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Abstract

For a lot of applications, and particularly for medical
intra-operative applications, the exploration of and naviga-
tion through 3-D image data provided by sensors like ToF
(Time-of-Flight) cameras, MUSTOF (Multisensor-Time-of-
Flight) endoscopes or CT (Computed Tomography) [8], re-
quires a user-interface which avoids physical interaction
with an input device. Thus, we process a touchless user-
interface based on gestures classified by the data provided
by a ToF camera. Reasonable and necessary user interac-
tions are described. For those interactions a suitable set of
gestures is introduced. A user-interface is then proposed,
which interprets the current gesture and performs the as-
signed functionality. For evaluating the quality of the de-
veloped user-interface we considered the aspects of classi-
fication rate, real-time applicability, usability, intuitiveness
and training time. The results of our evaluation show that
our system, which provides a classification rate of 94.3%
at a framerate of 11 frames per second, satisfactorily ad-
dresses all these quality requirements.

1. Introduction

In our daily life speech and gestures are fundamental in
communicating with our environment. People that are not
able to talk, either through disease or while doing sports
like diving, have their own set of gestures which makes it
possible to communicate with everyone who understands
the meanings of this sign language.

For Human-Machine interaction, most user-interfaces
are centered around tactile oriented devices like mouse,
keyboard or touch-screens. However, speech- and ges-
ture recognition systems are becoming more competitive in
some special application areas, e.g. the automotive field [1]
and the medical sector [11].

While speech recognition systems already found there
way in the operating room, gesture based Human-Machine-
Interfaces (HMI) are still in their infancy. Especially here,
these interfaces would be very useful since the surgeon nor-
mally is not allowed to touch devices as he has to remain
sterility. A big advantage of our gesture based HMI over
a speech recognition system is, that it does not need any
additional equipment like a microphone that impedes the
surgeon while operating.

2. State of the Art

Up to now most gesture based approaches needed ad-
ditional devices like data gloves, colored gloves or other
objects which help segment and identify the gesture in the
acquired camera image. These devices are often impractical
or even inapplicable and therefore lowered the willingness
to work with such an interface. It is not feasible for a sur-
geon to wear a data glove during the surgery. Other gesture
recognition systems based on 2-D video data [3, 5, 12, 4]
that do not need additional objects are limited in their func-
tionalities. Thus HMIs based on these systems [9, 11] either
provide only a limited functionality or need a complex set of
gestures to compensate for the missing depth information.

But with the help of the latest developments in the field
of 3-D cameras which directly provide 3-D depth informa-
tion in addition to 2-D gray value images, several new op-
portunities have opened up for the investigation of gesture
based interfaces. Gesture recognition system using Time-
of-Flight (ToF) cameras to classify hand gestures [7] or to
interpret the movement of the hand [2, 10] are already pro-
posed.

The ToF camera system utilized for this work is the
MESA SR-3100, which is based on a pixelwise measur-
ing of the time of flight of an actively emitted optical ref-
erence signal. The used ToF camera provides a resolution
of 176 × 144 pixels at a framerate of ≥ 15 fps, i.e. ap-
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(a) Transla-
tion

(b) Cursor (c) Click

(d) Rotation (e) Reset

Figure 1. Set of gestures

prox. 20000 3-D points are available in real-time. 55 light-
emitting diodes (LEDs) with a central wavelength of 850
nm compose the illumination unit. The output of the camera
is a complete distance map in addition to the local bright-
ness in the scene. The local brightness values are referred to
as amplitude values and are commonly used as a texture for
the 3-D data. Note that each 3-D point projects uniquely to
one pixel and the center of the coordinate system coincides
with the optical center of the ToF camera.

In our approach a user-interface which interprets ges-
tures and enables a user to explore and navigate through 3-D
data sets based on a real-time dynamic gesture recognition
system using the SR-3100 (see Figure 2(a)) has been de-
veloped. This system, compared to those mentioned above,
uses the 3-D data provided by the ToF camera not only for
the gesture recognition and classification, but also for en-
larging the functionality of the HMI by utilizing the addi-
tional depth information.

3. Gesture Recognition

In gesture based user-interfaces, one must first decide on
an appropriate set of gestures for communicating necessary
information. Once the gesture vocabulary is decided, one
can then concentrate on the image analysis tasks. In our
case these are composed of segmenting the hand, comput-
ing appropriate features and recognizing the shown gesture
based on classification of the computed features.

3.1. User interactions and set of gestures

The exploration and navigation of 3-D data sets requires
at least the possibility to rotate and translate the recon-
structed scene. Furthermore, a movable cursor has to be
available in the visualization of the data set to point to
objects of interests (show some conspicuity to colleagues,
etc.). By utilizing a gesture that represents a ”mouse”-click,
points can be consecutively selected, which is important for

(a) ToF camera Swiss-
Ranger 3100

(b) 3-D data texturized
with amplitude data

(c) 3-D data of
Segmented hand

Figure 2. ToF camera and segmentation of the hand from the ac-
quired 3-D point and amplitude data.

measuring the size of anatomical structures. A further com-
mon clinical requirement is the possibility to specify a vol-
ume of interest (VOI) for further analysis. Finally, a ”reset”
gesture provides the functionality to undo previously per-
formed actions.

Based on these functional requirements we selected the
5 gestures shown in Figure 1. The main focus when spec-
ifying the gestures was to get a small and intuitive gesture
set. Furthermore, the complexity of physically performing
a certain gesture was chosen to be as small as possible.

3.2. Segmentation, feature extraction and classifi-
cation of gestures

A coarse segmentation of the hand is accomplished by
applying lower and upper thresholds to the depth data ac-
quired by the ToF camera. These thresholds define the min-
imum and maximum working distance.

For a finer estimation, the mean distance of all seg-
mented pixels that have an amplitude value higher than a
threshold, which marks the border between object and back-
ground, is calculated. The resulting distance can be inter-
preted as the distance of a plane, parallel to the ToF chip
that lies between the body and the hand. As long as the hand
is not directly next to or behind the body, which would not
be very comfortable for the user and therefore can be ne-
glected, this assumption is fulfilled. This yields a 3-D con-
nected point cloud, which represents the hand attached to a
part of the forearm as displayed in Figures 2(b) and 2(c).

The next crucial step is the removal of the forearm by us-
ing the 2-D pixel coordinates of each segmented 3-D point.
The method implemented in our work extends the idea of
[3], which crops the forearm in two steps. First, the palm is
described as that circle in the image with the largest radius
which only contains foreground, i.e. segmented, pixels. De-
riving the position of the forearm is done by iteratively in-
creasing the radius of the circle, followed by an analysis of
the intersections of the new circle with the segmented pix-
els following the rule based search algorithm, introduced in
[3]. If the radius is enlarged, the circle will intersect for
example fingers if they are spread apart, but it will in any
case also intersect the forearm. If the segment that repre-



(a) Segmented
Hand
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Figure 3. Sampling the cropping-circle for the hand in steps of 1◦

sents the forearm has been determined, the cropping line
can be set up as the tangent of the palm circle that intersects
the straight line defined by the midpoint of the forearm seg-
ment and the midpoint of the determined cropping-circle.
If no forearm segment has been found, the current frame is
discarded.

To derive suitable features from the segmented hand
which are used for the classification process, the cropping-
circle is sampled in adequate angle steps and the informa-
tion, whether a circle point lies on the hand or not, is stored
for each angle.

The images in Figure 3 show a segmented hand ((3(a)),
(3(c))) and the extracted features ((3(b)), (3(d))). It is obvi-
ous that the two smaller peaks of the features represent the
two fingers and the larger one the beginning of the forearm.
When the hand is rotated the features remain scale-invariant
and only a translation in the feature space is the result.

For classification of the gestures the ”k-d Tree Based k-
Means Clustering” and the ”Bayesian Plug-In Classifier”,
which are included in the medical image processing library
”Insight Segmentation and Registration Toolkit”1 (ITK), as
well as an approach based on nearest neighbor have been
tested against each other (Results see section 5.1). To fur-
ther reduce errors caused by a wrong classification, a ma-
jority vote from several classified gestures is performed.

4. Navigation

Once a set of gestures is defined and an image-based
methology for identifying them is established, the HMI can
be set up. A sketch of the main algorithm, which shows
how the different interactions are integrated into the inter-
face is given in Figure 4. Please note that the maximum
range for performing all gestures is reduced to a size that
is smaller than the field of view of the camera. Otherwise
the hand that performs the gesture would be only partially
visible and lead to wrong classifications.

4.1. Cursor Movement

The basic functionality that is available for a user is the
movement of a cursor in the 3-D data. Having the 3-D posi-

1http://www.itk.org/

Figure 4. Overview of the navigation system

tion of the hand H (determined by the center of mass of 3-D
points of the segmented hand) at the distance d = ‖H‖ and
also the required intrinsic camera parameters, it is possible
to calculate the projection of the center of mass of the hand
to the image plane h, by the following equation:

h =
f ∗ H

d ∗ p
(1)

The required intrinsic camera are the focal length f and
the physical dimensions p (p = px = py as the camera
system used has square pixel) of a pixel on the camera chip.

4.2. "Click" and Selection of a VOI

If the ”click” gesture is observed (see Figure 1(c), 2(b),
2(c)), the current position of the projected point (computed
from the center of mass of the hand as described above)
is saved and continuously displayed until the user triggers
a third ”click” event while two points have already been
selected. If two points are selected, the interface automat-
ically initiates a calculation of the Euclidean distance be-
tween these points which provides the functionality of mea-
suring distances in 3-D. With the third ”click” all selected
points are erased in the 3-D data and the user can start an-
other selection.

Besides the selection of points, a VOI can also be speci-
fied with the ”click”-gesture by holding the first ”click” ges-
ture for at least one second. After this second, the first cor-
ner of the volume is fixed and it can be expanded by holding
the ”click” gesture while moving the hand. When the final
volume is selected, the definition is completed by perform-
ing any other gesture. Based on this selection, the user has
two choices to continue his work with the interface. A click



anywhere outside the VOI will result in a reset which clears
the reconstruction from the selected VOI and the user can
start the next selection or any other task. Moving the cursor
inside the VOI and triggering a click event there, will result
in a zoom to the selected region of interest which is realized
by recalculating the position and orientation of the virtual
camera.

To calculate the new position of the virtual camera and
the new viewing direction, several steps have to be per-
formed. Our first step involves determining the position and
parameters of the virtual camera which could generate the
desired ”zoomed-in” view. Let d be the distance of the vir-
tual camera to the center of the 3-D data set. vx and vy are
the width and height of the VOI, α and β are the half of
the aperture angle for the width respectively for the height
angle angle of the virtual camera. In order to assure that the
complete VOI is visible after the zoom, we are always us-
ing the larger values according to width and height and the
corresponding aperture angle. For example, if the height vy

is larger than the width the equation for the calculation of
the new distance d reads as

d =
vy

2 ∗ tan β
. (2)

Furthermore, one needs to know in which direction the
virtual camera has to be translated. To compute this direc-
tion, two vectors a and b are defined. Both vectors start
at the midpoint m of the VOI. a ends in the upper left
and b in the upper right corner of the VOI. Calculating the
crossproduct

u = b × a (3)

of these vectors will result in a vector u, which points in the
direction the virtual camera needs to be translated. With the
midpoint m of the volume of interest as starting point, the
new position c of the virtual camera can be determined by

c = m + d ∗ u

|u| . (4)

4.3. Rotation and Translation

Unlike the methods described above, the projection of
the center of mass onto the image plane is important to get
information in which direction the 3-D data set has to be
translated respectively rotated.

When either the rotation or the translation gesture is rec-
ognized (see Figure 1(d), 1(a)), a virtual cube, (see Figure
5) with a side length that corresponds to the dimension of
the field of view of the ToF camera at the current distance of
the gesture, is set up and subdivided into 27 smaller equal-
sized cubes. After the cube has been set up, it remains fixed
until any other gesture is performed. Each sub cube, ex-
cept the center one, represents a direction or a rotation axis,
that is either one or a combination of the axes of the camera

Figure 5. Virtual cube (light gray) for rotation and translation. (For
a better overview, not all 27 sub-cubes but only the center cube
(dark gray) is displayed.

coordinate system. According to the classified gesture the
virtual camera is translated or rotated using the current di-
rection or rotation axis. The subdivision into smaller cubes
is done so as to avoid, moving the 3-D data set at the mo-
ment the gesture of either the rotation or the translation is
recognized. Rather, the user needs to explicitly activate the
action by moving his hand to the center cube. After acti-
vating the rotation or translation, the user is able to modify
the view to the scene by navigating the according gesture to
one of the other cubes.

The available modifications for the 3-D data set are the
rotation around the three axes triggering the rotation and a
translation along the three axes triggering the translation.
This is quite an advantage for the user compared to using
a standard mouse device, which can only handle two di-
mensional transformations. The gesture-based navigation
system intuitively enables the user to involve the third di-
mension, by just moving the hand forward or backward. A
rotation around the z-axis for the rotation and a zoom for the
translation are realized with that additional dimension. To
end the rotation respectively translation, the user just needs
to perform any other gesture or return to the center cube.

Both actions, the rotation and the translation, will have
no effect on previously selected points, to assure, that the
user is able to continue his prior work, but from a better
viewing position as before.

4.4. Reset

The final functionality implemented for the gesture-
based HMI introduced in this work, offers the possibility
to jump back to the starting point of the exploration of the
3-D reconstruction. This is important as one often desires
to restart the navigation from a default position.

By performing the reset gesture (see Figure 1(e)) for at
least one second, all changes concerning the position and
the orientation of the virtual camera made so far are set to
default values. This reset does not affect any selected points
or volumes in the 3-D reconstruction, so that no work per-



formed up to the reset is lost.

5. Experimental Evaluation and Discussion

The evaluation is divided into two parts. The first part
deals with the software evaluation including a short analysis
of the classification rates of the implemented classifiers and
the evaluation concerning the real-time applicability of the
whole system.

Besides the technical evaluation of the implemented soft-
ware, the usability, the intuitiveness and the training time
of the HMI also play an important role for this work.
For that reason, tests were performed to validate the user-
friendliness of the proposed HMI. This experiments form
the second part of the evaluation.

5.1. Evaluation of the classifier

For each classifier a ten fold cross-validation using a
broad set of reference gestures has been performed. More
specifically, in total 40 data sets per gesture stored from
each of the 15 test person, form the basis for this evalua-
tion. Out of these data sets, 45 data sets for each gesture
are generated, consisting of 3 arbitrary chosen data sets out
of the 40 data sets per gesture from each test person. The
test users were not advised to take off rings or pull up their
sleeves. The resulting classification rates are presented in
Table 1 and show that our approach provides a robust, user-
independent classification.

Amount of features per gesture
histogram based sampled

Classifier 160 320 90 120
Nearest
Neighbor 92.4 % 89.3 % 80.9 % 81.3 %
k-d Tree 76.9 % 78.7 % 73.3 % 76.0 %
Bayesian 45.8 % 72.4 % 76.0 % 75.1 %

Table 1. Classification rates using an user-independent set of ref-
erence gestures

Applying a principal component analysis (PCA, [6] ) on
the feature vectors improved the results (see Table 2). As
the nearest neighbor approach performed best, only this re-
sults are presented here.

Amount of features per gesture
histogram based sampled

Classifier 160 320 90 120
Nearest
Neighbor 94.3 % 87.4 % 94.3 % 90.6 %

Table 2. Classification rates applying principal component analysis
for an user-independent set of reference gestures

5.2. Evaluation of real-time applicability

The best classification results and the most intuitive set
of gestures are not of interest for a user if the interface has a
perceptible delay. For that reason, this subsection provides
the results of a performance evaluation of the implemented
algorithms which is performed on a single core Pentium M
1.87GHZ.

The performance of the total system, first without and
then with activated HMI, is evaluated. This is done so as to
see the calculation time of the classification and navigation
algorithms in relation to the overall calculation time. The
results of this test are shown in Table 3. This values are
mean values calculated out of fifty independent measure-
ments.

Step Without HMI Including HMI
[ms] [%] [ms] [%]

Data acquisition 36.15 49.86 37.54 40.12
Preprocessing 36.35 50.13 37.19 39.74
Classification 0.00 0.00 16.38 17.50
Navigation 0.01 0.01 2.47 2.64
Framerate 13.80 fps 10.69 fps

Table 3. Performance measurements of the system

Even when the case the gesture-based HMI is activated,
most of the calculation time is spent on the acquisition
(40.12 %) and preprocessing (39.74 %) of the camera data.
Activating the HMI reduces the overall performance by just
3.11 frames per second.

Clearly, most of the computational effort is spent in algo-
rithms, which are independent of the gesture-based Human-
Machine-Interface. With a maximum loss of 3.11 frames
per seconds which is equivalent to a computational time of
25.77 ms, the HMI itself meets the requirements concerning
real-time applicability.

5.3. Evaluation of usability, intuitiveness and train-
ing time

To gain information about the usability, intuitiveness
and training time of the implemented HMI, seven persons,
mainly computer science students so far, were asked to test
the user-interface after they got a two minute introduction
to the system. Each of the seven users was asked to use our
HMI and perform the different kinds of gestures for about
three to five minutes so as to familiarize oneself with the
HMI.

Next, the user was requested to answer a list of four ques-
tions:

1. How would you evaluate the response time of the sys-
tem?

2. How strong did you need to adapt to the system?



3. How good was the comfort of performing the set of
gestures?

4. How intuitive are the gestures for the mouse movement
and the click?

Each question had to be answered on a scale from one up to
five, where one corresponds to ”worse” respectively ”strong
adaptation” and five corresponds to ”very good” respec-
tively ”no adaptation”.

The answers given by the test users to the first question
(see Table 4), allows to combine the pure technical eval-
uation to the user impressions while really working with
the system. With a mean of 4.14, the result is satisfactory
as there are still possibilities to improve the overall perfor-
mance of the complete system. This result also reveals, that
a frame rate of about 11 frames per second still validates the
real-time applicability of the HMI.

Question Mean
1 Response time of the system 4.14
2 Adaptation to the system 3.57
3 Comfort of gesture set 4.00
4 Intuitiveness of the gesture set 4.00

Table 4. Evaluation results for questionnaire

Responses to question 2 (see Table 4) show that the opin-
ions concerning the adaptation to the system differ. Except
for one user, the individual results of this evaluation can be
judged as good, taking into account that the test persons
used the system for the first time. An important aspect for
the evaluation of the usability was the comfort of the ges-
tures (Table 4) while using the interface.

With an average of 4.0 (see Table 4), a satisfying result
concerning question 4, that was posed to the test users after
they had the chance to test the system for about three to
five minutes, has been achieved. This question was asked
to evaluate the intuitiveness of the gesture-based interface
taking the cursor movement and click event as an example.
During the testing phase it could be observed that after a
few minutes, each user was able to perform the gestures in
a way which enabled a proper handling of the system.

6. Conclusion and future work

In this work we present a complete framework for a
gesture-based user-interface for the exploration and naviga-
tion through 3-D data sets using a ToF camera. The pro-
posed interface was evaluated considering the aspects of
real-time applicability, usability, intuitiveness and training
time. By achieving a 94.3% classification rate for 5 gestures
at ≈10 fps we consider the algorithmic requirements for the
gesture-based HMI using ToF cameras fulfilled. Further-
more, the user feedback concerning usability of the gesture-
based HMI validates the feasibility of the proposed system.

The future work will focus on an enhancement of the func-
tionality for example integrating virtual buttons that trigger
special operations on selected volumes of interest and fur-
thermore on an larger evaluation in a clinical environment.
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