the meshes and d is the
Euclidean distance. Eq. 16 describes the maximal distance of
a point set A to the nearest point within the set B. As h is not
symmetric (i.e. h(A,B) 6= h(B, A)), the general Hausdorff
distance may be used as its symmetric equivalent:

H(A,B) = sup {h(A,B), h(B, A)} . (17)

The distances are calculated in physical coordinates (mm).
Additionally, the mean distance errors h(A,B), h(B, A) are
calculated.
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2) Results: To initialize the expanding level set
formulations, five spherical volume elements with a
specific radius were chosen as seed for each thyroid
lobe. In the following we compare the results obtained from
different combinations between the pre-processing and the
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Fig. 6. Volume in milliliters of the 10 segmented thyroid lobes. 2-D
describes the volume measurement based on the standard ellipsoid formula
0.52×length×width×depth as performed by the medical expert. 3-D means
the ground truth segmentation of the nuclear medicine expert in 3-D.

segmentation approaches. In summary, we compare four
combinations of GAD, CF as pre-processing algorithms with
GAC and GACM as segmentations. As described earlier,
an additional contrast-enhancement by the application of a
linear ramp has always led to better segmentation results.
Therefore, the ramp filtering was always applied. Fig. 4 and
5 show the sensitivity and specificity of the segmentation
results for each combination. For the sensitivity there is a
trend that all combinations perform similar. The segmentation
with the mean extension provide advantages in case of
specificity. Although the sensitivity is above 75% for most
of the lobes, the first two segmentation results (especially
for lobe number two) exhibit less quality. One slice of the
lobe of thyroid gland number two can be seen in Fig. 8
that shows the difficulty in finding appropriate edges of the
thyroid. A strong anisotropic smoothing is necessary in this
case to eliminate noisy heterogeneous structures inside the
thyroid region. This thyroid gland image features very low
edge contrast in general, which results in a low edge strength.
In order to circumvent a leakage of the segmentation at the
thyroid boundaries, the edge strength parameters of the level
set formulation have to be adapted. This restriction in general
leads to a slowly evolving level set interface and in our case
to less segmented thyroid tissue. The concurrence of these
factors ends in a low sensitivity percentage similar applies for
the thyroid lobe number one. The specificity is around 97%
for nearly all data sets. In our experiments, a combination of
the initial ramp together with a curvature flow pre-processing
and the proposed GACM segmentation yield satisfactory
results. Fig. 7 presents the 3-D manual hand segmentation
compared to the different results of the various pre-processing
and segmentation combinations applied to the data set
number five. The sensitivity percentage for this data set is
between 78% and 80%. A comparison between the manual
and semi-automatic segmentation shows that the isthmus is
usually not segmented in the semi-automatic approach due to
its small and narrow shape. For the proposed segmentation
algorithms, this challenging problem generally leads to less
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. Subfigure 7(a) and 7(f) show the manual ground truth segmentation of the nuclear medicine physician of thyroid gland lobe number five. Different
segmentation results are visualized via Hausdorff distance: 7(b) and 7(g) are results of the ramp, GAD and GAC combination. Subfigure 7(c) and 7(h) visualize
the combination of ramp, GAD and GACM. Ramp, CF and GAC is shown in 7(d) and 7(i), and 7(e) and 7(j) with GACM. The upper row shows the front
view, the lower the back.

sensitivity values compared to the manual reference that
often includes parts of the isthmus. This fact has to be
considered while analyzing the sensitivity percentages given
in Fig. 4. Subfigure 7(b) depicts already leakage at the
anterior surface of the thyroid lobe. This is prevented by the
GACM approach (see Fig. 7(c)). Fig. 7(g) and 7(h) show that
the segmentation leaks for GAD pre-processing in the middle
of the posterior surface. It can also be seen that CF provides
better segmentation results with respect to posterior side of
the thyroid.
Fig. 6 illustrates the different volumes in milliliters, where
the 2-D ellipsoid formula (0.52×length×width×depth [28]),
the 3-D ground truth segmentation and the semi-automatic
segmentations of the different combinations are compared to
each other. It is obvious that the 2-D method systematically
underestimates the actual thyroid volume. We also suggest
in concurrence with Reinartz et al. [28] that the correction
factor of 0.52 for the 2-D based volume measurements has to
be revised.

Table IV shows the Hausdorff distances of the semi-
automatic segmented volumes (S) to the manual ground truth
segmentations (M) in both directions.

V. DISCUSSION

In general, the image quality of 3-D US is quite poor
and it is hard to provide desirable image enhancements by
traditional pre-processing techniques. However, the experi-
ments presented in this article show promising results. They
demonstrate that the current clinical approach towards 3-D
volume measurements of the thyroid volume using 2-D US

and Brunn’s formula is clearly outperformed by the presented
semi-automatic segmentation algorithms. This is proven by a
detailed comparison with 3-D manually segmented volumes
used as gold standard references. The evaluation of the sen-
sitivity and specificity for the presented algorithms shows
advantages if the proposed mean extension for the level set
equation is used. Measurements of the Hausdorff distances
exhibit a mean deviation of the surface distances of about 1 to
2 millimeters with only a few outliers. One very important fact
is that the manual ground truth segmentation incorporates the
isthmus, which is usually not relevant for clinical diagnoses.
Therefore, we expect that the results of the semi-automatic
algorithms are closer to the actual clinically relevant thyroid
volume measurements. We have shown that the previously
published demand for a correction of the ellipsoid formula
is justified [28]. In the article, the presented algorithms are
not fully automatic. However, the approaches do not require
more interaction than specifying a few seed structures for the
initialization of the level sets and minor adjustments of the
edge strength parameters. Although the proposed segmentation
is not yet executable in real-time, the computation time of
less than 5 minutes still makes it applicable for research and
post-processing operations. The statistics and models for noise
and speckle reduction and image quality enhancement have
to be studied more extensively in order to achieve better
pre-processing results. The segmentation may also benefit
from the integration of statistical shape information [37],
prior knowledge or other kinds of regularization (e.g. 3-D
mass-spring model [38]). It has to be investigated if the
proposed segmentation approaches are suitable for the analysis
of images from patients with different pathologies (e.g. cysts or
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nodules). These pathological structures may lead to additional
amplitude variations within the observed thyroid images and
pose a challenge to edge-based segmentation algorithms.

VI. CONCLUSION

Typically, physicians use 2-D US for the examination of
thyroid glands. We described how 3-D US together with
appropriate image processing techniques may allow for more
accurate thyroid measurements. We presented a processing
chain for the acquired 3-D US volumes that incorporates
intensity correction, filtering and segmentation of thyroid
lobes. Besides the time-gain compensation and acquisition
parameters of the US machine, posterior structures within the
images have been contrast enhanced by an additional ramp
filtering. Several other pre-processing algorithms for noise and
speckle reduction and edge preservation have been extensively
evaluated. Two favorite anisotropic diffusion filters have been
combined with level set based segmentation algorithms and
applied to ten 3-D thyroid lobe images. The sensitivity of the
segmentation was around 75%, the specificity at approximately
97%. The mean Hausdorff distance of less than 3 mm is
desirable for clinical use.
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