The world in my hands - 3D non-haptic navigation for NOTES interventions

4th September 2008

Jochen Penne

Chair of Pattern Recognition (Informatik 5) Friedrich-Alexander-University Erlangen-Nuremberg

《曰》 《聞》 《臣》 《臣》 三臣

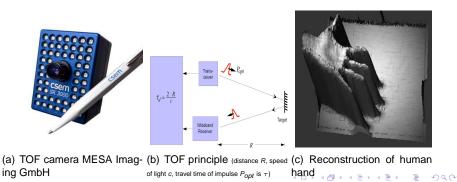
Content

1 Introduction

2 Gesture Recognition and Classification

3 Human-Machine Interface

4 Evaluation


3/25

Introduction

ToF (Time-of-Flight) technology

Technical specifications

- Framerate: 12...50 fps
- Resolution: 16×64 pixel ... 144×176 pixel
- Depth resolution per pixel: 1-6 mm
- Output: 3-D coordinates, gray value image (encoding the amplitude of the reflected signal)

Introduction

Time-of-Flight and Human-Machine-Interaction

Beneficial	Limiting
 + Markerless measurement principle + Active illumination + Sufficient frame rate + Constant resolution 	- Costs of ToF camera system ¹ - Small field-of-view $(\approx 40^{\circ})^2$ - Pixel resolution ³

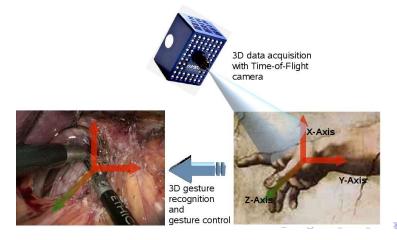
 Table:
 Beneficial and limiting aspects of ToF data acquisition for touch-less

 Human-Machine Interaction.
 12006: >5000 Euro; 2008: 1400 Euro; January 2009: 300 Euro.
 2Increasing the field-of-view also

 implies increasing the actively illuminated part of the scene.
 ³Not in the range of standard CCD cameras (640 × 480px. or higher).

NOTES (Natural Orifice Translumenal Endoscopic Surgery) interventions are an appropriate application field because...

- ... they require the precise control of surgical devices
- ... robot-guided devices/tools can be manipulated three-dimensionally
 ToF-based gesture control covers exactly these three dimensions (in comparison to 2D camera systems)
- ... touchless interaction possibilities do not conflict requirements regarding sterility
- ... Development of a multitasking platform to accomplish procedures¹ is crucial barrier for NOTES => 3D gesture interaction has the potential to become an appropriate input modality


¹D. Rattner, A. Kalloo, and the SAGES/ASGE Working Group on Natural Orifice Translumenal Endoscopic Surgery, **NOTES White Paper**, Surgical Endoscopy (2006) 20: 329-333

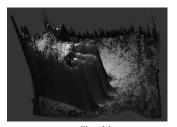
Introduction

NOTES and Human-Machine-Interaction: Vision

Vision: Recognize 3D movement and gesture of hand ⇒ translate it intuitively and as directly as possible into manipulations of a surgical device, endoscope optic positions, ...

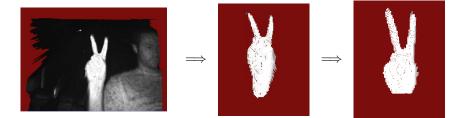
Introduction

Scope of the presented work


The presented work aimed at giving a proof of concept by successfully addressing the issues:

- How can the hand (and only the hand) reliably be identified?
- How can meaningful features be extracted to enable a gesture classification?
- What gestures shall be used?
- How do users response to the system?

Example: Illustrating the problem of segmentation and feature extraction


A hand can look like this...

Gesture Recognition and Classification

Segmentation

Steps from original 3D and amplitude data to fine segmentation of the hand:

Original 3D+amplitude data \implies

Coarse segmentation (distance threshold)

Fine segmentation (distance transformation)

Gesture Recognition and Classification

9/25

Feature Extraction

- Distance transformation yields center pixel of hand and radius of circle completely located in the palm (green circle).
- Increasing the radius by a factor of 1.68 yields the sampling circle (white dotted circle).
- Sampling the sampling circle in steps of one degree yields the feature vector which contains the distance transformation values of pixels lying on the sampling circle.
- These feature vectors can easily be aligned via the maximum value (always on the intersection of hand and forearm) by cyclic shifts ⇒ rotation-invariant feature vector.

Human-Machine Interface

Mouse Cursor (Movement)

Mouse Cursor (Click)

Human-Machine Interface Gesture Set (cont.)

3D Rotation

3D Translation

Human-Machine Interface

Gesture Set (cont.)

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Reset

- 15 persons; 40 reference datasets of each of the 5 gestures => 3000 datasets
- Brief explanation of the gestures
- No restrictions regarding position of sleeves or wearing a ring
- Only requirement: Hand is in the field-of-view of the camera and with in the working range (<1.2 meter)

Example data: 4 different persons perform the 3D rotation gesture

User-dependent classification rates

Nearest	Number of equidistant samples				
Neighbor	extracted from sampling circle				
Person	90	120	180	360	
P1	94.0 %	95.0 %	96.0 %	95.0 %	
P2	99.0 %	98.5 %	99.0 %	98.5 %	
P3	99.0 %	99.0 %	99.0 %	99.0 %	
P4	99.0 %	99.0 %	99.5 %	99.5 %	
P5	97.0 %	97.0 %	98.0 %	97.5 %	
P6	99.5 %	99.5 %	99.5 %	99.5 %	
P7	93.5 %	93.0 %	93.0 %	92.5 %	
P8	98.5 %	98.5 %	99.0 %	98.5 %	
P9	99.0 %	99.5 %	99.5 %	99.0 %	
P10	98.5 %	99.0 %	99.0 %	98.5 %	
P11	98.5 %	98.5 %	98.0 %	98.0 %	
P12	99.0 %	99.5 %	99.5 %	99.5 %	
P13	99.5 %	99.5 %	99.5 %	99.5 %	
P14	99.0 %	99.0 %	98.5 %	98.5 %	
P15	99.5 %	99.5 %	99.5 %	99.5 %	
Mean	97.6 %	98.3 %	98.4 %	98.2 %	

Table: User-dependent classification rates.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The user-dependent evaluation used reference and test gestures of the same person.
- For the user independent evaluation 45 data sets for each gesture (3 data sets from each of the 15 persons) were used as reference data sets.

	Number of equidistant samples extracted from sampling circle				
	90	120	180	360	
Nearest					
Neighbor	80.9 %	81.3 %	81.8 %	83.6 %	

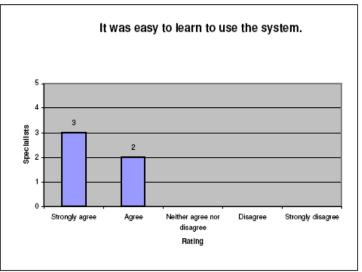
Table: User-independent classification rates.

Sac

Evaluation

Intraoperative usability - Preliminary results

- 5 surgeons (2 female, 3 male) utilized the presented Human-Machine-Interface to manipulate 3D CT volume data sets (using InSpace volume renderer)
- Step 1: Brief explanation of the gesture data set
- Step 2: Manipulation of volume data set
- Step 3: Questionnaire

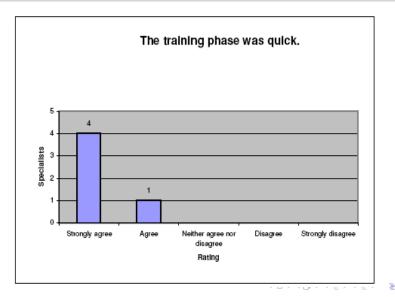


Setup for evaluation:

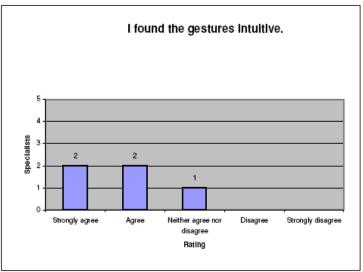
- Right laptop: Gesture classification
- Middle: ToF camera
- Left laptop: Volume renderer where actions triggered by gestures are performed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Intraoperative Usability - Preliminary Results (cont.)

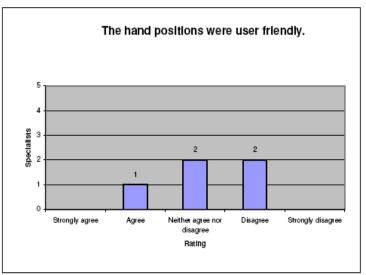


NERSERVER ENDER E PRO

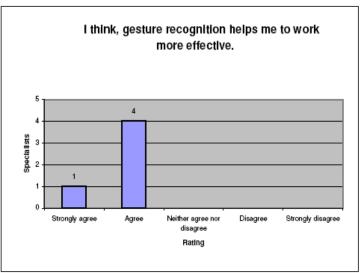

Sac

Evaluation

Intraoperative Usability - Preliminary Results (cont.)

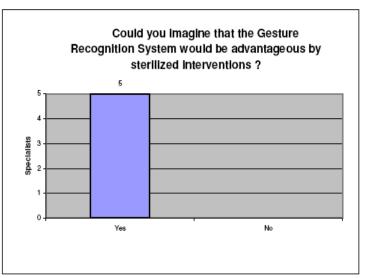


Intraoperative Usability - Preliminary Results (cont.)



A HARABARA ERAER E 990

Intraoperative Usability - Preliminary Results (cont.)



Intraoperative Usability - Preliminary Results (cont.)

NERSERVER E 9900

Intraoperative Usability - Preliminary Results (cont.)

Evaluation Conclusion

- In terms of algorithms the ToF-based 3D gesture recognition provides sufficiently high recognition rates at least when user-specific training data sets are used.
- More advanced classification approaches (Principal Component Analysis) will be suitable and lead to better classification rates for user-independent training data sets, too.
- The evaluation by the 5 surgeons indicates that ToF-based 3D gesture interaction will be beneficial for intraoperative applications, but: The hardware setup definitely has to be changed to enable a more suitable and easy interaction (hand position was rated very inconvenient).

SQ Q

Outlook Fine tuning of 3D gesture control for NOTES interventions

- Fine-tuning of the current system (Part 1): Implement a stable and comfortable hardware input configuration for the operation room (see image).
- Fine-tuning of the current system (Part 2): Determine parts of NOTES interventions where 3D gesture control is most beneficial and establish a human-machine-interface especially for this scenarios.

◆□→ ◆◎→ ◆恵→ ◆恵→ 「恵

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Thanks to Lukas Fedorowicz: Parts of the presented work have been accomplished by him during his diploma thesis at the Chair of Pattern Recognition.
- Thanks to the MITI group (workgroup for minimally invasive therapy and intervention) of Prof. Hubertus Feußner at the Klinikum rechts der Isar: Members of the MITI group participated in the evaluation of the 3D gesture control system.

Thank you for your attention.