
Design and Implementation of the Software Architecture
for a 3-D Reconstruction System in Medical Imaging

Holger Scherl
University of

Erlangen-Nuremberg
Institute of Pattern Recognition

Martensstr. 3, D-91058
Erlangen, Germany

scherl@informatik.uni-
erlangen.de

Stefan Hoppe
University of

Erlangen-Nuremberg
Institute of Pattern Recognition

Martensstr. 3, D-91058
Erlangen, Germany

hoppe@informatik.uni-
erlangen.de

Markus Kowarschik
Siemens Medical Solutions

P.O.Box 3260, D-91050
Erlangen, Germany

markus.kowarschik
@siemens.com

Joachim Hornegger
University of

Erlangen-Nuremberg
Institute of Pattern Recognition

Martensstr. 3, D-91058
Erlangen, Germany

hornegger@informatik.uni-
erlangen.de

ABSTRACT

The design and implementation of the reconstruction sys-
tem in medical X-ray imaging is a challenging issue due to
its immense computational demands. In order to ensure
an efficient clinical workflow it is inevitable to meet high
performance requirements. Hence, the usage of hardware
acceleration is mandatory. The software architecture of the
reconstruction system is required to be modular in a sense
that different accelerator hardware platforms are supported
and it must be possible to implement different parts of the
algorithm using different acceleration architectures and tech-
niques.

This paper introduces and discusses the design of a soft-
ware architecture for an image reconstruction system that
meets the aforementioned requirements. We implemented a
multi-threaded software framework that combines two soft-
ware design patterns: the pipeline and the master/worker
pattern. This enables us to take advantage of the parallelism
in off-the-shelf accelerator hardware such as multi-core sys-
tems, the Cell processor, and graphics accelerators in a very
flexible and reusable way.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Patterns ; J.3 [Life and Medical Sciences]: Health; I.4.5

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

[Image Processing and Computer Vision]: Reconstruc-
tion

General Terms

Design, Algorithms, Performance

Keywords

Software Design and Architecture, Patterns, Medical Imag-
ing, 3-D Reconstruction, Hardware Abstraction Layer, Hard-
ware Acceleration, Parallel Programming

1. MOTIVATION
Scanning devices in medical imaging acquire a huge amount

of data, e.g. X-ray projection images from different angles
around the patient. Modern C-arm devices, for instance,
generate more than 2 GigaByte (GB) of projection data for
volume reconstruction. The basic computational structure
of a reconstruction system consists of a series of processing
tasks on these data, which finally results in the reconstructed
volume, consisting of many transaxial slices through the pa-
tient.

The typical medical workflow especially for interventional
imaging using C-arm devices requires high-speed reconstruc-
tion in order to avoid a delay of patient treatment during
surgery, for example. Because of this reason, future prac-
tical reconstruction systems may present the reconstructed
volume to the physician in real-time, immediately after the
last projection image has been acquired by the scanning de-
vice. This requires to do all computations on-the-fly, which
means that the reconstruction must be done in parallel to
the data acquisition.

In this paper we focus on the design of a software archi-
tecture for the reconstruction system that can deal with the
described requirements. Our proposed architecture is based

upon a combination of parallel design patterns [6]. The main
part of the reconstruction system follows the pipeline pat-
tern [8, 12] in order to organize the different processing tasks
on the input data in concurrently executing stages.

Achieving the objective to meet the immense computa-
tional demands on the reconstruction system, hardware ac-
celeration of the respective processing tasks must be used
in addition to the pipeline design. Nowadays, off-the-shelf
accelerator hardware like multi-processor, multi-core sys-
tems, the Cell Broadband Engine Architecture (CBEA), and
graphics accelerator boards may be used for this task. Ac-
cording to our experience, these massively parallel architec-
tures can be used most efficiently by following the master/-
worker design pattern [6] in order to parallelize the compu-
tations of the respective pipeline stages.

Another advantage of our approach is its role as a hard-
ware abstraction layer. The master/worker concept allows
to abstract from the respective hardware accelerator used in
a specific pipeline stage. In combination with the Factory
design pattern [1, 3] most parts of the overall reconstruction
algorithm can be expressed independently from the used ac-
celeration hardware. The respective architecture execution
configuration of the pipeline stages can even be changed dy-
namically at run-time.

We have done a thorough evaluation of the proposed de-
sign approach by implementing several reconstruction sys-
tems using the aforementioned hardware platforms [11, 9,
10]. While the basic building parts as described by the com-
bination of the pipeline and the master/worker design pat-
terns remain the same for all reconstruction systems, we im-
plemented this design paradigm using a multi-threaded ap-
proach in a software framework called Reconstruction Toolkit

(RTK). The framework further addresses resource usage is-
sues when allocating objects in the pipeline, e.g. the alloca-
tion and management of buffers for input data.

In the following section we will briefly describe a state-
of-the-art reconstruction system using an example of recon-
struction in computed tomography (CT) with C-arm de-
vices. Then, we will comment on the technical facts of the
considered hardware architectures used to implement accel-
erated versions of such a system. In Section 4 we will discuss
in detail the design of a reconstruction system, which faces
all important building blocks of its software architecture:
the reconstruction pipeline (4.1), the parallelization strat-
egy (4.2) and the resource management (4.3). The following
section will reflect the practical challenge in implementing
the design in a software framework that is flexible, reusable
and easy to extend. Finally, we will conclude our work.

2. CONE-BEAM CT RECONSTRUCTION
In this section we briefly recapitulate the computational

steps involved in a state-of-the-art CT reconstruction sys-
tem (e.g. a C-arm CT device) that is based upon the FDK
reconstruction method [2].

The reconstruction process can be subdivided into sev-
eral parts [5]: 2-D preprocessing of the X-ray projection
images, high-pass filtering in frequency domain of the X-ray
projection images, back-projection and 3-D post-processing.
Each projection image is processed instantaneously when it
is transferred from the acquisition device over the network
or, alternatively, when it is loaded from the hard disk. The
back-projection is the computationally most expensive step
and typically accounts for more than 70% of the overall ex-

Preprocess

Filter

Store volumePostprocess

Back-project

Load projections

Data flow:

Volume

Projection

Figure 1: Processing steps of a state-of-the-art CT
reconstruction system.

ecution time [5]. For each projection image and for each
discrete volume element (voxel), the intersection of the cor-
responding X-ray beam with the detector is computed and
the respective detector intensity is accumulated to the cur-
rent voxel. Figure 1 illustrates the processing steps in the
order of occurrence. For a more detailed discussion of the
algorithms we refer to [13] and [14].

3. TARGET HARDWARE PLATFORMS
Due to the immense processing requirements of any re-

construction system, acceleration with special hardware is
mandatory in order to meet the requirements of today’s
medical workflow. Even acceleration boards based upon
FPGA technology have been used in commercial reconstruc-
tion systems [5].

A combination of hardware using off-the-shelf technology
may also be used for this task. Today, graphics accelerator
boards, the CBEA, multi-core and multi-processor systems
seem to be the most promising candidates. A significant ad-
vantage of these acceleration platforms over FPGA solutions
is that their implementation requires much less development
effort than FPGA-based solutions.

3.1 Multi-Core and Multi-Processor Systems
Nowadays, all relevant reconstruction systems are based

upon this type of hardware. These systems are considered
as the basic building block in every reconstruction system.
The control flow of any reconstruction algorithm and some
parts of it will be implemented on these processors. How-
ever, the processing power is still insufficient to achieve the
reconstruction speed that is required in interventional envi-
ronments. In addition, the computationally most expensive
tasks can be accelerated using special hardware architec-
tures.

3.2 Cell Broadband Engine Architecture
The CBEA [7] introduced by IBM, Toshiba, and Sony is

a special type of a multi-core processing system consisting
of a PowerPC Processor Element (PPE) together with eight
Synergistic Processor Elements (SPEs) offering a theoretical
performance of 204.8 Gflops1 (3.2 GHz, 8 SPEs, 4 floating
point multiply-add operations per clock cycle) on a single
chip. The processor is still completely programmable using
high level languages such as C and C++.

The major challenge of porting an algorithm to the CBEA
is to exploit the parallelism that it exhibits. The PPE, which
is compliant with the 64-bit Power architecture, is dedicated
to host a Linux operating system and manages the SPEs as
resources for computationally intensive tasks. The SPEs
support 128 bit vector instructions to execute the same op-

11 Gflops = 1 Giga floating point operations per second

erations simultaneously on multiple data elements (SIMD).
In case of single precision floating point values (4 byte each)
four operations can be executed at the same time. The SPEs
are highly optimized for running compute-intensive code.
They have only a small memory each (local store, 256 KB)
and are connected to each other and to the main memory via
a fast bus system, the Element Interconnect Bus (EIB). The
data transfer between SPEs and main memory is not done
automatically as is the case for conventional processor archi-
tectures, but is under complete control of the programmer,
who can thus optimize data flow without any side effects of
caching policies.

3.3 Common Unified Device Architecture
In comparison to the nine-way coherent CBEA, modern

GPUs offer even more parallelism by their SIMD design
paradigm. The NVIDIA GeForce 8800 GTX architecture,
for example, uses 128 Stream Processors in parallel. This
GPU (345.6 Gflops1, 128 stream processors, 1.35 GHz, one
multiply-add operation per clock cycle per Stream proces-
sor) is theoretically capable of sustaining almost twice the
performance of the CBEA.

Recently, NVIDIA has provided a fundamentally new, and
easy-to-use computing architecture for solving complex com-
putational problems on the GPU. It is called the Common
Unified Device Architecture (CUDA). It allows to implement
graphics-accelerated applications using the C-programming
language with a few CUDA-specific extensions.

The programs, which are executed on the graphics device,
are called kernels. A graphics context must be initialized and
bound to a thread running on the host system. The execu-
tion of the kernels must be initiated from this thread, which
must be addressed in the design of the software architecture.

4. RECONSTRUCTION SYSTEM DESIGN
Throughout the discussion of our reconstruction system

design we suppose that the whole system is primarily based
upon a general-purpose computing platform either as a single-
core or multi-core system. This system may be extended by
several hardware accelerators either on-chip or as an accel-
erator board. For this reason, the design must allow the
acceleration by specific hardware architectures at each part
of the algorithm. It is also required that several different
hardware architectures can be used for different processing
steps.

4.1 Reconstruction Pipeline
As can be seen in Figure 1 the overall computation of

the reconstruction system involves performing calculations
on a set of 2-D projection images, where the calculations
can be viewed in terms of the projections flowing through a
sequence of stages. We use the pipeline design pattern [6]
to map the blocks (stages) of Figure 1 onto entities working
together in order to form a powerful software framework
which is both, reusable, as well as easy to maintain and to
extend.

4.1.1 Pipeline Design Pattern

Software systems where ordered data passes through a se-
ries of processing tasks are ideally mapped to a pipeline ar-
chitecture [6]. This is especially true for any CT reconstruc-
tion system where hundreds of X-ray projection images have
to be processed in several filtering steps and are then back-

projected into the resulting volume data set. The pipeline
pattern should be applied to build configurable data-flow
pipelines. In our design we use a combination of the pipeline
patterns that are described in [8, 12]. In the following we
review the pipeline design pattern in the context of a recon-
struction system.

From the software engineering point of view, the pipeline
design pattern provides the following benefits for the recon-
struction system architecture:

• It allows to decouple the compositional structure of
the processing tasks in a specific algorithm from the
implementation that computes the respective tasks.

• It is possible to set up the pipeline in a type-safe and
pluggable manner. Type-safe means that the type of
data that is sent through the different pipeline stages
can be defined and enforced statically by the compiler.

• The pipeline can be both configured and reconfigured
dynamically and independently from reusable compo-
nents.

Depending on the used reconstruction algorithm, the or-
der of both control and data messages that are sent through
the pipeline stages must often be preserved. This is easy to
realize using the pipeline approach, because the pipeline de-
sign pattern depends upon the flow of data between stages.

4.1.2 Concurrency

Within the pipeline design pattern, the concurrent execu-
tion of the different stages is possible using a multi-threaded
design approach. This allows us to compute the different
parts of the reconstruction algorithm in parallel. The fol-
lowing factors will affect the performance of reconstruction
systems that are based upon this pattern:

• The slowest pipeline stage will determine the aggregate
reconstruction speed.

• Communication overhead can affect the performance
of the application, especially when only few compu-
tations are executed in a pipeline stage. In a recon-
struction system, the granularity of the data flow be-
tween pipeline stages can be considered to be large,
because most often projection images will flow through
the pipeline as a whole. On shared-memory architec-
tures, the number of computations that are performed
on the projection images is high in comparison to the
communication overhead.

• The amount of concurrency in the pipeline is limited
by the number of pipeline stages and a larger number
of pipeline stages is preferable. In a reconstruction sys-
tem this number depends upon the reconstruction al-
gorithm and is therefore limited considering a pipeline
flow with a granularity of projection images.

• The time required to fill and drain the pipeline should
be small compared to the overall running time. Since
reconstruction systems process a large amount of pro-
jections, this point can be ignored in this context.

Nonetheless, for a reconstruction system, the amount of con-
currency offered by the pipeline pattern is by far insufficient.
We therefore consider the pipeline architecture only as the

basic building block of the overall reconstruction system ar-
chitecture that structures and simplifies its implementation
and enables basic concurrent processing. As will be de-
scribed in Section 4.2, the actual strength of the pipeline
design comes into play when we combine this pattern with
the master/worker pattern for selected pipeline stages in or-
der to make use of special accelerator hardware.

4.2 Parallelization Strategy
As was outlined in the previous section, the pipeline de-

sign pattern is able to act as the basic building block of a re-
construction system. In order to achieve the reconstruction
speed necessary for the typical medical workflow, the level of
concurrency in the pipeline design is still not sufficient and
flexible enough. Therefore, the software architecture of a re-
construction system has to be extended by including other
possibilities of achieving concurrency.

In this section we show how the gap can ideally be filled
when combining the master/worker [6] design pattern with
the pipeline design pattern.

4.2.1 Master/Worker Design Pattern

The master/worker design pattern is particularly useful
for embarrassingly parallel problems that can be faced by
a task parallelization approach [6]. The most computation-
ally expensive task in a reconstruction system, the back-
projection, is of such type. The master/worker approach is
also applicable to a variety of parallel algorithm structures
and it is possible to use it as a paradigm for hardware accel-
erated algorithm design on many different architectures. In
the following we review the master/worker design pattern in
the context of a reconstruction system.

The master divides the problem in manageable tasks,
which we will call work instruction blocks (WIBs), and sends
them to its workers for processing. For example, the back-
projection computation can be partitioned into several WIBs,
each corresponding to a small sub-volume. Then, each worker
processes in a loop one WIB after the other and sends the
respective results back to the master. When the master
received all WIBs corresponding to a specific task, the pro-
cessing of that task is finished.

A parallelization strategy based upon the master/worker
pattern has the following characteristics:

• Static and dynamic load balancing strategies can be
applied for the distribution of the tasks to the workers.
Both strategies are easy to realize. In Section 4.2.3 we
will see that this is particularly important for hardware
abstraction in our design.

• Master/worker algorithms have good scalability as long
as the number of WIBs significantly exceeds the num-
ber of workers.

• The processing time of a task must be significantly
higher than the necessary communication overhead to
distribute it to a worker and back to the master.

The last two characteristics can easily be enforced in the
considered medical imaging applications. For performance
reasons all worker processes should be created when the
pipeline is initialized. This saves the overhead resulting from
frequent creation and termination of worker processes.

4.2.2 Combination with the Pipeline Design Pattern

From a macroscopic point of view, our software architec-
ture consists of a pipeline structure. In order to overcome
the limited flexibility and concurrency in the pipeline design
pattern (see Section 4.1.2), further refinement of the pipeline
stages is necessary. We propose a software design of the re-
construction system that allows a hierarchical composition
of the pipeline and the master/worker design patterns. This
allows to integrate a master and a configurable number of
workers in a pipeline stage. In the context of our reconstruc-
tion task we have found that it is sufficient to have only a
hierarchy depth of one, which means that it must only be
possible to integrate master/worker processing in a pipeline
stage but there is no need to have a pipeline nested in a spe-
cific worker. This procedure totally closes the gap of limited
support for flexibility and concurrency in the pipeline pat-
tern.

A centralized approach with only one master process can
easily become a bottleneck when the master is not fast enough
to keep all of its workers busy. It also prohibits an optimal
usage of the acceleration hardware because its processing
power still has to be assigned or partitioned statically to
specific pipeline stages. For this reason, we extend our de-
sign such that it allows to share processing elements between
several master/worker pipeline stages (see Section 4.3.1).

4.2.3 Hardware Abstraction

The master/worker design paradigm can be used to par-
allelize most parts of a specific reconstruction algorithm and
it is not tied to any particular hardware. The approach can
be used for everything from clusters to shared-memory ar-
chitectures. It can thus act as a hardware abstraction layer
in the reconstruction system.

The basic functionality and communication mechanisms
of the master/worker pattern have to be implemented only
once for each supported hardware architecture, and different
load balancing strategies can be integrated in its communi-
cation abstraction. This is necessary because for a specific
hardware architecture, a certain load balancing strategy may
be better than another one. For example, using a CUDA-
capable platform, the sharing of resources in device mem-
ory among a task-group can require static load balancing.
In contrast to this, the CBEA always performs best with
a dynamic load balancing approach, since no resources are
shared in local store among task-groups.

In reconstruction systems, several hardware components
may be used for the acceleration of different parts of the
reconstruction algorithm. The combination of the pipeline
and master/worker pattern has enough flexibility to support
such heterogeneous systems allowing the usage of different
acceleration hardware solutions in each pipeline stage. A
specific part of the reconstruction algorithm may be mapped
to the best suited acceleration hardware independently of
the processing order. For example, multi-core systems may
be used in between GPU-accelerated parts of the algorithm.

In combination with the factory design pattern [1, 3],
most parts of the overall reconstruction algorithm can be ex-
pressed independently from the used acceleration hardware.
This allows for a portable and flexible algorithm design that
reuses the common parts and even enables the respective ar-
chitecture execution configuration of the pipeline stages to
be changed dynamically at run-time.

4.3 Resource Management
Another important aspect in the design of a reconstruc-

tion system is the resource management. We distinguish the
relevant resources of the considered target hardware plat-
forms into two classes: processing elements and data buffers.
In the following we will show how a sophisticated resource
management can easily be integrated in the reconstruction
system design for both processing elements and data buffers.

4.3.1 Processing Elements

As was outlined in Section 4.2.2, processing elements have
to be statically assigned to special master/worker pipeline
stages, which prohibits an optimal usage of the acceleration
hardware. For this reason we want to share processing ele-
ments between several master/worker pipeline stages.

This is achieved by extending the single master method-
ology to support multiple masters, each of them living in
a different pipeline stage, but still using the same group
of workers. In this respect, the design is enhanced by an
improved scalability and also by a reduction of the limita-
tion that the slowest pipeline stage determines the aggregate
reconstruction speed. Load is now automatically balanced
between pipeline stages with master/worker processing ca-
pability that are using the same group of workers. Only
this extension enables an optimal usage of the considered
hardware architectures:

• In multi-processor and multi-core systems, thread switch-
ing overhead can be reduced by controlling the overall
number of used threads.

• With regard to the CBEA, resource usage of the pro-
cessing elements is especially improved by sharing the
SPEs between pipeline stages. It is therefore necessary
to technically compile each worker side of the shared
pipeline stages into one associated SPE program. This
may result in too large SPE program binaries which do
not fit into the local store any more. Such programs
can effectively be handled by using the overlay tech-
nique which loads the required program code dynami-
cally.

• In CUDA development, the considered design allows
to share a single graphics context and thus GPU de-
vice resources among different pipeline stages, which
avoids expensive data transfers between device and
host memory.

4.3.2 Data Buffers

In a reconstruction system, resource management must
also be addressed for data buffers, because the allocation of
memory for all buffers is not always feasible. For example,
the reconstruction of a typical medical data set in C-arm CT
requires up to three GB to store the reconstruction volume
together with all projections. It is therefore necessary to
allocate only a limited number of data buffers. That means
that only a few projection images and the reconstruction
volume may be used during reconstruction. In order to avoid
the frequent allocation and deallocation of memory, which
is an expensive operation, we reuse projection and volume
buffers after they have been processed. This can be achieved
by using the object pool pattern [4].

By introducing this design paradigm, data buffers can
be acquired from the pool and released to the pool in any

pipeline stage. For example, the projection buffers can be
acquired in the first stage of the pipeline and released in the
back-projection stage after processing. In order to support
the multi-threaded software framework, the object pool can
be based upon a shared queue object [6]. The pool will block
any pop requests when no more data buffers are available
and unblocks the respective request immediately as soon as
a data buffer has been released to the pool.

5. IMPLEMENTATION
We implemented the discussed design approach in a soft-

ware framework called Reconstruction Toolkit (RTK). In the
following we present the basic building blocks of our imple-
mentation. We abstract from all details that are not relevant
to understand the basic structure of our implementation.

5.1 Structure
The UML class diagram in Figure 2 illustrates the inher-

itance hierarchy of our design approach.

5.2 Participants
All entities live in the ”rtk” namespace which we don’t

qualify in the following for enhanced readability.

• InputSide defines the input interface of a pipeline
stage for data items and control information.

• OutputSide defines the output interface of a pipeline
stage for data items and control information.

• Stage combines an InputSide with an OutputSide to
create an interior pipeline stage.

• SourceStage is the first pipeline stage in a pipeline.
The source stage creates its input data items for its
own in a separate thread of control and provides a
mechanism for the application to start the execution
of the pipeline.

• SinkStage is the last pipeline stage in a pipeline. It
provides a mechanism for the application to wait for a
result and to get it from the pipeline.

• Port manages the connection of two stages and pro-
vides the mechanism for output. The port concept en-
ables the dynamic composition of two pipeline stages
with active and passive read or write semantics [12] at
run-time and without a complex class hierarchy.

• NestedPort manages the connection of two stages
with active write and passive read semantics [12] in
that order. The stages connected by this mechanism
are sharing the same thread of execution.

• ThreadedPort manages the connection of two stages
with active write and active read semantics [12] in that
order. The stages connected by this mechanism will
run in different threads of execution.

• MasterStage is the pipeline stage that is responsible
for partitioning the processing into WIBs (scattering)
and to respond to processed WIBs (gathering). The
communication with its corresponding WorkerStage is
done by a concrete Master. The MasterStage must
therefore register at a concrete Master in order to use
its communication abstraction and the processing ele-
ments that are managed by the corresponding Master.

Port

Attach(InputSide<TOutput, TConfigOut>)
Detach()
Output(TConfigOut)
Output(TOutput)

TOutput
TConfigOut

NestedPort

Output(TConfigOut)
Output(TOutput)

TOutput
TConfigOut

ThreadedPort

Output(TConfigOut)
Output(TOutput)

TOutput
TConfigOut

InputSide

Input(TConfigIn)
Input(TInput)

TInput
TConfigIn OutputSide

Attach(Port<TOutput, TConfigOut>)
Detach()
Output(TConfigOut)
Output(TOutput)

TOutput
TConfigOut

Stage

Start()
Stop()
Finish()

TInput
TConfigIn
TOutput
TConfigOut

SinkStage

Wait()

TInput
TConfigIn

SourceStage

Start()

TOutput
TConfigOut

MasterStage

InputWib(TWib)
OutputWib(TWib)
AcquireWib() : TWib
ScatterWibs(TInput)
GatherWibs(TInput, TWib)
IsProcessed(TInput) : bool

TInput
TConfigIn
TOutput
TConfigOut
TWib
TIib
TWorkerStage

WorkerStage

Init(TIib)
InputWib(TWib)

TIib
TWib

Master

InputWib(Wib)
OutputWib(Wib)

Worker

InputWib(Wib)
OutputWib(Wib)

0..1

0..1

0..1

0..1

0..* 0..1 0..*

0..1

0..*

0..1

Figure 2: UML class diagram of the inheritance hierarchy of our design approach. The classes used to
implement the pipeline pattern are shown in light gray. The combination with the master/worker pattern is
illustrated by the added classes in dark gray.

• WorkerStage does the processing of a WIB for a cor-
responding MasterStage. All communication with the
corresponding MasterStage is taken over by the corre-
sponding concrete Master that controls this stage and
the respective Worker.

• Master provides the basic functionality for the ap-
plication of the master/worker pattern. While it func-
tions as the hardware abstraction layer a concrete Mas-
ter must be implemented for each supported archi-
tecture. The Master also creates the corresponding
concrete Workers for the respective architecture. The
Master allows one or more MasterStages to connect to
it and also initiates the creation of the corresponding
WorkerStages.

• Worker implements the processing node of the corre-
sponding Master. A concrete Worker must be imple-
mented for each supported architecture. The actual
processing of a WIB is switched to the corresponding
WorkerStage which shall do the processing.

5.3 Sample Code and Usage
The following code samples illustrate how the CT recon-

struction system from Section 2 could be implemented in
C++. We concentrate on the implementation of this appli-
cation using the RTK framework rather than going into the
implementation details of the framework itself. As an exam-
ple we assume that we want to accelerate the filtering step of
the application using a general purpose multi-core platform
and the preprocessing and back-projection shall be acceler-
ated using two CUDA-enabled graphics cards. We inten-
tionally skipped the postprocessing step in order to shorten
the sample implementations.

The creation of the concrete stages that build up the
pipeline is done by the factory class PcCudaFactory that
implements the abstract factory providing the interface to
the used methods. We refer to [3] and [1] for more details
about the factory and abstract factory pattern.

// Param i s the type t ha t con f i gu r e s the s t a g e s
// Proj i s the type f o r X−ray p ro j e c t i on images
// Vol i s the type o f the r econs t ruc t i on volume

// type o f the f i l t e r p i p e l i n e s t a g e s
typedef Stage<Proj , Param , Proj , Param> FltStage ;

// type o f the back−p ro j e c t i on p i p e l i n e s tage
typedef Stage<Proj , Param , Vol , Param> BpStage ;

class PcCudaFactory : public Factory {
public :

// Defau l t Constructor
inl ine PcCudaFactory () :

// use e i g h t proces s ing threads
// on the mult i−core a r c h i t e c t u r e
masterPc (8) ,
// use two GPUs with CUDA
masterCuda (2) {}

// Creates the preproces s ing s tage with
// hardware a c c e l e r a t i on us ing CUDA
inl ine FltStage ∗ CreatePrepStage () {

return new PrepMasterCuda (masterCuda) ;
}
// Creates the f i l t e r i n g s tage with
// ac c e l e r a t i on us ing mult i−core systems
inl ine FltStage ∗ CreateFltStage () {

return new FltMasterPc (masterPc) ;
}
// Creates the back−p ro j e c t i on s tage with
// hardware a c c e l e r a t i on us ing CUDA
inl ine BpStage∗ CreateBpStage () {

return new BpMasterCuda (masterCuda) ;
}

private :
MasterPc masterPc ;
MasterCuda masterCuda ;

} ;

The preprocessing and back-projection pipeline stage share
the same master, which also enables to share the two CUDA-
enabled GPUs for their processing. The classes PrepMaster-

Cuda, FilterMasterPc and BpMasterCuda implement the re-
spective algorithms in an accelerated version using the men-
tioned hardware platforms. For the sake of this example we
give a sketch of the back-projection implementation using
the two CUDA-enabled GPUs. We have to implement two
classes - the master pipeline stage BpMasterCuda and the
corresponding worker stage BpWorkerCuda:

// I i b i s the type o f a i n i t i n s t r u c t i o n b l o c k
// Wib i s the type o f a work i n s t r u c t i o n b l o c k

class BpWorkerCuda :
public WorkerStage<Proj , I ib ,Wib> {

private :
virtual void I n i t (const I i b& i i b) {

bp in i t cuda (i i b) ;
}
virtual void InputWib (const I i b& i i b ,

Wib& wib) {
bp process cuda (i i b , wib) ;

}
} ;

class BpMasterCuda : public MasterStage<Proj ,
Param , Vol , Param , I ib ,Wib , BpWorkerCuda> {

private :
virtual void Conf igure (

const Param& con f i g) {
currentVolume = CreateVolume (c on f i g) ;

}
virtual void Fin i sh () {

Output (∗ currentVolume) ;
currentVolume = 0 ;

}
virtual void ScatterWibs (Proj& pro j) {

// process a l l sub−volumes
for (int i =0; i <2; ++i) {

// Get a new wib
Wib& wib = AcquireWib (pro j) ;
// I n i t i a l i z e wib f o r sub−volume
InitWib (wib , i) ;
// Send wib to worker
OutputWib(wib) ;

}
}
virtual void GatherWibs (Proj& proj ,

Wib& wib) {
// handle processed wib
i f (I sProce s s ed (pro j))

Re leaseInput (pro j) ;
}
// Pointer to the r econs t ruc t i on volume
Vol∗ currentVolume ;

} ;

Within the main function of the application we need to
construct a source stage, which loads the projection images

and a sink stage that stores the volume. For each processing
step of the reconstruction pipeline we further construct the
MasterStage using the factory.

// cons t ruc t fac tory , source and s ink
PcCudaFactory f a c t o r y ;
SourceStage<Proj , Param> source ;
SinkStage<Vol , Param> s ink ;

// cons t ruc t the master s t a g e s
// fo r preproces s ing
FltStage ∗ prep = fa c t o r y . CreatePrepStage () ;
// fo r f i l t e r i n g
FltStage ∗ f l t = f a c t o r y . CreateFltStage () ;
// and fo r back−p ro j e c t i on
BpStage∗ bp = fa c t o r y . CreateBpStage () ;

Now it is just a matter of building up the pipeline.

// type o f the used por t c l a s s
// tha t has a separa te thread o f execu t ion
typedef ThreadedPort<Proj , Param> Threaded ;
// tha t shares the thread o f execu t ion
typedef NestedPort<Vol , Param> Nested ;

// connect p i p e l i n e s t a g e s
Pipe l i n e : : Connect(&source , prep , new Threaded ()) ;
P ip e l i n e : : Connect (prep , f l t , new Threaded ()) ;
P ip e l i n e : : Connect (f l t , bp , new Threaded ()) ;
P ip e l i n e : : Connect (bp , &sink , new Nested ()) ;

// s t a r t p i p e l i n e and wait f o r the r e s u l t
source . S ta r t () ;
s ink . Wait () ;

With a different implementation of the Factory class the
pipeline can be easily configured to use different hardware
acceleration platforms for each processing steps without chang-
ing most parts of the implementation.

6. CONCLUSIONS
We have presented both the design and implementation

of a software architecture that is well suited to implement
and accelerate the computationally intensive task of 3-D re-
construction in medical imaging. Software engineering tech-
niques play an important role in the overall design and can
improve the efficiency, flexibility and portability of the whole
reconstruction system.

In this regard, the parallel reconstruction algorithms can
be mapped to a design approach that combines the pipeline
design pattern with the master/worker design pattern. We
have illustrated how the design can act as a hardware ab-
straction layer to different acceleration architectures. It even
allows to combine the use of several acceleration hardware
platforms for different parts of the algorithm in a heteroge-
neous system.

7. ACKNOWLEDGMENTS
We thank Dr.-Ing. Wieland Eckert from Siemens Medical

Solutions, AX division, for his helpful support during the
development of the software framework.

This work was supported by Siemens Medical Solutions,
CO Division, Medical Electronics, Imaging, and IT Solu-
tions. The trademarks within this publication are those of
the respective owners.

8. REFERENCES
[1] A. Alexandrescu. Modern C++ Design Generic Programming

and Design Patterns Applied. Addison-Wesley, 2001.

[2] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical
cone-beam algorithm. J. Opt. Soc. Amer., A1(6):612–619,
1984.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[4] M. Grand. Patterns in Java, Volume 1, A Catalog of
Reusable Design Patterns Illustrated with UML. Wiley
Computer Publishing, 1998.

[5] B. Heigl and M. Kowarschik. High-speed reconstruction for
C-arm computed tomography. In Proceedings Fully 3D
Meeting and HPIR Workshop, pages 25–28, Lindau, July
2007.

[6] T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns
for parallel programming. Addison-Wesley, 2005.

[7] D. Pham, S. Asano, M. Bolliger, M. Day, H. Hofstee, C. Johns,
J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley,
D. Shippy, D. Stasiak, M. Suzuoki, M. Wang, J. Warnock,
S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa. The
design and implementation of a first-generation CELL
processor. In IEEE Solid-State Circuits Conference, pages
184–185, San Francisco, 2005.

[8] E. J. Posnak, R. G. Lavender, and H. M. Vin. Adaptive
pipeline: an object structural pattern for adaptive
applications. In The 3rd Pattern Languages of Programming
conference, Monticello, Illinois, September 1996.

[9] H. Scherl, S. Hoppe, F. Dennerlein, G. Lauritsch, W. Eckert,
M. Kowarschik, and J. Hornegger. On-the-fly reconstruction in
exact cone-beam CT using the Cell Broadband Engine
Architecture. In Proceedings Fully 3D Meeting and HPIR
Workshop, pages 29–32, Lindau, July 2007.

[10] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger. Fast
GPU-based CT reconstruction using the Common Unified
Device Architecture (CUDA). In Medical Imaging Conference,
Honolulu, November 2007.

[11] H. Scherl, M. Koerner, H. Hofmann, W. Eckert,
M. Kowarschik, and J. Hornegger. Implementation of the FDK
algorithm for cone-beam CT on the Cell Broadband Engine
Architecture. In J. Hsieh and M. Flynn, editors, Proceedings of
SPIE Medical Imaging 2007: Physics of Medical Imaging,
volume 6510, page 651058, San Diego, February 2007.

[12] A. Vermeulen, G. Beged-Dov, and P. Thompson. The pipeline
design pattern. In OOPSLA’95 Workshop on Design Patterns
for Concurrent, Parallel and Distributed Object-Oriented
Systems, October 1995.

[13] K. Wiesent, K. Barth, N. Navab, P. Durlak, T. Brunner,
O. Schuetz, and W. Seissler. Enhanced 3-D-reconstruction
algorithm for C-arm systems suitable for interventional
procedures. IEEE Transactions on Medical Imaging,
19(5):391–403, 2000.

[14] M. Zellerhoff, B. Scholz, E.-P. Rührnschopf, and T. Brunner.
Low contrast 3-D-reconstruction from C-arm data. In M. J.
Flynn, editor, Proceedings of SPIE, volume 5745, pages
646–655, April 2005.

