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• Motivation: Iterative reconstruction

• Methods: Forward projection - ray casting
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• Open Graphics Language (OpenGL)

• Common Unified Device Architecture (CUDA)

• Evaluation & Results

• Discussion & Conclusion
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Motivation

• Iterative 3D volume reconstruction is a computationally demanding 
and memory intensive application in medical image processing
(forward- / back-projection)

• Forward-projection: 
volumetric ray caster can be used for superior precision

• Ray casting is easily parallelizable and therefore dedicated for 
highly parallelized low-cost processing architectures 
(like current GPUs)

• Two recent GPU-programming tools:

• Open Graphics Language (OpenGL)

• NVIDIAs Common Unified Device Architecture (CUDA)
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Fig. 1. Ray casting principle.

line (”ray”) is drawn pointing from the optical center towards

the pixel position. Afterwards voxel intensity values inside

the cuboid are sampled equidistantly along the ray. These

sampling values add up to the desired gray level value in

the image. As a result we get a perspective projection of the

volume data.

Algorithm 1 Forward-projection with a ray casting algorithm

for all projections do

compute source position out of projection matrix

compute inverted projection matrix

for all rays inside the projection do

compute ray direction depending on the image plane

normalize direction vector

//RAY CASTING

compute entrance and exit point of the ray to the cuboid

if ray hits the cuboid then

set sample point to the entrance point

initialize the pixel value

while sample point is inside the cuboid do

add up the computed sample value at current

position to the pixel value

compute new sample point for given step size

end while

else

set pixel value to zero

end if

normalize pixel value to world coordinate system units

end for

end for

The physical process of acquiring an X-ray image works

just as well. In particular, in this case the optical center depicts

the X-ray source whereas the image plane depicts the detector.

While Strobel et. al. [10] have shown that the image quality of

a reconstruction can be improved by using projection matrices

instead of assuming an ideal geometry, we decided to use this

parameterization in our implementation.

Furthermore this section describes some general features

that are common to both implementations, CUDA as well as

OpenGL. There are some different methods to get the direction

vector of the ray, which is the first step in the inner for loop

in Algorithm 1. A simple one is to take two position vectors,

compute the difference vector, and normalize it. Such positions

are the optical center, the 3D coordinate of the pixel position,

or the points where the ray enters or leaves the cuboid. For

example the position of the optical center can be obtained
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Fig. 2. Volume representation in a 2D texture by Slices Si.

from the homogeneous projection matrix which is designed

to project a 3D point to the image plane. Depending on the

output format of the projection (2D image- vs. 3D world-

coordinates), this matrix has three or four rows. In the latter

case, the vector can be found in the fourth column of the

inverted matrix (first three components). In the case of a 3 ×

4 matrix it is possible to drop the fourth column, invert the 3×

3 matrix and multiply the inverse with the previously dropped

fourth column to get the center position. This holds, because

in case of a perspective projection with projection matrices,

this fourth column depicts the shift of the optical center to the

origin of the coordinate system. But due to the fact that this

translation occurs not before the rest of the transformations,

these have to be undone in multiplying the inverse. Galigekere

et. al. have shown already how to reproject using projection

matrices in [11].

In the next step the entrance position of the ray into the

volume has to be calculated. The used method to get the

entering and leaving points depends on the implementation.

Between those points the cube is equidistantly sampled. To get

one sampling position, we take the entry vector and add the

direction vector multiplied with the step size times a counter

variable. The following sampling step itself proves to be

crucial for the algorithm’s efficiency. In order to get satisfying

results, a sub-pixel sampling is required, which introduces a

trilinear interpolation.

For a realistic simulation of X-ray imaging, the Beer-

Lambert law has to be fulfilled approximately:

I = I0 · e

−

t(vdetector)
R

t(vsource)
ρ(x(t)) dt

(1)

The densities p are integrated along the line x(t) (or added
up in a discrete manner). Afterwards, they are transformed

with the exponential-function and multiplied with an initial

X-ray intensity to get the target intensity value. This subse-

quent transformation will not be considered here as it can be

computed for example during a post-processing step. For the

application in algebraic reconstruction, a pre-processing of the

original X-ray images may be also appropriate to fit the ray

caster projections.
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Methods: Ray Casting Principle

• For each ray

• compute coordinate

• interpolate value

• accumulate integral
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Implementation: CUDA - Pseudo code

• For each thread (ray)

• compute corresponding ray direction

• compute volume entrance and exit point for this ray

• while (ray is inside the volume)

• interpolate value at current position and accumulate intregal value

• increment position along ray direction for defined stepsize

• normalize integral value with step size
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line (”ray”) is drawn pointing from the optical center towards

the pixel position. Afterwards voxel intensity values inside
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the image. As a result we get a perspective projection of the

volume data.

Algorithm 1 Forward-projection with a ray casting algorithm

for all projections do

compute source position out of projection matrix

compute inverted projection matrix

for all rays inside the projection do

compute ray direction depending on the image plane

normalize direction vector

//RAY CASTING

compute entrance and exit point of the ray to the cuboid

if ray hits the cuboid then

set sample point to the entrance point

initialize the pixel value

while sample point is inside the cuboid do

add up the computed sample value at current

position to the pixel value

compute new sample point for given step size

end while

else

set pixel value to zero

end if

normalize pixel value to world coordinate system units

end for

end for

The physical process of acquiring an X-ray image works

just as well. In particular, in this case the optical center depicts

the X-ray source whereas the image plane depicts the detector.

While Strobel et. al. [10] have shown that the image quality of

a reconstruction can be improved by using projection matrices

instead of assuming an ideal geometry, we decided to use this

parameterization in our implementation.

Furthermore this section describes some general features
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OpenGL. There are some different methods to get the direction

vector of the ray, which is the first step in the inner for loop

in Algorithm 1. A simple one is to take two position vectors,

compute the difference vector, and normalize it. Such positions

are the optical center, the 3D coordinate of the pixel position,

or the points where the ray enters or leaves the cuboid. For

example the position of the optical center can be obtained
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from the homogeneous projection matrix which is designed

to project a 3D point to the image plane. Depending on the

output format of the projection (2D image- vs. 3D world-

coordinates), this matrix has three or four rows. In the latter

case, the vector can be found in the fourth column of the

inverted matrix (first three components). In the case of a 3 ×

4 matrix it is possible to drop the fourth column, invert the 3×

3 matrix and multiply the inverse with the previously dropped

fourth column to get the center position. This holds, because

in case of a perspective projection with projection matrices,

this fourth column depicts the shift of the optical center to the

origin of the coordinate system. But due to the fact that this

translation occurs not before the rest of the transformations,

these have to be undone in multiplying the inverse. Galigekere

et. al. have shown already how to reproject using projection

matrices in [11].

In the next step the entrance position of the ray into the

volume has to be calculated. The used method to get the

entering and leaving points depends on the implementation.

Between those points the cube is equidistantly sampled. To get

one sampling position, we take the entry vector and add the

direction vector multiplied with the step size times a counter

variable. The following sampling step itself proves to be

crucial for the algorithm’s efficiency. In order to get satisfying

results, a sub-pixel sampling is required, which introduces a

trilinear interpolation.

For a realistic simulation of X-ray imaging, the Beer-

Lambert law has to be fulfilled approximately:

I = I0 · e

−

t(vdetector)
R

t(vsource)
ρ(x(t)) dt

(1)

The densities p are integrated along the line x(t) (or added
up in a discrete manner). Afterwards, they are transformed

with the exponential-function and multiplied with an initial

X-ray intensity to get the target intensity value. This subse-

quent transformation will not be considered here as it can be

computed for example during a post-processing step. For the

application in algebraic reconstruction, a pre-processing of the

original X-ray images may be also appropriate to fit the ray

caster projections.
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Implementation: CUDA - value interpolation

• Recent graphics cards hardware support 
texture interpolation (1D, 2D, 3D)

• CUDA 1.1: only 1D, 2D textures, no 3D texture ( December 2007 )

• CUDA 2.0: also 3D texture support ( August 2008 )

• CUDA 1.1 work around:

• distribute volume slices 
into 2D texture

• software interpolation
(linear) between
two bilinear interpolated
texture values results into
trilinear interpolated value
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line (”ray”) is drawn pointing from the optical center towards

the pixel position. Afterwards voxel intensity values inside
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sampling values add up to the desired gray level value in

the image. As a result we get a perspective projection of the

volume data.

Algorithm 1 Forward-projection with a ray casting algorithm

for all projections do

compute source position out of projection matrix

compute inverted projection matrix

for all rays inside the projection do

compute ray direction depending on the image plane

normalize direction vector

//RAY CASTING

compute entrance and exit point of the ray to the cuboid

if ray hits the cuboid then

set sample point to the entrance point

initialize the pixel value

while sample point is inside the cuboid do

add up the computed sample value at current

position to the pixel value

compute new sample point for given step size

end while

else

set pixel value to zero

end if

normalize pixel value to world coordinate system units

end for

end for

The physical process of acquiring an X-ray image works

just as well. In particular, in this case the optical center depicts

the X-ray source whereas the image plane depicts the detector.

While Strobel et. al. [10] have shown that the image quality of

a reconstruction can be improved by using projection matrices

instead of assuming an ideal geometry, we decided to use this

parameterization in our implementation.

Furthermore this section describes some general features

that are common to both implementations, CUDA as well as

OpenGL. There are some different methods to get the direction

vector of the ray, which is the first step in the inner for loop

in Algorithm 1. A simple one is to take two position vectors,

compute the difference vector, and normalize it. Such positions

are the optical center, the 3D coordinate of the pixel position,

or the points where the ray enters or leaves the cuboid. For

example the position of the optical center can be obtained
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from the homogeneous projection matrix which is designed

to project a 3D point to the image plane. Depending on the

output format of the projection (2D image- vs. 3D world-

coordinates), this matrix has three or four rows. In the latter

case, the vector can be found in the fourth column of the

inverted matrix (first three components). In the case of a 3 ×

4 matrix it is possible to drop the fourth column, invert the 3×

3 matrix and multiply the inverse with the previously dropped

fourth column to get the center position. This holds, because

in case of a perspective projection with projection matrices,

this fourth column depicts the shift of the optical center to the

origin of the coordinate system. But due to the fact that this

translation occurs not before the rest of the transformations,

these have to be undone in multiplying the inverse. Galigekere

et. al. have shown already how to reproject using projection

matrices in [11].

In the next step the entrance position of the ray into the

volume has to be calculated. The used method to get the

entering and leaving points depends on the implementation.

Between those points the cube is equidistantly sampled. To get

one sampling position, we take the entry vector and add the

direction vector multiplied with the step size times a counter

variable. The following sampling step itself proves to be

crucial for the algorithm’s efficiency. In order to get satisfying

results, a sub-pixel sampling is required, which introduces a

trilinear interpolation.

For a realistic simulation of X-ray imaging, the Beer-

Lambert law has to be fulfilled approximately:

I = I0 · e

−

t(vdetector)
R

t(vsource)
ρ(x(t)) dt

(1)

The densities p are integrated along the line x(t) (or added
up in a discrete manner). Afterwards, they are transformed

with the exponential-function and multiplied with an initial

X-ray intensity to get the target intensity value. This subse-

quent transformation will not be considered here as it can be

computed for example during a post-processing step. For the

application in algebraic reconstruction, a pre-processing of the

original X-ray images may be also appropriate to fit the ray

caster projections.
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Implementation: OpenGL

7

• GLUT (OpenGL Utility Toolkit) and 

GLSL (OpenGL Shading Language)

based implementation

• Implementation differences compared to CUDA:

• Setup equivalent geometry (cuboid) with vertices
such that each resulting viewing pixel 
corrensponds to a ray

• Cuboid texturing is replaced by ray casting

• For each pixel the fragment shader program computes the 
ray cast analogous to CUDA using 3D textures

• Parallelization done by API
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Evaluation

• Comparison of CUDA 1.1, CUDA 2.0 and OpenGL for ray casting

• 5123 volume with float values (maximal texture size)

• Two different view configurations:

• near: all rays hit the cuboid

• far: several rays on the outside do not cross the volume

• Focus on:

• CUDA block size configuration

• varying projection size (number of rays)

• varying number of projections (different directions)

• varying step size
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Implementation: CUDA - Parallelization Into Threads

• High parallelization necessary for optimal performance

• Scalability due to dual abstraction level (grid / block)
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Evaluation: CUDA blocksize setup

• Performance 
in seconds

• GeForce 8800 GTX

• CUDA 2.0

• 400 projections 

• step size:
0.25 * voxel size

• varying block size
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5122 pixels 10242 pixels 20482 pixels
Blocksz. near far near far near far

16 × 16 48.2 87.7 106 107 409 301

32 × 8 50.5 101 109 111 412 315

32 × 16 46.4 113 107 116 411 308

64 × 4 59.8 127 109 138 424 340

64 × 8 54.4 129 111 127 415 330

128 × 2 74.0 132 121 222 425 397

128 × 4 57.8 124 115 185 431 372

256 × 1 98.2 140 169 302 449 597

256 × 2 68.9 124 122 218 448 467

512 × 1 100 141 167 253 441 593

TABLE II
BLOCK PARAMETER COMPARISON OF RUNTIMES USING CUDA 2.0 ON
THE NVIDIA GEFORCE 8800GTX IN SECONDS WITH 400 PROJECTIONS
AND DIFFERENT PROJECTION SIZES AT A STEP SIZE OF 0.25 OF THE

VOXELSIZE

needs some initial calculation steps apart from the sampling.

Unless otherwise noted, a block consists of 16 × 16 pixels
within the projection. A block parameter comparison for the

GeForce 8800 GTX using CUDA 2.0 is shown in Table II.

Another important parameter is the number of projections to

be acquired from the same volume data. The time required for

initialization steps, preparing the data structures and loading

the volume data to the device, is spent just once. So, a high

number of projections reduces the influence of such preceding

computations (e. g. 1.6 seconds for CUDA and 3.2 seconds
for OpenGL on the QuadroFX 5600).

If both implementations are well optimized, it is expected

that OpenGL will perform better than CUDA 1.1 and compa-

rable to CUDA 2.0.

We use a projection size of 512×512 or 1024×1024 pixels.
The resulting execution times for the GeForce 8800 GTX

and QuadroFX 5600 using a projection size of 1024 × 1024
are shown in Table IV and Table V, and for the QuadroFX

5600 in Table III using a projection size of 512 × 512 and
2048 × 2048 in Table VI. In Figure IV we give an overview

of the dependency on the projection size using the QuadroFX

5600. In order to hit most of the voxels in the volume, the
step size (sampling rate) must not be greater than 1 voxel.

If we actually do not want to loose information, it should be

at most 0.5 of the voxel size. In favor of a smooth projection

image a step size of 0.25 voxels would be even better. A direct

comparison between GeForce 8800 GTX and QuadroFX 5600
for the computation time depending on the step size is shown

in Figure 7. The number of projections that can be computed

consecutively depends on the reconstruction algorithm. For

example, SART computes only a single projection per volume

update. In contrast, SIRT processes all projections consecu-

tively before a volume update is performed in the iteration.

Certainly there are algorithms in between such as the ordered

subset approach.

In Figure 6 we can see the dependency of the execution

time on the chosen step size for most common parameters.

5122 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.22 1.60 3.25
far 6.47 1.60 3.24

16 near 14.2 3.30 5.32
far 18.2 4.97 6.45

100 near 55.5 13.1 21.7
far 92.5 24.4 25.3

400 near 145 41.8 47.0
far 386 88.7 90.3

TABLE III
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 512 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

The measurements do not include the time required to write-

back the projections to the host memory or even to hard disk,

because it is not required for a complete GPU implemen-

tation of iterative CT reconstruction. Moreover, those times

(especially the write back to disk) can be hidden behind the

computation of the next slices. For example a projection of 100

images, 1024×1024 including write back takes approximately
one additional second on the QuadroFX 5600 (0.35 sec write
back to host, 0.19 sec write back to hard disc and 0.54 sec for
deletion of data, etc.). In most cases OpenGL and CUDA 2.0

operate two or three times faster than CUDA 1.1. For a small

number of projections, the results seem to depend on the other

parameters, i.e. the initialization time of the API, which takes

longer for OpenGL. In contrast, the tests with 400 projections

show a more interesting behavior. The best executed results

are highlighted in bold in Table IV, III, V and VI. In Table IV

it can be seen that CUDA 2.0 is faster in all tests by a constant

offset of approximately 8 seconds on the GeForce 8800 GTX.
In Figure the dependency on the step size for the two different

geometric setups in a common setting for SIRT (1024× 1024
pixels; 400 projections) is shown. The time increases almost

linear with the step size except for an offset.

To give an impression of GPUs computational performance

we finally compare a specific test case also with a CPU

implementation. The CPU implementation is a single-threaded

non-optimized straight-forward implementation of the raycast

method as stated in Algorithm 1. The program is executed

on our test system equipped with two Intel Xeon E5410

processors running at 2.33 GHz. For a simple comparison we
used 16 projections 1024× 1024 at a step size of 0.25 of the
voxel size. Table V proves a performance of 5.16 seconds for
such configuration using the ”near” field of view setting on

the NVIDIA QuadroFX 5600. We measured 764 seconds for
the single threaded CPU program. This indicates a maximal

speedup factor of 148.

V. DISCUSSION

At higher numbers of projections the execution times for the

CUDA implementation which uses 2-D textures to compute
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back the projections to the host memory or even to hard disk,

because it is not required for a complete GPU implemen-

tation of iterative CT reconstruction. Moreover, those times

(especially the write back to disk) can be hidden behind the

computation of the next slices. For example a projection of 100

images, 1024×1024 including write back takes approximately
one additional second on the QuadroFX 5600 (0.35 sec write
back to host, 0.19 sec write back to hard disc and 0.54 sec for
deletion of data, etc.). In most cases OpenGL and CUDA 2.0

operate two or three times faster than CUDA 1.1. For a small

number of projections, the results seem to depend on the other

parameters, i.e. the initialization time of the API, which takes

longer for OpenGL. In contrast, the tests with 400 projections

show a more interesting behavior. The best executed results

are highlighted in bold in Table IV, III, V and VI. In Table IV

it can be seen that CUDA 2.0 is faster in all tests by a constant

offset of approximately 8 seconds on the GeForce 8800 GTX.
In Figure the dependency on the step size for the two different

geometric setups in a common setting for SIRT (1024× 1024
pixels; 400 projections) is shown. The time increases almost

linear with the step size except for an offset.

To give an impression of GPUs computational performance

we finally compare a specific test case also with a CPU

implementation. The CPU implementation is a single-threaded

non-optimized straight-forward implementation of the raycast

method as stated in Algorithm 1. The program is executed

on our test system equipped with two Intel Xeon E5410

processors running at 2.33 GHz. For a simple comparison we
used 16 projections 1024× 1024 at a step size of 0.25 of the
voxel size. Table V proves a performance of 5.16 seconds for
such configuration using the ”near” field of view setting on

the NVIDIA QuadroFX 5600. We measured 764 seconds for
the single threaded CPU program. This indicates a maximal

speedup factor of 148.

V. DISCUSSION

At higher numbers of projections the execution times for the

CUDA implementation which uses 2-D textures to compute
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Evaluation: graphics cards

11

B. Implementation in CUDA

CUDA offers an easy to use C-like application programming

interface with some extensions. There are two different parts in

each CUDA implementation: A host part, which executes in a

CPU thread, and a device part (kernel), which is invoked by the

controlling CPU thread, but runs in parallel on the GPU device.

In our case the program instructs the graphics card to create a

semi-parallel thread for each ray. On our hardware up to 128 of

these threads can be processed in parallel. Most of our CPU

code uses CUDA specific API functions for allocating data

structures on the device and to transfer data to the graphics

memory and back to RAM.

In the kernel code, the inverse of the projection matrix

is used to get the ray direction out of the pixel position in

the projection image. In order to check whether a sampling

position is inside the cuboid, the entrance and exit distances

with respect to the optical center are computed. In each step

the entrance position is incremented by a step size value until

it reaches the exit distance. A critical issue in CUDA 1.1 is

the sampling step since it does not provide support for 3D

textures. So unfortunately a trilinear hardware interpolation

is not available for the CUDA 1.1 API. In consequence,

a workaround had to be applied that used just the bilinear

interpolation capability of the GPU. It does a successive

linear software interpolation in between stacked 2D texture

slices (see Figure 2). Therefor, desired values are fetched

from proximate stack slices with hardware-accelerated bilinear

interpolation. These sampling steps are substituted with only

one hardware-accelerated 3D texture fetch in CUDA 2.0 and

OpenGL.

C. Implementation in OpenGL

The OpenGL implementation is more tricky in some as-

pects. This is a consequence of the fact, that OpenGL is

intended to be used in graphics applications. Nevertheless

there are some similarities like the perspective projection. In

the past years, the API itself was made more flexible by means

of shader languages, which makes it possible to implement a

forward projection using OpenGL [12].

Like in CUDA, the implementation divides into a CPU and

a GPU part. The CPU part (OpenGL code) was written in

C++. In our implementation the GPU fragment shader program

is written in the shader language, GLslang. The OpenGL

API invokes this code for each pixel in the projection. Due

to the fact that a pixel exactly corresponds to a ray, this

threading is the same as in CUDA. However, unlike CUDA,

this partitioning can not be defined by the programmer directly.

In fact this correspondence is a fixed OpenGL fragment shader

feature.

In the OpenGL code, there are some initializations estab-

lishing a desktop window for rendering. Furthermore, frame

buffer objects are initialized in order to store the projection into

a texture. As stated above, the volume data resides in a 3D

texture like in CUDA 2.0. This fact allows for the utilization

of hardware supported tri-linear interpolation. The projection

matrix for an image has to be transformed in order to fit the

OpenGL coordinate system. Afterwards some variables are

NVIDIA GeForce NVIDIA QuadroFX
8800GTX 5600

Core clock 575 MHz 600 MHz

Shader clock 1350 MHz 1400 MHz

Memory amount 768 MB 1500 MB

Memory interface 384-bit 384-bit

Memory clock speed 900 MHz 800 MHz

Memory bandwidth 86.4 GB/s 76.8 GB/s

TABLE I
TECHNICAL SPECIFICATION OF BOTH GRAPHICS CARDS USED IN OUR

EVALUATION

transferred to the shader, the six faces of the cuboid are drawn

using vertices, the cuboid is rendered to a texture and finally

this texture is copied back to host memory.

During the rendering, the instructions within the shader

program are executed instead of the texture lookup. These

instructions differ slightly from the corresponding CUDA

code. Corners of the 3D texture have been assigned to the

corners of the cuboid, so the OpenGL texturing step provides

the entrance position of the ray automatically in terms of

interpolated texture coordinates. The ray direction vector can

be obtained like it was outlined in the last section. In each

step the program checks, whether the sampling position is still

inside the cuboid. As mentioned, the sampling itself reduces

to a simple 3D texture fetch.

IV. RESULTS

In order to compare the performance of both approaches,

we measured execution times with different test parameters

on an NVIDIA GeForce 8800 GTX as well as on an NVIDIA
QuadroFX 5600. Even though both graphics cards are as-
sembled with the NVIDIA GPU ”G80” they are slightly

different stated in Table I. Our evaluation system is a Fujitsu-

Siemens Workstation ”R650” using the Intel 5400 chip set.

The graphics cards are connected each via a PCI Express x16

slot.

For measurement purpose we used different projection

geometries and volume phantoms. If the phantom fits inside

the field of view, there exist rays that do not go through the

cuboid at all (case ”far”). These rays consume a minimum of

the computation time and the computation finishes noticeably

faster compared to the test case where optical center and image

plane are close to the cuboid (case ”near”). Associated param-

eters that have direct impact on the computational complexity

of the ray caster are image size (number of pixels and with

it number of rays) as well as the sampling rate along one

ray (distance of sampling positions compared to the size of a

voxel). Due to the fact that in CUDA the execution of the

kernel and thus the ordering of the texture fetches can be

configured by the block configuration [13], we also compared

this parameter for CUDA 1.1 and CUDA 2.0. Large images

have some additional side effects. On one hand, they allow a

more flexible schedule of threads, on the other hand each ray
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Results: 10242 projections

• Performance in seconds

• Step size: 0.25 * voxel size

12

10242 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 9.4 3.8 12.1
far 9.4 3.8 11.9

16 near 20.6 7.5 15.5
far 27.3 8.2 15.5

100 near 86.4 28.4 36.4
far 126 30.2 37.3

400 near 299 107 115
far 527 108 116

TABLE IV
COMPARISON OF RUNTIMES USING THE NVIDIA GEFORCE 8800GTX IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 1024 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

10242 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.38 1.60 3.22
far 6.71 1.59 3.25

16 near 16.2 5.16 6.94
far 21.4 5.02 7.09

100 near 70.5 25.1 27.4
far 114 24.6 29.5

400 near 245 99.8 103
far 515 90.9 109

TABLE V
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 1024 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

trilinear interpolations are much longer than for our other

implementations using 3D textures (CUDA 2.0 or OpenGL). It

is therefore essential to use the hardware-accelerated functions

of the GPU in order to optimize the execution performance

of our CT reconstruction applications. The constant execution

time offset in each test case (approx. 12 seconds in OpenGL

and 4 seconds in CUDA 2.0 on the GeForce 8800 GTX) can
be explained with the copy process of the volume data to the

graphics memory along with some other initializations. With

a QuadroFX 5600 card we observed a significantly smaller

20482 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 7.70 1.59 3.27
far 7.26 1.58 3.26

16 near 37.7 15.8 17.7
far 30.6 11.4 13.3

100 near 208 95.4 98
far 173 67.4 70.4

400 near 841 392 397
far 864 284 290

TABLE VI
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 2048 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE.
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Fig. 3. CUDA 2.0 and OpenGL comparison for varying projection size and
a small amount of projections.
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Fig. 4. OpenGL and CUDA 2.0 comparison with similar execution time
behavior for varying projection count and size.

difference in initialization time between OpenGL and CUDA.

As expected, the increase in runtime is almost linear in the step

size and the number of projections. With increasing image

sizes, OpenGL and CUDA are able to dispatch the parallel

computations more efficiently to the multiprocessors of the

GPU up to a certain amount. This is the reason why the execu-

tion time increases remarkably slower and does not scale with

the number of pixels in an image. Merely at 2048×2048 pixels
and an ROI including the complete data, there can be seen a

strong increase in execution time. As a consequence, it seems

that projection images with 1024× 1024 pixels are optimally
suited for current GPUs generations. An implementation in

OpenGL requires more implementation efforts for non-experts

because it was built as a graphics programming language for

real-time rendering of vertex-based 3D scenes. In contrast, a

ray casting in the C programming language can be more easily

ported to CUDA, as it only requires some adaptations for

the parallelization strategy. However an OpenGL expert can

implement such an algorithm in equivalent time compared to

a C-Programmer using CUDA.
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implementations using 3D textures (CUDA 2.0 or OpenGL). It

is therefore essential to use the hardware-accelerated functions

of the GPU in order to optimize the execution performance

of our CT reconstruction applications. The constant execution

time offset in each test case (approx. 12 seconds in OpenGL

and 4 seconds in CUDA 2.0 on the GeForce 8800 GTX) can
be explained with the copy process of the volume data to the

graphics memory along with some other initializations. With

a QuadroFX 5600 card we observed a significantly smaller
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difference in initialization time between OpenGL and CUDA.

As expected, the increase in runtime is almost linear in the step

size and the number of projections. With increasing image

sizes, OpenGL and CUDA are able to dispatch the parallel

computations more efficiently to the multiprocessors of the

GPU up to a certain amount. This is the reason why the execu-

tion time increases remarkably slower and does not scale with

the number of pixels in an image. Merely at 2048×2048 pixels
and an ROI including the complete data, there can be seen a

strong increase in execution time. As a consequence, it seems

that projection images with 1024× 1024 pixels are optimally
suited for current GPUs generations. An implementation in

OpenGL requires more implementation efforts for non-experts

because it was built as a graphics programming language for

real-time rendering of vertex-based 3D scenes. In contrast, a

ray casting in the C programming language can be more easily

ported to CUDA, as it only requires some adaptations for

the parallelization strategy. However an OpenGL expert can

implement such an algorithm in equivalent time compared to

a C-Programmer using CUDA.

GeForce 8800 GTX QuadroFX 5600



 Page

Benjamin Keck

  

Results: 10242 projections

• Performance in seconds
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trilinear interpolations are much longer than for our other

implementations using 3D textures (CUDA 2.0 or OpenGL). It

is therefore essential to use the hardware-accelerated functions

of the GPU in order to optimize the execution performance

of our CT reconstruction applications. The constant execution

time offset in each test case (approx. 12 seconds in OpenGL

and 4 seconds in CUDA 2.0 on the GeForce 8800 GTX) can
be explained with the copy process of the volume data to the

graphics memory along with some other initializations. With

a QuadroFX 5600 card we observed a significantly smaller
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Fig. 4. OpenGL and CUDA 2.0 comparison with similar execution time
behavior for varying projection count and size.

difference in initialization time between OpenGL and CUDA.

As expected, the increase in runtime is almost linear in the step

size and the number of projections. With increasing image

sizes, OpenGL and CUDA are able to dispatch the parallel

computations more efficiently to the multiprocessors of the

GPU up to a certain amount. This is the reason why the execu-

tion time increases remarkably slower and does not scale with

the number of pixels in an image. Merely at 2048×2048 pixels
and an ROI including the complete data, there can be seen a

strong increase in execution time. As a consequence, it seems

that projection images with 1024× 1024 pixels are optimally
suited for current GPUs generations. An implementation in

OpenGL requires more implementation efforts for non-experts

because it was built as a graphics programming language for

real-time rendering of vertex-based 3D scenes. In contrast, a

ray casting in the C programming language can be more easily

ported to CUDA, as it only requires some adaptations for

the parallelization strategy. However an OpenGL expert can

implement such an algorithm in equivalent time compared to

a C-Programmer using CUDA.
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implementations using 3D textures (CUDA 2.0 or OpenGL). It

is therefore essential to use the hardware-accelerated functions

of the GPU in order to optimize the execution performance

of our CT reconstruction applications. The constant execution

time offset in each test case (approx. 12 seconds in OpenGL

and 4 seconds in CUDA 2.0 on the GeForce 8800 GTX) can
be explained with the copy process of the volume data to the

graphics memory along with some other initializations. With

a QuadroFX 5600 card we observed a significantly smaller
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difference in initialization time between OpenGL and CUDA.

As expected, the increase in runtime is almost linear in the step

size and the number of projections. With increasing image

sizes, OpenGL and CUDA are able to dispatch the parallel

computations more efficiently to the multiprocessors of the

GPU up to a certain amount. This is the reason why the execu-

tion time increases remarkably slower and does not scale with

the number of pixels in an image. Merely at 2048×2048 pixels
and an ROI including the complete data, there can be seen a

strong increase in execution time. As a consequence, it seems

that projection images with 1024× 1024 pixels are optimally
suited for current GPUs generations. An implementation in

OpenGL requires more implementation efforts for non-experts

because it was built as a graphics programming language for

real-time rendering of vertex-based 3D scenes. In contrast, a

ray casting in the C programming language can be more easily

ported to CUDA, as it only requires some adaptations for

the parallelization strategy. However an OpenGL expert can

implement such an algorithm in equivalent time compared to

a C-Programmer using CUDA.
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Fig. 3. CUDA 2.0 and OpenGL comparison for varying projection size and
a small amount of projections.
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Fig. 4. OpenGL and CUDA 2.0 comparison with similar execution time
behavior for varying projection count and size.

difference in initialization time between OpenGL and CUDA.

As expected, the increase in runtime is almost linear in the step

size and the number of projections. With increasing image

sizes, OpenGL and CUDA are able to dispatch the parallel

computations more efficiently to the multiprocessors of the

GPU up to a certain amount. This is the reason why the execu-

tion time increases remarkably slower and does not scale with

the number of pixels in an image. Merely at 2048×2048 pixels
and an ROI including the complete data, there can be seen a

strong increase in execution time. As a consequence, it seems

that projection images with 1024× 1024 pixels are optimally
suited for current GPUs generations. An implementation in

OpenGL requires more implementation efforts for non-experts

because it was built as a graphics programming language for

real-time rendering of vertex-based 3D scenes. In contrast, a

ray casting in the C programming language can be more easily

ported to CUDA, as it only requires some adaptations for

the parallelization strategy. However an OpenGL expert can

implement such an algorithm in equivalent time compared to

a C-Programmer using CUDA.

10242 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 9.4 3.8 12.1
far 9.4 3.8 11.9

16 near 20.6 7.5 15.5
far 27.3 8.2 15.5

100 near 86.4 28.4 36.4
far 126 30.2 37.3

400 near 299 107 115
far 527 108 116

TABLE IV
COMPARISON OF RUNTIMES USING THE NVIDIA GEFORCE 8800GTX IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 1024 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

10242 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.38 1.60 3.22
far 6.71 1.59 3.25

16 near 16.2 5.16 6.94
far 21.4 5.02 7.09

100 near 70.5 25.1 27.4
far 114 24.6 29.5

400 near 245 99.8 103
far 515 90.9 109

TABLE V
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 1024 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

trilinear interpolations are much longer than for our other

implementations using 3D textures (CUDA 2.0 or OpenGL). It

is therefore essential to use the hardware-accelerated functions

of the GPU in order to optimize the execution performance

of our CT reconstruction applications. The constant execution

time offset in each test case (approx. 12 seconds in OpenGL

and 4 seconds in CUDA 2.0 on the GeForce 8800 GTX) can
be explained with the copy process of the volume data to the

graphics memory along with some other initializations. With

a QuadroFX 5600 card we observed a significantly smaller

20482 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 7.70 1.59 3.27
far 7.26 1.58 3.26

16 near 37.7 15.8 17.7
far 30.6 11.4 13.3

100 near 208 95.4 98
far 173 67.4 70.4

400 near 841 392 397
far 864 284 290

TABLE VI
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 2048 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE.
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Fig. 3. CUDA 2.0 and OpenGL comparison for varying projection size and
a small amount of projections.
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Fig. 4. OpenGL and CUDA 2.0 comparison with similar execution time
behavior for varying projection count and size.

difference in initialization time between OpenGL and CUDA.

As expected, the increase in runtime is almost linear in the step

size and the number of projections. With increasing image

sizes, OpenGL and CUDA are able to dispatch the parallel

computations more efficiently to the multiprocessors of the

GPU up to a certain amount. This is the reason why the execu-

tion time increases remarkably slower and does not scale with

the number of pixels in an image. Merely at 2048×2048 pixels
and an ROI including the complete data, there can be seen a

strong increase in execution time. As a consequence, it seems

that projection images with 1024× 1024 pixels are optimally
suited for current GPUs generations. An implementation in

OpenGL requires more implementation efforts for non-experts

because it was built as a graphics programming language for

real-time rendering of vertex-based 3D scenes. In contrast, a

ray casting in the C programming language can be more easily

ported to CUDA, as it only requires some adaptations for

the parallelization strategy. However an OpenGL expert can

implement such an algorithm in equivalent time compared to

a C-Programmer using CUDA.

GeForce 8800 GTX QuadroFX 5600
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10242 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 9.4 3.8 12.1
far 9.4 3.8 11.9

16 near 20.6 7.5 15.5
far 27.3 8.2 15.5

100 near 86.4 28.4 36.4
far 126 30.2 37.3

400 near 299 107 115
far 527 108 116

TABLE IV
COMPARISON OF RUNTIMES USING THE NVIDIA GEFORCE 8800GTX IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 1024 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

10242 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.38 1.60 3.22
far 6.71 1.59 3.25

16 near 16.2 5.16 6.94
far 21.4 5.02 7.09

100 near 70.5 25.1 27.4
far 114 24.6 29.5

400 near 245 99.8 103
far 515 90.9 109

TABLE V
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 1024 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

trilinear interpolations are much longer than for our other

implementations using 3D textures (CUDA 2.0 or OpenGL). It

is therefore essential to use the hardware-accelerated functions

of the GPU in order to optimize the execution performance

of our CT reconstruction applications. The constant execution

time offset in each test case (approx. 12 seconds in OpenGL

and 4 seconds in CUDA 2.0 on the GeForce 8800 GTX) can
be explained with the copy process of the volume data to the

graphics memory along with some other initializations. With

a QuadroFX 5600 card we observed a significantly smaller

20482 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 7.70 1.59 3.27
far 7.26 1.58 3.26

16 near 37.7 15.8 17.7
far 30.6 11.4 13.3

100 near 208 95.4 98
far 173 67.4 70.4

400 near 841 392 397
far 864 284 290

TABLE VI
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 2048 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE.
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Fig. 3. CUDA 2.0 and OpenGL comparison for varying projection size and
a small amount of projections.
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Fig. 4. OpenGL and CUDA 2.0 comparison with similar execution time
behavior for varying projection count and size.

difference in initialization time between OpenGL and CUDA.

As expected, the increase in runtime is almost linear in the step

size and the number of projections. With increasing image

sizes, OpenGL and CUDA are able to dispatch the parallel

computations more efficiently to the multiprocessors of the

GPU up to a certain amount. This is the reason why the execu-

tion time increases remarkably slower and does not scale with

the number of pixels in an image. Merely at 2048×2048 pixels
and an ROI including the complete data, there can be seen a

strong increase in execution time. As a consequence, it seems

that projection images with 1024× 1024 pixels are optimally
suited for current GPUs generations. An implementation in

OpenGL requires more implementation efforts for non-experts

because it was built as a graphics programming language for

real-time rendering of vertex-based 3D scenes. In contrast, a

ray casting in the C programming language can be more easily

ported to CUDA, as it only requires some adaptations for

the parallelization strategy. However an OpenGL expert can

implement such an algorithm in equivalent time compared to

a C-Programmer using CUDA.
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QuadroFX 5600

5122 pixels 10242 pixels 20482 pixels
Blocksz. near far near far near far

16 × 16 48.2 87.7 106 107 409 301

32 × 8 50.5 101 109 111 412 315

32 × 16 46.4 113 107 116 411 308

64 × 4 59.8 127 109 138 424 340

64 × 8 54.4 129 111 127 415 330

128 × 2 74.0 132 121 222 425 397

128 × 4 57.8 124 115 185 431 372

256 × 1 98.2 140 169 302 449 597

256 × 2 68.9 124 122 218 448 467

512 × 1 100 141 167 253 441 593

TABLE II
BLOCK PARAMETER COMPARISON OF RUNTIMES USING CUDA 2.0 ON
THE NVIDIA GEFORCE 8800GTX IN SECONDS WITH 400 PROJECTIONS
AND DIFFERENT PROJECTION SIZES AT A STEP SIZE OF 0.25 OF THE

VOXELSIZE

needs some initial calculation steps apart from the sampling.

Unless otherwise noted, a block consists of 16 × 16 pixels
within the projection. A block parameter comparison for the

GeForce 8800 GTX using CUDA 2.0 is shown in Table II.

Another important parameter is the number of projections to

be acquired from the same volume data. The time required for

initialization steps, preparing the data structures and loading

the volume data to the device, is spent just once. So, a high

number of projections reduces the influence of such preceding

computations (e. g. 1.6 seconds for CUDA and 3.2 seconds
for OpenGL on the QuadroFX 5600).

If both implementations are well optimized, it is expected

that OpenGL will perform better than CUDA 1.1 and compa-

rable to CUDA 2.0.

We use a projection size of 512×512 or 1024×1024 pixels.
The resulting execution times for the GeForce 8800 GTX

and QuadroFX 5600 using a projection size of 1024 × 1024
are shown in Table IV and Table V, and for the QuadroFX

5600 in Table III using a projection size of 512 × 512 and
2048 × 2048 in Table VI. In Figure IV we give an overview

of the dependency on the projection size using the QuadroFX

5600. In order to hit most of the voxels in the volume, the
step size (sampling rate) must not be greater than 1 voxel.

If we actually do not want to loose information, it should be

at most 0.5 of the voxel size. In favor of a smooth projection

image a step size of 0.25 voxels would be even better. A direct

comparison between GeForce 8800 GTX and QuadroFX 5600
for the computation time depending on the step size is shown

in Figure 7. The number of projections that can be computed

consecutively depends on the reconstruction algorithm. For

example, SART computes only a single projection per volume

update. In contrast, SIRT processes all projections consecu-

tively before a volume update is performed in the iteration.

Certainly there are algorithms in between such as the ordered

subset approach.

In Figure 6 we can see the dependency of the execution

time on the chosen step size for most common parameters.

5122 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.22 1.60 3.25
far 6.47 1.60 3.24

16 near 14.2 3.30 5.32
far 18.2 4.97 6.45

100 near 55.5 13.1 21.7
far 92.5 24.4 25.3

400 near 145 41.8 47.0
far 386 88.7 90.3

TABLE III
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 512 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

The measurements do not include the time required to write-

back the projections to the host memory or even to hard disk,

because it is not required for a complete GPU implemen-

tation of iterative CT reconstruction. Moreover, those times

(especially the write back to disk) can be hidden behind the

computation of the next slices. For example a projection of 100

images, 1024×1024 including write back takes approximately
one additional second on the QuadroFX 5600 (0.35 sec write
back to host, 0.19 sec write back to hard disc and 0.54 sec for
deletion of data, etc.). In most cases OpenGL and CUDA 2.0

operate two or three times faster than CUDA 1.1. For a small

number of projections, the results seem to depend on the other

parameters, i.e. the initialization time of the API, which takes

longer for OpenGL. In contrast, the tests with 400 projections

show a more interesting behavior. The best executed results

are highlighted in bold in Table IV, III, V and VI. In Table IV

it can be seen that CUDA 2.0 is faster in all tests by a constant

offset of approximately 8 seconds on the GeForce 8800 GTX.
In Figure the dependency on the step size for the two different

geometric setups in a common setting for SIRT (1024× 1024
pixels; 400 projections) is shown. The time increases almost

linear with the step size except for an offset.

To give an impression of GPUs computational performance

we finally compare a specific test case also with a CPU

implementation. The CPU implementation is a single-threaded

non-optimized straight-forward implementation of the raycast

method as stated in Algorithm 1. The program is executed

on our test system equipped with two Intel Xeon E5410

processors running at 2.33 GHz. For a simple comparison we
used 16 projections 1024× 1024 at a step size of 0.25 of the
voxel size. Table V proves a performance of 5.16 seconds for
such configuration using the ”near” field of view setting on

the NVIDIA QuadroFX 5600. We measured 764 seconds for
the single threaded CPU program. This indicates a maximal

speedup factor of 148.

V. DISCUSSION

At higher numbers of projections the execution times for the

CUDA implementation which uses 2-D textures to compute

QuadroFX 5600



10242 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 9.4 3.8 12.1
far 9.4 3.8 11.9

16 near 20.6 7.5 15.5
far 27.3 8.2 15.5

100 near 86.4 28.4 36.4
far 126 30.2 37.3

400 near 299 107 115
far 527 108 116

TABLE IV
COMPARISON OF RUNTIMES USING THE NVIDIA GEFORCE 8800GTX IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 1024 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

10242 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.38 1.60 3.22
far 6.71 1.59 3.25

16 near 16.2 5.16 6.94
far 21.4 5.02 7.09

100 near 70.5 25.1 27.4
far 114 24.6 29.5

400 near 245 99.8 103
far 515 90.9 109

TABLE V
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 1024 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

trilinear interpolations are much longer than for our other

implementations using 3D textures (CUDA 2.0 or OpenGL). It

is therefore essential to use the hardware-accelerated functions

of the GPU in order to optimize the execution performance

of our CT reconstruction applications. The constant execution

time offset in each test case (approx. 12 seconds in OpenGL

and 4 seconds in CUDA 2.0 on the GeForce 8800 GTX) can
be explained with the copy process of the volume data to the

graphics memory along with some other initializations. With

a QuadroFX 5600 card we observed a significantly smaller

20482 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 7.70 1.59 3.27
far 7.26 1.58 3.26

16 near 37.7 15.8 17.7
far 30.6 11.4 13.3

100 near 208 95.4 98
far 173 67.4 70.4

400 near 841 392 397
far 864 284 290

TABLE VI
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 2048 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE.
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Fig. 3. CUDA 2.0 and OpenGL comparison for varying projection size and
a small amount of projections.
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Fig. 4. OpenGL and CUDA 2.0 comparison with similar execution time
behavior for varying projection count and size.

difference in initialization time between OpenGL and CUDA.

As expected, the increase in runtime is almost linear in the step

size and the number of projections. With increasing image

sizes, OpenGL and CUDA are able to dispatch the parallel

computations more efficiently to the multiprocessors of the

GPU up to a certain amount. This is the reason why the execu-

tion time increases remarkably slower and does not scale with

the number of pixels in an image. Merely at 2048×2048 pixels
and an ROI including the complete data, there can be seen a

strong increase in execution time. As a consequence, it seems

that projection images with 1024× 1024 pixels are optimally
suited for current GPUs generations. An implementation in

OpenGL requires more implementation efforts for non-experts

because it was built as a graphics programming language for

real-time rendering of vertex-based 3D scenes. In contrast, a

ray casting in the C programming language can be more easily

ported to CUDA, as it only requires some adaptations for

the parallelization strategy. However an OpenGL expert can

implement such an algorithm in equivalent time compared to

a C-Programmer using CUDA.
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Results: 5122 and 20482 projections

• Performance in seconds

• Step size: 0.25 * voxel size

14

QuadroFX 5600

5122 pixels 10242 pixels 20482 pixels
Blocksz. near far near far near far

16 × 16 48.2 87.7 106 107 409 301

32 × 8 50.5 101 109 111 412 315

32 × 16 46.4 113 107 116 411 308

64 × 4 59.8 127 109 138 424 340

64 × 8 54.4 129 111 127 415 330

128 × 2 74.0 132 121 222 425 397

128 × 4 57.8 124 115 185 431 372

256 × 1 98.2 140 169 302 449 597

256 × 2 68.9 124 122 218 448 467

512 × 1 100 141 167 253 441 593

TABLE II
BLOCK PARAMETER COMPARISON OF RUNTIMES USING CUDA 2.0 ON
THE NVIDIA GEFORCE 8800GTX IN SECONDS WITH 400 PROJECTIONS
AND DIFFERENT PROJECTION SIZES AT A STEP SIZE OF 0.25 OF THE

VOXELSIZE

needs some initial calculation steps apart from the sampling.

Unless otherwise noted, a block consists of 16 × 16 pixels
within the projection. A block parameter comparison for the

GeForce 8800 GTX using CUDA 2.0 is shown in Table II.

Another important parameter is the number of projections to

be acquired from the same volume data. The time required for

initialization steps, preparing the data structures and loading

the volume data to the device, is spent just once. So, a high

number of projections reduces the influence of such preceding

computations (e. g. 1.6 seconds for CUDA and 3.2 seconds
for OpenGL on the QuadroFX 5600).

If both implementations are well optimized, it is expected

that OpenGL will perform better than CUDA 1.1 and compa-

rable to CUDA 2.0.

We use a projection size of 512×512 or 1024×1024 pixels.
The resulting execution times for the GeForce 8800 GTX

and QuadroFX 5600 using a projection size of 1024 × 1024
are shown in Table IV and Table V, and for the QuadroFX

5600 in Table III using a projection size of 512 × 512 and
2048 × 2048 in Table VI. In Figure IV we give an overview

of the dependency on the projection size using the QuadroFX

5600. In order to hit most of the voxels in the volume, the
step size (sampling rate) must not be greater than 1 voxel.

If we actually do not want to loose information, it should be

at most 0.5 of the voxel size. In favor of a smooth projection

image a step size of 0.25 voxels would be even better. A direct

comparison between GeForce 8800 GTX and QuadroFX 5600
for the computation time depending on the step size is shown

in Figure 7. The number of projections that can be computed

consecutively depends on the reconstruction algorithm. For

example, SART computes only a single projection per volume

update. In contrast, SIRT processes all projections consecu-

tively before a volume update is performed in the iteration.

Certainly there are algorithms in between such as the ordered

subset approach.

In Figure 6 we can see the dependency of the execution

time on the chosen step size for most common parameters.

5122 pixels
# Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.22 1.60 3.25
far 6.47 1.60 3.24

16 near 14.2 3.30 5.32
far 18.2 4.97 6.45

100 near 55.5 13.1 21.7
far 92.5 24.4 25.3

400 near 145 41.8 47.0
far 386 88.7 90.3

TABLE III
COMPARISON OF RUNTIMES USING THE NVIDIA QUADROFX 5600 IN

SECONDS (CUDA 1.1 VS. CUDA 2.0 VS. OPENGL) WITH A PROJECTION

SIZE OF 512 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF 0.25 OF THE VOXELSIZE

The measurements do not include the time required to write-

back the projections to the host memory or even to hard disk,

because it is not required for a complete GPU implemen-

tation of iterative CT reconstruction. Moreover, those times

(especially the write back to disk) can be hidden behind the

computation of the next slices. For example a projection of 100

images, 1024×1024 including write back takes approximately
one additional second on the QuadroFX 5600 (0.35 sec write
back to host, 0.19 sec write back to hard disc and 0.54 sec for
deletion of data, etc.). In most cases OpenGL and CUDA 2.0

operate two or three times faster than CUDA 1.1. For a small

number of projections, the results seem to depend on the other

parameters, i.e. the initialization time of the API, which takes

longer for OpenGL. In contrast, the tests with 400 projections

show a more interesting behavior. The best executed results

are highlighted in bold in Table IV, III, V and VI. In Table IV

it can be seen that CUDA 2.0 is faster in all tests by a constant

offset of approximately 8 seconds on the GeForce 8800 GTX.
In Figure the dependency on the step size for the two different

geometric setups in a common setting for SIRT (1024× 1024
pixels; 400 projections) is shown. The time increases almost

linear with the step size except for an offset.

To give an impression of GPUs computational performance

we finally compare a specific test case also with a CPU

implementation. The CPU implementation is a single-threaded

non-optimized straight-forward implementation of the raycast

method as stated in Algorithm 1. The program is executed

on our test system equipped with two Intel Xeon E5410

processors running at 2.33 GHz. For a simple comparison we
used 16 projections 1024× 1024 at a step size of 0.25 of the
voxel size. Table V proves a performance of 5.16 seconds for
such configuration using the ”near” field of view setting on

the NVIDIA QuadroFX 5600. We measured 764 seconds for
the single threaded CPU program. This indicates a maximal

speedup factor of 148.

V. DISCUSSION

At higher numbers of projections the execution times for the

CUDA implementation which uses 2-D textures to compute

QuadroFX 5600
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Results: Projection size dependency
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Results: Step size dependency
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Discussion & Conclusion

• Different initialization time between CUDA and OpenGL

• Parallel computation dispatching is more efficient 
for increasing image size ( OpenGL and CUDA )

• 3D texture support is essential for ray casting due to the 
hardware-accelerated interpolation ( drawback on CUDA 1.1 )

• OpenGL requires more implementation efforts for non-experts

• Ray casting can be easily ported to the GPU using CUDA

• In comparison to a single-threaded non-optimized
straight-forward CPU implementation we achieve a 
speedup factor of ~150. 

17
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Thank you!

18
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Implementation: CUDA - Software

• CUDA-capable devices: started with GeForce-8 series

• CUDA libraries: mathematical function with high abstraction level

• CUDA Runtime API:
simplified memory-,
device- and texture-
management

• CUDA Driver API:
low-level API,
no emulation-mode
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Implementation: CUDA - Hardware

20

• 8 Texture Processor Cluster

• 16 Streaming Multiprocessors

• 128 Streamprocessor (SP) = Shadercores
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Results: Scaleabilty / dependence on # projections
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Results: Scalabilty / dependence on projection count
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