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Bohlenplatz 21, 91054 Erlangen, Germany

andreas.maier@informatik.uni-erlangen.de

Abstract. In children with cleft lip and palate speech disorders appear
often. One major disorder amongst them is hypernasality. This is the
first study which shows that it is possible to automatically detect hyper-
nasality in connected speech without any invasive means. Therefore, we
investigated MFCCs and pronunciation features. The pronunciation fea-
tures are computed from phoneme confusion probabilities. Furthermore,
we examine frame level features based on the Teager Energy operator.
The classification of hypernasal speech is performed with up to 66.6 %
(CL) and 86.9 % (RR) on word level. On frame level rates of 62.3 % (CL)
and 90.3 % (RR) are reached.

1 INTRODUCTION

In clinical practice it is desirable to objectively quantify the severity of speech
disorders by non-invasive means. The state-of-the-art techniques to measure hy-
pernasality today are quite invasive since the patients’ nasal and oral airflows
have to be measured. This is usually done with devices like a Nasometer [1] which
is placed between the mouth and the nose in order to separate both airflows.
This procedure is complicated—especially with children.

Non-invasive methods exist [2, 3], however, their application demands a lot
of manual preprocessing since these methods can only be applied to sustained
vowels or consonant-vowel combinations. In the literature the segmentation is
usually done manually which costs a lot of time and effort. In order to close
this diagnostic gap we want to investigate, if a fully automatic evaluation sys-
tem can be applied for such a task. Therefore, an automatic speech recognition
system is used to segment the audio data into words. To improve the automatic
segmentation the transliteration of the speech data was supplied to the speech
recognition system. In a next step, of course, we will replace the manual translit-
eration with an automatic speech recognition system. To train and evaluate an
automatic classifier, a speech therapist labeled all words either as “hypernasal”
or “normal”.

This research is being integrated into our automatic speech evaluation plat-
form [4] environment, which is a web application to analyze and evaluate various
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speech disorders. At the moment our system can already judge the speaker’s in-
telligibility. To achieve this, it uses a speech recognizer and calculates either word
accuracy (WA) or word recognition rate (WR) as a measure for intelligibility [5].

The aim of this work is to take our system one step further. It is our in-
tention to enable the ability to detect specific speech disorders. In the following
sections, we describe facial clefts and analyze different features for the detection
of hypernasality.

2 CLEFT LIP AND PALATE

Cleft lip and palate (CLP) is a frequent congenital alteration of the face with
a prevalence of about one in 750 to 900 births [6]. Today, the visible effects of
CLP can be surgically lessened. If a grown up patient has been treated well, it
is hardly noticeable, that he had a facial cleft as a child. Apart from surgical
interventions, the patient also receives speech therapy. This is necessary, because
the alteration can have a major impact on the patient’s vocal tract and can lead
to various speech disorders. The most common is hypernasality which is caused
by enhanced nasal air emissions. The first formant is less distinct while antires-
onances and nasal formants appear [7]. As a consequence, vowels are perceived
with a characteristic nasal sound. However, speakers also have problems with
other phonemes: Fricatives can not be pronounced correctly and plosives are
weakened [8].

During the speech therapy of a patient with hypernasality due to cleft lip and
palate, an automatic system to detect hypernasal speech would be very useful
because it can make the treatment easier by providing a way to keep track of
the patient’s progress.

3 CLASSIFICATION SYSTEM

All experiments use a Gaussian mixture model (GMM) classifier according to
the following decision rule:

k = argmax
κ

P (Ωκ) · P (c |Ωκ) (1)

Here, κ denotes a class, c is our feature vector and Ωκ is the event that the
current observation belongs to class κ. In our case, there are only two classes:
κ ∈ {nasal, normal}.

The probability P (c |Ωκ) is approximated by a mixture of M Gaussian den-
sities N (c,µm,Σm) with mean vectors µm and covariance matrices Σm:

P (c |Ωκ) ≈
M
∑

m=1

amN (c,µm,Σm)

with

M
∑

m=1

am = 1 (2)

Our classifier is trained by calculating am, µm and Σm by means of the
expectation maximization algorithm [9].
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3.1 Word dependent a-priori probabilities

We estimate the prior probabilities P (Ωnasal) by calculating the frequency of
hypernasality for every word w from the training set. If w is never marked as
hypernasal in our training set, this would lead to a zero probability which means
a record of w can never be classified as hypernasal. Therefore, we interpolate
by equally distributing the probability mass of the words that are marked as
hypernasal less than two times:

Pw(Ωnasal) ≈































#nasalw
#totalw

if #nasalw > 1

∑

z∈S

#nasalz
∑

z∈S

#totalz
else

S denotes the subset of words that were marked less than two times. #nasalw
is the number of times the word w was marked and #totalw is the number of
times w occurs.

3.2 Pronunciation Features

Pronunciation features, as described in [10], were designed to rate a speaker’s
pronunciation. They are used for measuring the progress when learning a foreign
language. In this work, we study these features’ applicability to the detection
of hypernasal speech. More precisely, we only analyze a subset of these features
that is based on phoneme confusion probabilities on word level. To calculate
these phoneme confusion features we compare the result of the forced alignment
of every word to the result of a phoneme recognizer. The phoneme recognizer
uses semi continuous hidden Markov models and a 4-gram language model. It is
based on MFCCs calculated every 10ms with a frame size of 16ms. From these
informations phoneme confusion matrices C are built. They contain for every
pair of phonemes a, b the probability that a was detected by the recognizer when
there should be b according to the forced alignment, i.e.,

Ca,b = P (a | b) (3)

From the training set, we calculate two confusion matrices: one for the hyper-
nasal data and one for the normal data. We need to recalculate these matrices
in every iteration of the LOO evaluation (cf. Sect. 4) because, in order to obtain
representative results, the current test speaker may not be involved in the gen-
eration of our phoneme confusion model. The quotient Q is calculated for every
frame:

Q =
Pnasal(a | b)

Pnormal(a | b)
(4)

From these frame-wise results, we calculate the following features for the
word level:
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– PC1: mean of Q
– PC2: maximum of Q
– PC3: minimum of Q
– PC4: scatter of Q
– PC5: median of Q

3.3 Cepstral Features

Furthermore, we investigate cepstral features, more accurately Mel frequency
cepstral coefficients (MFCCs). These features are calculated frame wise and
consist of the short time signal energy, 11 MFCCs and 12 dynamic features
in a context of ± 2 frames i.e. 56ms. Using these features, we train a frame
based classifier to analyze hypernasal vs. normal speech. However, the expert
annotations have all been performed on the word level. Thus, the expert labels
have to be mapped onto the frame level. In a first approach, we simply label ev-
ery frame with the respective word label; then a frame based classifier is trained.
As it is known for every frame, which word it was taken from, we can still use
the word based a-priori probabilities (cf. Section 3.1) as we did before.

To compare the classification results with previous investigations with word
based pronunciation features, the evaluation is again performed on the word
level. This means, that in the test phase a decision for the class of a word is
derived from all the classification results for its frames. There are several ways
of making a word level decision from the frame level (e.g. mean or median) but
the best results were achieved using the maximum frame wise classifier score as
the classification hypotheses for the whole word.

As mentioned above, during training all frames are labeled the same as the
word they belong to. However, if a word is labeled “hypernasal” that does not
mean that every part of this word is hypernasal. So we got normal frames la-
beled as hypernasal in our training procedure. We tackle that issue using a
bootstrapping algorithm (similar to [11]). We train our frame wise classifier just
like we did before. Then we classify the training data and relabel the frames
of the hypernasal words with the hypothesis of the frame based classifier. This
process is iterated a fixed number of times. We choose two iterations per word
as preliminary experiments showed that more iterations do not yield further
improvements.

3.4 Teager Energy Operator

The next feature we evaluate is the Teager Energy operator (TEO) [2]. It is
defined as:

ψ[x(n)] = x2(n) − x(n+ 1)x(n− 1) (5)

x(n) denotes the time domain audio signal. The TEO’s output is called the
Teager Energy profile (TEP).

As already described in [2], the TEP can be used to detect hypernasal speech
because it is sensitive to composite signals. When normal speech is lowpass
filtered in a way that the maximum frequency flowpass is somewhere between
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the first and the second formant, the resulting signal mainly consists of the first
formant. However, doing the same with hypernasal speech results in a composite
signal due to the strong anti formants. If we now compare the lowpass filtered
TEP to the TEP of the same signal that was bandpass filtered around the first
formant we should see more difference in case of a hypernasal signal. We measure
that difference with the correlation coefficient of these TEPs. In the following,
the bandpass filter covers the frequency range ±100Hz around the first formant
estimated using PRAAT [12].

We got the following experimental setup: We use the correlation between both
TEPs as a feature and calculate it for every frame. Then, we apply a phoneme
recognizer to determine the phoneme, the frame belongs to. The classifier is
trained per vowel with the features from all frames of the training words that
were associated with that vowel. Afterwards, these classifiers are tested with the
frames from the words of the test speaker that were assigned to the respective
vowel.

4 Evaluation

As our data set is rather small we use leave-one-speaker-out (LOO) evaluation to
rate our classifiers. There are much more normal words than hypernasal words,
so recognition rate (RR) is not very meaningful. Therefore, we calculate the
mean recognition rate per class (CL) as well. It is the average of the recalls for
the classes “hypernasal” and “normal”.

CL = 0.5(RECnasal + RECnormal) (6)

where RECnasal is the recall of the class “hypernasal” and RECnormal the recall
of the class “normal”.

5 DATA

The data we use consists of recordings of 3 girls and 10 boys (5 to 11 years old)
with cleft lip and palate recorded during the PLAKSS test [13]. Pictures are
shown to the children which illustrate the words the children should speak. There
are 99 different words, that contain all phonemes of the German language at 3
different positions in the word: at the beginning, at the end, and in the center.
The single words were extracted from the recordings using forced alignment and
were labeled as “hypernasal” or “normal” by an experienced speech therapist.

Since some children skipped some words and others had a quite low intelli-
gibility some words could not be properly segmented by the forced alignment.
These words had to be excluded from the data. In total we got 771 words. 683 of
them are labeled “normal” and 88 are labeled “hypernasal”. As some phonemes
are more likely to be mispronounced due to hypernasality than others, the prob-
ability Pw(Ωnasal) for being marked hypernasal is different for every word.

In order to keep the data as realistic as possible slight errors in the forced
alignment were kept in the database (some samples were cut off at the beginning
or at the end of the word). The audio files were stored with a sampling rate of
16 kHz and quantized with 16 bit per sample.
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Table 1. Results on word level obtained with different features. MFCCs and pronun-
ciation features yield feasible results.

feature RR CL

PC1 86.9 % 57.7 %
PC2 86.4 % 52.4 %
PC3 82.7 % 64.1 %

PC4 86.8 % 56.3 %
PC5 86.1 % 57,7 %
(a) pronunciation features

densities RR CL

2 70.6 % 65.1 %

5 74.7 % 64.4 %
10 75.5 % 64.9 %
15 75.5 % 63.9 %

(b) MFCCs (no bootstrap)

densities RR CL

2 82.1 % 66.6 %

5 82.3 % 64.8 %
10 82.2 % 64.7 %
15 83.1 % 65.2 %

(c) MFCCs (bootstrap)

6 RESULTS

LOO evaluation of the single pronunciation features with our Gaussian classifier
(we choose M = 1, more densities have shown to decrease the rates in this case)
leads to the results shown in Table 1 (a). The idea behind choosing these fea-
tures is that hypernasal speakers have problems pronouncing specific phonemes
(plosives, some fricatives and some vowels). Therefore, the phonemes a recog-
nizer does not identify properly should, to some extend, be similar for the nasal
speakers. The class-wise recognition rate of up to 64.1% verifies our assumption.
As our training sets are rather small the confusion probabilities P (a|b) can not
be calculated very exactly. Therefore, we expect even better results in future
experiments with more training data.

Testing the word level classification system based on frame-wise MFCCs as
described in Sect. 3.3 leads to the results shown in Table 1 (b) and Table 1 (c).
It can be seen that bootstrapping slightly improves the class wise recognition
rate while considerably improving the total recognition rate.

The results of the frame-wise classification of the Teager Energy correlation
feature as described in Sect. 3.4 were also promising. The formant frequencies for
the bandpass were extracted with “Praat” automatically and a bandpass with a
bandwidth of 200Hz around the first formant was performed for the one TEP. For
the other TEP we run 4 series of tests with lowpass cutoff frequencies flowpass =
1000 Hz, 1300 Hz, 1600 Hz, and 1900 Hz. Then, the correlation between both
TEPs was determined and fed to the classification procedure. Table 2 shows the
best results of for each of the vowels which appeared in the test data (vowels in
SAMPA notation).

The results show, that the TEO can be used to classify hypernasal speech of
children with cleft lip and palate. However, the rates are not as good as [2] might
let expect. We see two reasons for this: first, we have no phoneme level annotation
(a similar problem to what we discussed before regarding the MFCCs), second
this concept does not work as good with children as their formants are harder
to find (more detection errors) than those of adults. Due to the difficulties in
the determination of the cutoff frequencies and that the TEP is only suitable for
vowels we did not study their performance further on word level, yet.
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Table 2. Results for frame wise Teager Energy features for different vowels and best
cutoff frequency.

vowel RR CL cutoff flowpass

/9/ 90.3 % 62.5 % 1900 Hz
/a/ 80.0 % 59.2 % 1000 Hz
/i:/ 84.8 % 60.1 % 1900 Hz
/o:/ 87.0 % 63.2% 1000 Hz
/O/ 88.2 % 55.6 % 1900 Hz
/u:/ 90.0 % 55.6 % 1000 Hz
/U/ 89.4 % 56.1 % 1900 Hz

7 DISCUSSION AND OUTLOOK

In the results section encouraging results for the classification of hypernasality in
children’s speech from automatically segmented audio data were presented: The
class-wise recognition rate CL reaches up to 66.6% and the recognition rates RR
is in one case even 89.4 (53.4 % CL). We explain this effect with the fact that
nasality detection in children’s speech is more difficult than in adults’ speech.
Misdetection of normal speech as hypernasal speech, however, happened rarely
in the best classifiers.

We still see some room for improvement in our future work. As our data set
is relatively small, classification results could be greatly enhanced by using more
data (further recordings were already performed). This will help estimating the
prior probabilities for the GMM classifier and the confusion matrices for the
pronunciation features. The combination of multiple features will also improve
the performance of the classification.

Another possibility to improve the results is the usage of a phoneme level an-
notation. This will be a sensible step, because only some phones of a hypernasal
word show nasal characteristics. The other phones of the realization might still
be perceived as normal. The recognition rates of the MFCCs and the TEO fea-
tures could benefit from it. Moreover, we want to investigate whether the TEP
features can be enhanced in order to be applicable on word or speaker level,
since their classification rates look quite promising. We expect to be able to use
the techniques presented here soon in clinical practice.

8 SUMMARY

In this study we could show that the classification of hypernasality in children’s
speech on automatically segmented data is possible. We described the evaluation
of several features regarding their suitability to classify hypernasal speech of
children with cleft lip and palate. On word level, class-wise recognition rates
of up to 66.6% and global recognition rates of 86.9% were achieved. First, we
extracted pronunciation features based on phoneme confusion statistics. With
these, we reached a CL of up to 64.1% and a RR of 86.9%. MFCC features were
best in CL. We extracted them frame-wise and derived a word level decision
from that. With a bootstrapping approach, we improved the annotation which
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led to rates of up to 66.6% CL and 83.1% RR. Finally, we studied the TEO
on frame level. It was tested using separate classifiers for the frames belonging
to different vowels which were identified using a simple phoneme recognizer.
The results showed, that the TEO’s performance varied for different phonemes
and that it does not work as well in our scenario as in preceeding works with
adult speakers and manually segmented consonant-vowel and consonant-vowel-
consonant clusters.
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