Comparison of High-Speed Ray Casting on GPU

using CUDA and OpenGL

November 8, 2008

Benjamin Keck^{1,2}, Andreas Weinlich¹, Holger Scherl², Markus Kowarschik² and Joachim Hornegger¹

¹ Chair of Pattern Recognition (Computer Science 5) Friedrich-Alexander-University Erlangen-Nuremberg

² Siemens Healthcare, CV,

Medical Electronics & Imaging Solutions, Erlangen

Outline

- Motivation: Iterative reconstruction
- Methods: Forward projection ray casting
- Implementation
 - Open Graphics Language (OpenGL)
 - Common Unified Device Architecture (CUDA)
- Evaluation & Results
- Discussion & Conclusion

Arnd Dörfler, Neuroradiology, University-Clinic Erlangen

Motivation

Page 3

- Iterative 3D volume reconstruction is a computationally demanding and memory intensive application in medical image processing (forward- / back-projection)
- Forward-projection: volumetric ray caster can be used for superior precision
- Ray casting is easily parallelizable and therefore dedicated for highly parallelized low-cost processing architectures (like current GPUs)
- Two recent GPU-programming tools:
 - Open Graphics Language (OpenGL)
 - NVIDIAs Common Unified Device Architecture (CUDA)

Methods: Ray Casting Principle

• For each ray

- compute coordinate
- interpolate value
- accumulate integral

Page 4

Page 5

Implementation: CUDA - Pseudo code

For each thread (ray)

- compute corresponding ray direction
- compute volume entrance and exit point for this ray
- while (ray is inside the volume)
 - interpolate value at current position and accumulate intregal value
 - increment position along ray direction for defined stepsize
- normalize integral value with step size

Implementation: CUDA - value interpolation

- Recent graphics cards hardware support texture interpolation (1D, 2D, 3D)
- CUDA 1.1: only 1D, 2D textures, no 3D texture (December 2007)
- CUDA 2.0: also 3D texture support (August 2008)

Implementation: OpenGL

- GLUT (OpenGL Utility Toolkit) and GLSL (OpenGL Shading Language) based implementation
- Implementation differences compared to CUDA:
 - Setup equivalent geometry (cuboid) with vertices such that each resulting viewing pixel corrensponds to a ray
 - Cuboid texturing is replaced by ray casting
 - For each pixel the fragment shader program computes the ray cast analogous to CUDA using 3D textures
- Parallelization done by API

Benjamin Keck

Comparison of CUDA 1.1, CUDA 2.0 and OpenGL for ray casting

• 512³ volume with float values (maximal texture size)

Two different view configurations:

- near: all rays hit the cuboid
- far: several rays on the outside do not cross the volume

Focus on:

Evaluation

- CUDA block size configuration
- varying projection size (number of rays)
- varying number of projections (different directions)
- varying step size

Implementation: CUDA - Parallelization Into Threads

- High parallelization necessary for optimal performance
- Scalability due to dual abstraction level (grid / block)

Evaluation: CUDA blocksize setup

•	Performance in seconds	Blocksz.	512^2 near	pixels far	1024 near	² pixels far	2048 ² near	² pixels far
		16×16	48.2	87.7	106	107	409	301
•	GeForce 8800 GTX	32×8	50.5	101	109	111	412	315
		32×16	46.4	113	107	116	411	308
•	CUDA 2.0	64×4	59.8	127	109	138	424	340
	100 mmais ations	64×8	54.4	129	111	127	415	330
•	400 projections	128×2	74.0	132	121	222	425	397
	stan siza:	128×4	57.8	124	115	185	431	372
	0.25 * voxel size	256×1	98.2	140	169	302	449	597
		256×2	68.9	124	122	218	448	467
•	varying block size	512×1	100	141	167	253	441	593

Evaluation: CUDA blocksize setup

•	Performance in seconds	Blocksz.	512^2 near	pixels far	1024 ² near	² pixels far	2048 ² near	pixels far
		16×16	48.2	87.7	106	107	409	301
•	GeForce 8800 GTX	32×8	50.5	101	109	111	412	315
		32×16	46.4	113	107	116	411	308
•	CUDA 2.0	64×4	59.8	127	109	138	424	340
	100 projections	64×8	54.4	129	111	127	415	330
•	400 projections	128×2	74.0	132	121	222	425	397
	stan siza:	128×4	57.8	124	115	185	431	372
	0.25 * voxel size	256×1	98.2	140	169	302	449	597
		256×2	68.9	124	122	218	448	467
•	varying block size	512×1	100	141	167	253	441	593

Evaluation: graphics cards

	NVIDIA GeForce 8800GTX	NVIDIA QuadroFX 5600
Core clock	575 MHz	600 MHz
Shader clock	1350 MHz	1400 MHz
Memory amount	768 MB	1500 MB
Memory interface	384-bit	384-bit
Memory clock speed	900 MHz	800 MHz
Memory bandwidth	86.4 GB/s	76.8 GB/s

Results: 1024² projections

- Performance in seconds
- Step size: 0.25 * voxel size

		GeF	orce 8800 G	STX	Q	uadroFX 56	00	
		1024^2 pixels			1024^2 pixels			
# Proj.	FoV	CUDA 1.1	CUDA 2.0	OpenGL	CUDA 1.1	CUDA 2.0	OpenGL	
1	near	9.4	3.8	12.1	6.38	1.60	3.22	
	far	9.4	3.8	11.9	6.71	1.59	3.25	
16	near	20.6	7.5	15.5	16.2	5.16	6.94	
	far	27.3	8.2	15.5	21.4	5.02	7.09	
100	near	86.4	28.4	36.4	70.5	25.1	27.4	
	far	126	30.2	37.3	114	24.6	29.5	
400	near	299	107	115	245	99.8	103	
	far	527	108	116	515	90.9	109	

Results: 1024² projections

 \sim

- Performance in seconds
- Step size: 0.25 * voxel size

		GeF	orce 8800 G	STX	Q	uadroFX 56	00
		10	024^2 pixels		10	024^2 pixels	
# Proj.	FoV	CUDA 1.1	CUDA 2.0	OpenGL	CUDA 1.1	CUDA 2.0	OpenGL
1	near	9.4	3.8	12.1	6.38	1.60	3.22
	far	9.4	3.8	11.9	6.71	1.59	3.25
16	near	20.6	7.5	15.5	16.2	5.16	6.94
	far	27.3	8.2	15.5	21.4	5.02	7.09
100	near	86.4	28.4	36.4	70.5	25.1	27.4
	far	126	30.2	37.3	114	24.6	29.5
400	near	299	107	115	245	99.8	103
	far	527	108	116	515	90.9	109

Results: 1024² projections

- Performance in seconds
- Step size: 0.25 * voxel size

		GeF	orce 8800 G	STX	Q	uadroFX 56	00
		10	024^2 pixels		10	024^2 pixels	
# Proj.	FoV	CUDA 1.1	CUDA 2.0	OpenGL	CUDA 1.1	CUDA 2.0	OpenGL
1	near	9.4	3.8	12.1	6.38	1.60	3.22
	far	9.4	3.8	11.9	6.71	1.59	3.25
16	near	20.6	7.5	15.5	16.2	5.16	6.94
	far	27.3	8.2	15.5	21.4	5.02	7.09
100	near	86.4	28.4	36.4	70.5	25.1	27.4
	far	126	30.2	37.3	114	24.6	29.5
400	near	299	107	115	245	99.8	103
	far	527	108	116	515	90.9	109

Results: Graphics cards comparison

Results: 512² and 2048² projections

- Performance in seconds
- Step size: 0.25 * voxel size

		Qu	adroFX 560	0	Q	uadroFX 56	500
		5	512^2 pixels		20	048^2 pixels	
# Proj.	FoV	CUDA 1.1	CUDA 2.0	OpenGL	CUDA 1.1	CUDA 2.0	OpenGL
1	near	6.22	1.60	3.25	7.70	1.59	3.27
	far	6.47	1.60	3.24	7.26	1.58	3.26
16	near	14.2	3.30	5.32	37.7	15.8	17.7
	far	18.2	4.97	6.45	30.6	11.4	13.3
100	near	55.5	13.1	21.7	208	95.4	98
	far	92.5	24.4	25.3	173	67.4	70.4
400	near	145	41.8	47.0	841	392	397
	far	386	88.7	90.3	864	284	290

Results: 512² and 2048² projections

- Performance in seconds
- Step size: 0.25 * voxel size

		Qu	adroFX 560	0	Q	uadroFX 56	500
		5	512^2 pixels		20	0.00000000000000000000000000000000000	
# Proj.	FoV	CUDA 1.1	CUDA 2.0	OpenGL	CUDA 1.1	CUDA 2.0	OpenGL
1	near	6.22	1.60	3.25	7.70	1.59	3.27
	far	6.47	1.60	3.24	7.26	1.58	3.26
16	near	14.2	3.30	5.32	37.7	15.8	17.7
	far	18.2	4.97	6.45	30.6	11.4	13.3
100	near	55.5	13.1	21.7	208	95.4	98
	far	92.5	24.4	25.3	173	67.4	70.4
400	near	145	41.8	47.0	841	392	397
	far	386	88.7	90.3	864	284	290

Results: Projection size dependency

Results: Projection size dependency

Results: Step size dependency

Discussion & Conclusion

Page 17

- Different initialization time between CUDA and OpenGL
- Parallel computation dispatching is more efficient for increasing image size (OpenGL and CUDA)
- 3D texture support is essential for ray casting due to the hardware-accelerated interpolation (drawback on CUDA 1.1)
- OpenGL requires more implementation efforts for non-experts
- Ray casting can be easily ported to the GPU using CUDA
- In comparison to a single-threaded non-optimized straight-forward CPU implementation we achieve a speedup factor of ~150.

Thank you!

Implementation: CUDA - Software

- CUDA-capable devices: started with GeForce-8 series
- CUDA libraries: mathematical function with high abstraction level
- CUDA Runtime API: simplified memory-, device- and texturemanagement
- CUDA Driver API: low-level API, no emulation-mode

Page 19

Implementation: CUDA - Hardware G80 Chip Texture Processor Cluster (TPC) Streaming Multiprocessor Streamprocessor Implementation: Implementati

- 8 Texture Processor Cluster
- 16 Streaming Multiprocessors
- 128 Streamprocessor (SP) = Shadercores

Results: Scaleabilty / dependence on # projections

Benjamin Keck

Results: Scalabilty / dependence on projection count

