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Abstract

Purpose:Respiratory motion of the patient during data
acquisition causes artefacts in the field of emission or com-
puted tomography. Respiratory gating allows to track and
correct these artifacts.Material and Methods: In this pa-
per, we present a system that uses the fairly new and off-the-
shelf Time-of-Flight (ToF) technology to compute a dense
estimate of the three-dimensional respiratory motion of a
patient. The work is characterized by three key contribu-
tions. The first is the employment of ToF sensors. Using ToF
sensors it is feasible to acquire a dense 3D surface model
of the chest and abdomen of the patient with more than 15
frames per second. The second contribution is an algorithm
to derive a surface representation which enables the estima-
tion of the 3D respiratory motion of the patient, which is suf-
ficient to compute 1D breathing signals for scalable specific
regions of interest like chest and abdomen. The proposed
data-driven algorithm models the chest and abdomen three-
dimensionally by fitting distinct planes to different regions
of the torso of the patient. The third contribution is the pos-
sibility to derive a sub-millimeter accurate 1D respiratory
motion signal by observing the displacement of each plane.

Results: Our ToF modeling approach enables marker less,
real-time, 3D tracking of patient respiratory motion with an
accuracy of 0.1 mm.Conclusion: Thus, our approach pro-
vides 1D breathing signals for scalable anatomical regions
of interest with sufficient accuracy for artifact reductionin
SPECT or x-ray angiography.

1. Introduction

Physiological motion in emission or computed tomogra-
phy leads to motion blurring, a reduction of overall image
contrast, and a loss of sensitivity [9]. Difficulties in lesion
detection, loss of accuracy in functional volume determina-
tion and more difficult activity concentration recovery are
the consequences of the associated blurring. Widely ac-
cepted approaches utilize respiratory gating: Only data ac-
quired during a certain respiration state is used for the com-
putation of 3D reconstructions. Multiple 3D reconstructions
lead to a 4D data set. Up to eight respiration states have
proven to deliver a good trade-off between temporal resolu-
tion and noise in the 3D reconstructions [14].
Furthermore, adaptive radiotherapy of lung cancer requires
a breathing signal to enable the computation of 4D-CT mod-
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els. Based on these data, radiation delivery can be tracked
or gated.

2. State of the Art

Current methods to acquire or compute a breathing sig-
nal are:

1. Spirometry: measurement of the amount (volume)
and/or speed (flow) of air that can be inhaled and ex-
haled.

2. Markers are placed on the skin of the patient. The
position of the markers is tracked [11, 3].

3. Acquisition of stereoscopic imagesof torso and com-
putation of 3D torso surface points. Derivation of vol-
umetric information from the surface [13].

4. Hybrid techniques [7], which combine two or more
of the above mentioned techniques.

It is worth noting that method 3 is the only published
method which is contactless and which enables the distinc-
tion between abdominal and thoracic breathing at a framer-
ate of 5 Hz. The method is equivalent to spirometry and pro-
vides drift-free volume information, which is not the case
for spirometry. In the case of spirometry a global decrease
of the volume can often be observed, which is caused by the
relaxation of the patient due to breathing in a lying position.
We propose an alternate method which is also contact-less
and therefore more closely related to method 3 than to meth-
ods 1 or 2. We suggest a system based on the emerging
ToF technology. ToF sensors provide a direct way for ac-
quiring 3D surface information of objects with a single all-
solid-state ToF camera by measuring the time of flight of
an actively emitted optical reference signal in the infrared
spectral range [2]. More recently, applications like obsta-
cle detection [12], gesture recognition [5][6] and automo-
tive passenger classification [4] make us of ToF sensors.
Currently, ToF cameras are also on their way to become a
component of consumer electronics, i.e. off-the-shelf tech-
nology. Therefore, a decrease of production costs for ToF
sensors due to mass production can be expected in the near
future. As ToF sensors provide data at rates higher than
15 Hz, they are suitable for real-time imaging. Examples of
available ToF cameras are shown in Figures 1(a) and 1(b).
The 3D data available of a scene observed with a ToF cam-
era is a 3D point cloud. As each 3D point corresponds to
a pixel of the sensor matrix, a triangulation of the 3D point
can be derived in a straight forward manner. The distance
estimation of a point is accomplished by measuring the time
of flight of an optical reference signal emitted by the camera
and reflected by the scene. Besides the 3D information for
each pixel an intensity value corresponding to the reflected

Lateral Resolution [px] 144×176
Depth Resolution [mm] ≥1
Framerate [fps] ≥15
Number 3D points 25344
Camera Dimensions [mm×mm×mm] 50×67×43.2
Field of view [degree×degree] 47.5×39.6

Table 1. Technical specification of the ToF camera SR 3100 used
for the experiments.[M1.4]

amount of the reference signal is available. These intensity
values are normally encoded as grey values and can be used
to provide a texture for the 3D surface reconstruction. A
schematic overview of the ToF principle and an example of
the data available from ToF cameras is given in Figures 1(c)
and 1(d).
We investigated the possibilities of extracting a respiration
signal from these 3D data and to distinguish abdominal and
thoracic breathing based on this information.
To emphasize technical differences between marker-
based/marker-less stereo-vision approaches, spirometryand
our ToF-based approach we briefly will compare certain
techniques in the following:
Marker-less stereo vision vs. ToF:The main difference
between both systems is how depth information is achieved.
Stereo approaches can only extract depth information at
pixels where corresponding features/texture informationis
available. In contrast, due to their high lateral resolution
ToF cameras provide dense depth information at constant
lateral resolution (see Table 1) and high framerates. A step
required mandatory for a stereo-setup is calibration. Unless
correctly calibrated, a stereo system cannot compute true
depth estimates from disparity values. For ToF cameras no
calibration step in order to acquire 3D information is re-
quired at all.
Marker-based stereo vision vs. ToF:Calibration is also
required when using markers. Furthermore, 3D informa-
tion is only available at the positions of the markers, i.e.
the number of available 3D points is defined by the number
of markers and a dense 3D map cannot be computed. In
comparison, ToF cameras provide 3D information for many
thousand 3D points (see Table 1) at constant lateral resolu-
tion.
Spirometry vs. ToF: Spirometry techniques measure the
volume or the change of volume to quantify respiration.
Nevertheless, no information about the anatomical defor-
mations of the torso due to respiration can be derived from
this volume information. Additionally, no distinction be-
tween abdominal and thoracic respiration can be made us-
ing the data. In contrast, we will show in our paper that this
distinction can be made using ToF based respiratory motion
detection.
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(a) ToF camera MESA Imaging
GmbH [8].

(b) ToF camera PMDTec GmbH
[10].

(c) ToF principle (R..distance,
c..speed of light,τd..travel time
of impulsePopt).

(d) 3D closed surface recon-
struction of human hand.

Figure 1. Different ToF cameras (Figure 1(a) and 1(b)), ToF prin-
ciple (Figure 1(c) and example visualization of available data (Fig-
ure 1(d)).

3. Methods

Our method requires the ToF camera to be rigidly
mounted in a way which brings the full torso of the patient
into the field of view of the camera. This implies a dis-
tance of approx. 60 cm–100 cm between ToF camera and
patient. Given today’s systems for morphological and func-
tional imaging this is no serious constraint. In most sys-
tems it is expected to mount the camera in existing caves.
Figure 2(a) shows the examples of the acquired 3D surface
data. The patient is assumed to be lying on an approxi-
mately planar table. The main steps of the method are the
following:

1. Calibration : An image of the empty patient table is
acquired. A best-fitting plane is computed for the sur-
face of the patient table. This plane will be used for
segmenting the torso of the patient in subsequent pro-
cessing steps. We will term this plane table-plane.

2. Segmentation of the torso: If the patient is lying on
the table, his complete torso is segmented by reject-
ing all points which are more far away from the ToF
camera than the table-plane, i.e. which are behind the
table-plane from the viewpoint of the ToF camera.

3. Defining Regions-of-Interest (ROI): Two regions of
interest are defined. One for the chest region and one
for the abdomen. Of course, the number of regions
of interest can be chosen appropriately for the specific
application. The definition of regions of interest is nec-
essary when setting up the camera the first time in the

therapy room or possibly when patients of significantly
differing size are treated (like kids and adults).

4. Derivation of multidimensional breathing signal:
The 3D points of each ROI are processed with a mean
filter of kernel size five to reduce the influence of noise
and subsequently a best-fitting plane in least square
sense is computed for the processed 3D points of each
ROI. Each plane is restricted to be parallel to the pre-
viously computed table plane. In our case, the plane
for the chest is termed chest plane, the plane for the
abdomen is termed abdomen plane. In Figure 2(b)
and 2(c) these planes are visualized: abdomen plane
is marked with number 2, chest plane is marked with
number 3. The table plane which was used for seg-
mentation is marked with number 1. Each best-fitting
plane is not infinite but limited by a bounding poly-
gon which is determined by the silhouette of the seg-
mented torso. The Euclidean distance of each best-
fitting plane to the table-plane constitutes one dimen-
sion of the breathing signal. Thus, for each of the ROIs
(chest and abdomen in our case) a one-dimensional,
time-variant breathing signal is derived. The specific
signals derived for the chest and abdomen region are
displayed in Figures 2(d) and 2(e).

Using planes to derive the respiratory motion of certain
ROIs is advantageous to using the initially available 3D
points for the following reasons, which are basically mo-
tivated by the goal to provide a stable approach in order to
meet the high quality requirements of clinical use:

• Noise reduction: Using a plane fitted to a certain num-
ber of 3D points significantly lowers the influence of
outliers, i.e. severely wrong measured 3D points. This
ensures meeting the high quality requirements implied
by the clinical application. If each single 3D point
would be used to conclude on respiratory motion, an
erroneously measured 3D point might indicate a state
of maximum exhalation while in fact a state of maxi-
mum inhalation is present: If the 3D point is not used
alone but in conjunction with adjacent correctly mea-
sured 3D points, this effect is efficiently prevented.
Please refer to Section 4 to see this proven by the ro-
bustness and validity of our results.

• Stability: The indication of respiratory motion by
the Euclidean distance between table plane and
chest/abdomen plane is justified by the robustness of
this approach. Volume estimation is error-prone as it
would rely on the original 3D points, which may con-
tain outliers which in consequence lead to a volume
which is estimated too small or big. Furthermore, the
table plane is computed by fitting a plane through all
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(a) Acquired data. (b) Segmented torso and fitted
planes.

(c) Side-view of segmented torso and fitted planes.

(d) Derived breathing signal
for breast region: Distance of
thorax plane (3) to table plane
(1).

(e) Derived breathing signal
for abdomen region: Distance
of abdomen plane (2) to table
plane (1).

Figure 2. Figure 2(a) shows the original data: Patient lyingon ta-
ble. Figure 2(b) shows the segmented patient body and the table
plane (1), the abdomen plane (2) and the thorax plane (3). Fig-
ure 2(c) shows the same data observed virtually from the side.
Figure 2(d) and 2(e) show the breathing signals computed over
a period of 20 seconds (horizontal axis): The breathing signal is
computed as the Euclidean distance (in mm; vertical axis) oftho-
rax plane to table plane (Figure 2(d)) or abdomen plane to table
plane (Figure 2(e)).

measured 3D points of the patient table and thus a sta-
ble reference plane for the subsequent steps of respi-
ratory motion detection is available. Additionally, re-
stricting the chest and abdomen plane to be parallel to
the table plane enables a stable distance computation
as the distance of parallel planes is always the same in-
dependent from the specific point on each plane which
is used for distance computation.

4. Evaluation

Available ToF cameras have a depth resolution of up to
1 mm. This accuracy is only reached under optimal illu-

mination conditions. Our approach derives the breathing
signal from partial regression planes which are computed
from probably noisy 3D points. The usage of best-fitting
planes increases the stability. To validate this fact a rigid,
non-deformable model of the human torso was subject to
the whole processing chain described in section 3. Thus,
the breathing signal of a completely non-breathing patient
was computed for varying viewing angles of the camera
(from perpendicular viewing angle onto the patient table
upto 30◦ viewing angle). The still observed breathing mo-
tion indicates the achievable z-resolution of the breathing
signal. Considering a time-span of 20 seconds the standard
deviation of the distance of best-fitting plane for the torso
and the table-plane was computed. The computed values
were always smaller than 0.1 mm, i.e. the z-resolution of
the breathing signal is about a factor ten greater than the
resolution of the original ToF camera data and respiratory
motion can be detected in the sub-millimeter range. Table 2
shows the detailed results. The results indicate that the best
measurement results is obtained when observing the patient
directly from above. Observing the patient from a lower
point of view, i.e. a smaller viewing angle, decreases the
measurement quality.

Angleα Standard deviation in mm

90◦ 0.06
75◦ 0.07
60◦ 0.09
45◦ 0.09
30◦ 0.1

Table 2. Relation between viewing angleα and standard devia-
tion of computed respiratory motion for a perfectly non-breathing
model of the human thorax and abdomen.

To validate the correctness of the computed breathing sig-
nal we calculated for 13 patients the correlation coefficient
of the computed breathing signal with the breathing signal
delivered by an ANZAI belt AZ-733V[1]. The patient was
advised to breath with the chest when the ANZAI belt was
attached to its chest and advised to breath with the abdomen
when the ANZAI belt was attached to its abdomen. For the
experiments a ToF camera SwissRanger SR3100 was used.
The results are displayed in Figure 3. The plot is briefly ex-
amined in the following. The horizontal axis corresponds to
the 13 candidates. The vertical axis corresponds to the cor-
relation coefficient, where two such values were computed
for each patient in the following manner:

1. Correlation coefficient for abdominal respiration:
The candidate was advised to breath with the abdomen
and the ANZAI belt was attached to the abdomen.
Thus, a 1D respiratory signal was acquired via the AN-
ZAI belt. Then the proposed method (see Section 3)
was applied and from the 3D information of the ab-
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dominal region (automatically defined by choosing the
hardware setup such that the upper of the field of view
of the ToF camera contained the thorax and the lower
half the abdomen) a 1D respiratory signal was derived
(defined as the Euclidean distance of the best fitting
plane of the ROI and the table plane). Then the cor-
relation coefficient of these two 1D signals was com-
puted.

2. Correlation coefficient for thoracic respiration: The
same setup as above was used, but the candidate was
advised to breath with the thorax, the ANZAI belt was
attached to the thorax and the ToF camera derived the
1D respiratory signal from the 3D information of the
thorax region.
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Figure 3. Evaluation results: Correlation coefficients between res-
piration signal computed from ToF camera data and respiration
signal delivered by ANZAI belt. Circle: Correlation coefficient
for thoracic respiration; Square: Correlation coefficientfor ab-
dominal respiration. See items 1 and 2 in Section 4 for detailed
explanation.

5. Conclusion

We presented a non-invasive non-contact method for the
computation of respiratory signals based on 3D point cloud
surfaces which are acquired with a ToF camera. We have
validated that the 3D information of the patient body, which
is provided by a ToF camera, can be decomposed into ab-
dominal and thoracic components by defining ROIs. By
computing best fitting planes for each ROI, respiration sig-
nals for each ROI are derived by computing the displace-
ment of each plane to a plane modeling the patient couch.
These signals are significantly correlating with the reference
breathing signal acquired with an ANZAI belt. The average
correlation coefficient between the ToF derived respiration

signal and the ANZAI belt was 0.85 for thoracic respira-
tion and 0.91 for abdominal respiration. Thus, its clinical
relevance is given, but further research will be invested to
improve the validity of the ToF based respiratory motion de-
tection. In comparison the achieved correlation values are
in the range of the correlation values (0.69-0.87) reported
for systems currently in clinical use [13]. It is doubtful
that much higher correlation values can be achieved as the
signals under investigation measure the same physiological
process, i.e. the respiration, but each of the signals is de-
rived from a different sensor (ANZAI uses a pressure sensor
attached to the skin; ToF cameras measure the time-of-flight
of an optical reference signal). It can be assumed that bad
correlation values obtained in our experiments stem from
bad respiration signals delivered by the ANZAI belt: The
respiration signal is derived from one pressure sensor, i.e.
the signal is measured at only one point on the skin of the
patient and thus relying strongly on a proper and stable at-
tachment of the pressure sensor. Thus, measurement errors
from the ANZAI belt are more likely to occur than errors in
our ToF based respiration signal which is derived from the
whole 3D surface data of the thorax of the patient. Conse-
quently, the measurement errors of the ANZAI belt will of
course decrease the computed correlation value. The com-
putational time for computing the respiratory signals does
take approx. 25 ms on a 2.0GHz single core CPU. Thus,
the proposed method is real-time capable. By deriving the
respiratory signal of a certain anatomical region like chest
or abdomen from best-fitting planes and not the original 3D
point clouds a depth-resolution of 0.1 mm is achieved.
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