
Comparison of High-Speed Ray Casting on GPU
using CUDA and OpenGL

Andreas Weinlich, Benjamin Keck, Holger Scherl, Markus Kowarschik and Joachim Hornegger

Abstract—Iterative 3D volume reconstruction is one of the
most compute- and memory-intensive applications in the field of
medical image processing. The iterative reconstruction consists
of two major compute intensive steps: Forward- and back-
projection. Both steps have to be applied repeatedly in eachiter-
ation and several iterations are necessary until a reconstruction
result with high image quality is available. As a consequence
iterative reconstruction techniques are rarely used in practical
CT-like systems. To step towards clinical usage it is mandatory to
apply highly parallelized low-cost processing architectures such
as the stream processors on current GPUs (Graphics Processing
Units). In order to achieve high image quality we implemented
the forward-projection using a volumetric ray cast method. We
have carefully adapted our implementation to two recent GPU-
programming tools, CUDA (NVIDIA Compute Unified Device
Architecture) and OpenGL (Open Graphics Language). In terms
of execution performance and implementation complexity we
compared both tools for the forward-projection step.

Index Terms—computed tomography, iterative reconstruction,
volumetric ray casting, CUDA, OpenGL, forward-projection

I. I NTRODUCTION

For the last years mostly analytical methods like the fil-
tered back-projection have been used in clinical Cone-beam
CT (Computed Tomography) systems in order to achieve
3D volume reconstructions out of acquired 2D projection
images. Iterative 3D reconstruction algorithms like SART
(Simultaneous Algebraic Reconstruction Technique) or SIRT
(Simultaneous Iterative Reconstruction Technique) [1] can
produce less reconstruction artifacts [2], i.e. reconstructions
using a small amount of projections, even though they are
much more time consuming than the conventional Feldkamp
algorithm [3]. The iterative reconstruction consists of two
major compute- and memory-intensive parts: A forward- and
a back-projection step. We recently showed a comparison of
latest acceleration technologies for the back-projectionstep
[4]. Especially ray-driven implementations of the forward-
projection like a volume ray caster, which are used for their
superior precision [5], suffer from their computational demand.
Also in other application domains ray casting algorithms are
extensively used, like in the field of 2D-3D registration [6].
To overcome the limitations and build real time solutions for
clinical application, it is necessary to use hardware architec-
tures with massively parallel computation capabilities. Like
in similar applications, one of the most appropriate and cost

A. Weinlich, B. Keck and J. Hornegger are with the Friedrich-Alexander-
University Erlangen-Nuremberg, Department of Computer Science, Chair of
Pattern Recognition (LME), Martensstr. 3, D-91058 Erlangen, Germany.

H.Scherl and M. Kowarschik are with Siemens Healthcare, CV,Medical
Electronics & Imaging Solutions, P.O.Box 3260, D-91050 Erlangen, Germany.

efficient solutions are modern graphics cards [7]. For example,
NVIDIA’s GeForce 8800 GTX and QuadroFX5600, which
we utilized for our tests, use 128 stream processors in parallel
and can additionally benefit from some hardware-accelerated
features like texture interpolation. Recently NVIDIA has de-
veloped a C-like general purpose API for these GPUs to
implement for example parallelized numerical algorithms.

Unfortunately, the first CUDA versions up to 1.1 had still
some drawbacks like missing support for 3D textures. This
feature was introduced in the recently published major release,
CUDA 2.0. But maybe still the compiler is not as sophis-
ticated as in the OpenGL graphics programming language.
Furthermore, as a matter of principle, it can only be used on
modern NVIDIA graphics cards. On the other hand there exists
another very interesting hardware platform for CUDA applica-
tions called NVIDIA Tesla. In this paper we compare highly
optimized implementations of ray casting using CUDA 1.1,
CUDA 2.0 and OpenGL regarding programming techniques,
implementation time, and execution performance.

II. RELATED WORK

In the medical field, perspective projections are often used
to simulate and approximate the physical process of X-ray
attenuation. Over two decades ago, Joseph [8] introduced an
improved algorithm for forward-projecting rays. His algorithm
is not as precise as a ray cast based algorithm, but less
computationally complex, which was more important at this
time. Later Xu et. al. compared popular interpolation and
integration methods for use in CT [5] and showed that a
ray cast based algorithm is comparable to the other superior
methods regarding the root mean square (RMS) error. Because
modern GPUs provide hardware-accelerated interpolation,we
decided to implement the forward-projection using ray casting.

The iterative reconstruction performance of graphics accel-
erators has often been evaluated using OpenGL and shading
languages [7], [9].

III. M ETHODS

In this section we describe the principle of the forward-
projection step. Second, we explain our CUDA-based and
OpenGL-based implementations.

A. Forward-projection

We use a volumetric ray casting approach for the forward-
projection step. Its basic functionality is shown in Figure1 and
the algorithm is shown in Algorithm 1. To determine the grey
level value of a certain pixel on the image plane, a straight

source

detector
volume

raydirection vector

sample point

Fig. 1. Ray casting principle.

line (”ray”) is drawn pointing from the optical center towards
the pixel position. Afterwards voxel intensity values inside
the cuboid are sampled equidistantly along the ray. These
sampling values add up to the desired gray level value in
the image. As a result we get a perspective projection of the
volume data.

Algorithm 1 Forward-projection with a ray casting algorithm
for all projectionsdo

compute source position out of projection matrix
compute inverted projection matrix
for all rays inside the projectiondo

compute ray direction depending on the image plane
normalize direction vector
//RAY CASTING
compute entrance and exit point of the ray to the cuboid
if ray hits the cuboidthen

set sample point to the entrance point
initialize the pixel value
while sample point is inside the cuboiddo

add up the computed sample value at current
position to the pixel value
compute new sample point for given step size

end while
else

set pixel value to zero
end if
normalize pixel value to world coordinate system units

end for
end for

The physical process of acquiring an X-ray image works
just as well. In particular, in this case the optical center depicts
the X-ray source whereas the image plane depicts the detector.
While Strobel et. al. [10] have shown that the image quality of
a reconstruction can be improved by using projection matrices
instead of assuming an ideal geometry, we decided to use this
parameterization in our implementation.

Furthermore this section describes some general features
that are common to both implementations, CUDA as well as
OpenGL. There are some different methods to get the direction
vector of the ray, which is the first step in the inner for loop
in Algorithm 1. A simple one is to take two position vectors,
compute the difference vector, and normalize it. Such positions
are the optical center, the 3D coordinate of the pixel position,
or the points where the ray enters or leaves the cuboid. For
example the position of the optical center can be obtained

volume

texture

S1

S2

S3

S4

etc.

Fig. 2. Volume representation in a 2D texture by SlicesSi.

from the homogeneous projection matrix which is designed
to project a 3D point to the image plane. Depending on the
output format of the projection (2D image- vs. 3D world-
coordinates), this matrix has three or four rows. In the latter
case, the vector can be found in the fourth column of the
inverted matrix (first three components). In the case of a 3×

4 matrix it is possible to drop the fourth column, invert the 3×

3 matrix and multiply the inverse with the previously dropped
fourth column to get the center position. This holds, because
in case of a perspective projection with projection matrices,
this fourth column depicts the shift of the optical center tothe
origin of the coordinate system. But due to the fact that this
translation occurs not before the rest of the transformations,
these have to be undone in multiplying the inverse. Galigekere
et. al. have shown already how to reproject using projection
matrices in [11].

In the next step the entrance position of the ray into the
volume has to be calculated. The used method to get the
entering and leaving points depends on the implementation.
Between those points the cube is equidistantly sampled. To get
one sampling position, we take the entry vector and add the
direction vector multiplied with the step size times a counter
variable. The following sampling step itself proves to be
crucial for the algorithm’s efficiency. In order to get satisfying
results, a sub-pixel sampling is required, which introduces a
trilinear interpolation.

For a realistic simulation of X-ray imaging, the Beer-
Lambert law has to be fulfilled approximately:

I = I0 · e

−

t(vdetector)
R

t(vsource)
ρ(x(t)) dt

(1)

The densitiesp are integrated along the linex(t) (or added
up in a discrete manner). Afterwards, they are transformed
with the exponential-function and multiplied with an initial
X-ray intensity to get the target intensity value. This subse-
quent transformation will not be considered here as it can be
computed for example during a post-processing step. For the
application in algebraic reconstruction, a pre-processing of the
original X-ray images may be also appropriate to fit the ray
caster projections.

B. Implementation in CUDA

CUDA offers an easy to use C-like application programming
interface with some extensions. There are two different parts in
each CUDA implementation: A host part, which executes in a
CPU thread, and a device part (kernel), which is invoked by the
controlling CPU thread, but runs in parallel on the GPU device.
In our case the program instructs the graphics card to createa
semi-parallel thread for each ray. On our hardware up to 128 of
these threads can be processed in parallel. Most of our CPU
code uses CUDA specific API functions for allocating data
structures on the device and to transfer data to the graphics
memory and back to RAM.

In the kernel code, the inverse of the projection matrix
is used to get the ray direction out of the pixel position in
the projection image. In order to check whether a sampling
position is inside the cuboid, the entrance and exit distances
with respect to the optical center are computed. In each step
the entrance position is incremented by a step size value until
it reaches the exit distance. A critical issue in CUDA 1.1 is
the sampling step since it does not provide support for 3D
textures. So unfortunately a trilinear hardware interpolation
is not available for the CUDA 1.1 API. In consequence,
a workaround had to be applied that used just the bilinear
interpolation capability of the GPU. It does a successive
linear software interpolation in between stacked 2D texture
slices (see Figure 2). Therefor, desired values are fetched
from proximate stack slices with hardware-accelerated bilinear
interpolation. These sampling steps are substituted with only
one hardware-accelerated 3D texture fetch in CUDA 2.0 and
OpenGL.

C. Implementation in OpenGL

The OpenGL implementation is more tricky in some as-
pects. This is a consequence of the fact, that OpenGL is
intended to be used in graphics applications. Nevertheless
there are some similarities like the perspective projection. In
the past years, the API itself was made more flexible by means
of shader languages, which makes it possible to implement a
forward projection using OpenGL [12].

Like in CUDA, the implementation divides into a CPU and
a GPU part. The CPU part (OpenGL code) was written in
C++. In our implementation the GPU fragment shader program
is written in the shader language, GLslang. The OpenGL
API invokes this code for each pixel in the projection. Due
to the fact that a pixel exactly corresponds to a ray, this
threading is the same as in CUDA. However, unlike CUDA,
this partitioning can not be defined by the programmer directly.
In fact this correspondence is a fixed OpenGL fragment shader
feature.

In the OpenGL code, there are some initializations estab-
lishing a desktop window for rendering. Furthermore, frame
buffer objects are initialized in order to store the projection into
a texture. As stated above, the volume data resides in a 3D
texture like in CUDA 2.0. This fact allows for the utilization
of hardware supported tri-linear interpolation. The projection
matrix for an image has to be transformed in order to fit the
OpenGL coordinate system. Afterwards some variables are

NVIDIA GeForce NVIDIA QuadroFX
8800GTX 5600

Core clock 575 MHz 600 MHz

Shader clock 1350 MHz 1400 MHz

Memory amount 768 MB 1500 MB

Memory interface 384-bit 384-bit

Memory clock speed 900 MHz 800 MHz

Memory bandwidth 86.4 GB/s 76.8 GB/s

TABLE I
TECHNICAL SPECIFICATION OF BOTH GRAPHICS CARDS USED IN OUR

EVALUATION

transferred to the shader, the six faces of the cuboid are drawn
using vertices, the cuboid is rendered to a texture and finally
this texture is copied back to host memory.

During the rendering, the instructions within the shader
program are executed instead of the texture lookup. These
instructions differ slightly from the corresponding CUDA
code. Corners of the 3D texture have been assigned to the
corners of the cuboid, so the OpenGL texturing step provides
the entrance position of the ray automatically in terms of
interpolated texture coordinates. The ray direction vector can
be obtained like it was outlined in the last section. In each
step the program checks, whether the sampling position is still
inside the cuboid. As mentioned, the sampling itself reduces
to a simple 3D texture fetch.

IV. RESULTS

In order to compare the performance of both approaches,
we measured execution times with different test parameters
on an NVIDIA GeForce8800 GTX as well as on an NVIDIA
QuadroFX 5600. Even though both graphics cards are as-
sembled with the NVIDIA GPU ”G80” they are slightly
different stated in Table I. Our evaluation system is a Fujitsu-
Siemens Workstation ”R650” using the Intel 5400 chip set.
The graphics cards are connected each via a PCI Express x16
slot.

For measurement purpose we used different projection
geometries and volume phantoms. If the phantom fits inside
the field of view, there exist rays that do not go through the
cuboid at all (case ”far”). These rays consume a minimum of
the computation time and the computation finishes noticeably
faster compared to the test case where optical center and image
plane are close to the cuboid (case ”near”). Associated param-
eters that have direct impact on the computational complexity
of the ray caster are image size (number of pixels and with
it number of rays) as well as the sampling rate along one
ray (distance of sampling positions compared to the size of a
voxel). Due to the fact that in CUDA the execution of the
kernel and thus the ordering of the texture fetches can be
configured by the block configuration [13], we also compared
this parameter for CUDA 1.1 and CUDA 2.0. Large images
have some additional side effects. On one hand, they allow a
more flexible schedule of threads, on the other hand each ray

5122 pixels 10242 pixels 20482 pixels
Blocksz. near far near far near far

16× 16 48.2 87.7 106 107 409 301

32× 8 50.5 101 109 111 412 315

32× 16 46.4 113 107 116 411 308

64× 4 59.8 127 109 138 424 340

64× 8 54.4 129 111 127 415 330

128 × 2 74.0 132 121 222 425 397

128 × 4 57.8 124 115 185 431 372

256 × 1 98.2 140 169 302 449 597

256 × 2 68.9 124 122 218 448 467

512 × 1 100 141 167 253 441 593

TABLE II
BLOCK PARAMETER COMPARISON OF RUNTIMES USINGCUDA 2.0 ON

THE NVIDIA G EFORCE8800GTX IN SECONDS WITH400 PROJECTIONS

AND DIFFERENT PROJECTION SIZES AT A STEP SIZE OF0.25OF THE

VOXELSIZE

needs some initial calculation steps apart from the sampling.
Unless otherwise noted, a block consists of16 × 16 pixels
within the projection. A block parameter comparison for the
GeForce8800 GTX using CUDA 2.0 is shown in Table II.
Another important parameter is the number of projections to
be acquired from the same volume data. The time required for
initialization steps, preparing the data structures and loading
the volume data to the device, is spent just once. So, a high
number of projections reduces the influence of such preceding
computations (e. g.1.6 seconds for CUDA and3.2 seconds
for OpenGL on the QuadroFX 5600).

If both implementations are well optimized, it is expected
that OpenGL will perform better than CUDA 1.1 and compa-
rable to CUDA 2.0.

We use a projection size of512×512 or 1024×1024 pixels.
The resulting execution times for the GeForce8800 GTX
and QuadroFX5600 using a projection size of1024 × 1024
are shown in Table IV and Table V, and for the QuadroFX
5600 in Table III using a projection size of512 × 512 and
2048 × 2048 in Table VI. In Figure IV we give an overview
of the dependency on the projection size using the QuadroFX
5600. In order to hit most of the voxels in the volume, the
step size (sampling rate) must not be greater than 1 voxel.
If we actually do not want to loose information, it should be
at most 0.5 of the voxel size. In favor of a smooth projection
image a step size of 0.25 voxels would be even better. A direct
comparison between GeForce8800 GTX and QuadroFX5600
for the computation time depending on the step size is shown
in Figure 7. The number of projections that can be computed
consecutively depends on the reconstruction algorithm. For
example, SART computes only a single projection per volume
update. In contrast, SIRT processes all projections consecu-
tively before a volume update is performed in the iteration.
Certainly there are algorithms in between such as the ordered
subset approach.

In Figure 6 we can see the dependency of the execution
time on the chosen step size for most common parameters.

5122 pixels
Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.22 1.60 3.25
far 6.47 1.60 3.24

16 near 14.2 3.30 5.32
far 18.2 4.97 6.45

100 near 55.5 13.1 21.7
far 92.5 24.4 25.3

400 near 145 41.8 47.0
far 386 88.7 90.3

TABLE III
COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN

SECONDS(CUDA 1.1 VS. CUDA 2.0VS. OPENGL) WITH A PROJECTION
SIZE OF 512SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF0.25OF THE VOXELSIZE

The measurements do not include the time required to write-
back the projections to the host memory or even to hard disk,
because it is not required for a complete GPU implemen-
tation of iterative CT reconstruction. Moreover, those times
(especially the write back to disk) can be hidden behind the
computation of the next slices. For example a projection of 100
images,1024×1024 including write back takes approximately
one additional second on the QuadroFX 5600 (0.35 sec write
back to host,0.19 sec write back to hard disc and 0.54 sec for
deletion of data, etc.). In most cases OpenGL and CUDA 2.0
operate two or three times faster than CUDA 1.1. For a small
number of projections, the results seem to depend on the other
parameters, i.e. the initialization time of the API, which takes
longer for OpenGL. In contrast, the tests with 400 projections
show a more interesting behavior. The best executed results
are highlighted in bold in Table IV, III, V and VI. In Table IV
it can be seen that CUDA 2.0 is faster in all tests by a constant
offset of approximately 8 seconds on the GeForce8800 GTX.
In Figure the dependency on the step size for the two different
geometric setups in a common setting for SIRT (1024× 1024
pixels; 400 projections) is shown. The time increases almost
linear with the step size except for an offset.

To give an impression of GPUs computational performance
we finally compare a specific test case also with a CPU
implementation. The CPU implementation is a single-threaded
non-optimized straight-forward implementation of the raycast
method as stated in Algorithm 1. The program is executed
on our test system equipped with two Intel Xeon E5410
processors running at2.33 GHz. For a simple comparison we
used16 projections1024× 1024 at a step size of0.25 of the
voxel size. Table V proves a performance of5.16 seconds for
such configuration using the ”near” field of view setting on
the NVIDIA QuadroFX5600. We measured764 seconds for
the single threaded CPU program. This indicates a maximal
speedup factor of 148.

V. D ISCUSSION

At higher numbers of projections the execution times for the
CUDA implementation which uses 2-D textures to compute

10242 pixels
Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 9.4 3.8 12.1
far 9.4 3.8 11.9

16 near 20.6 7.5 15.5
far 27.3 8.2 15.5

100 near 86.4 28.4 36.4
far 126 30.2 37.3

400 near 299 107 115
far 527 108 116

TABLE IV
COMPARISON OF RUNTIMES USING THENVIDIA G EFORCE8800GTX IN

SECONDS(CUDA 1.1 VS. CUDA 2.0VS. OPENGL) WITH A PROJECTION
SIZE OF1024SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF0.25OF THE VOXELSIZE

10242 pixels
Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.38 1.60 3.22
far 6.71 1.59 3.25

16 near 16.2 5.16 6.94
far 21.4 5.02 7.09

100 near 70.5 25.1 27.4
far 114 24.6 29.5

400 near 245 99.8 103
far 515 90.9 109

TABLE V
COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN

SECONDS(CUDA 1.1 VS. CUDA 2.0VS. OPENGL) WITH A PROJECTION

SIZE OF1024SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF0.25OF THE VOXELSIZE

trilinear interpolations are much longer than for our other
implementations using 3D textures (CUDA 2.0 or OpenGL). It
is therefore essential to use the hardware-accelerated functions
of the GPU in order to optimize the execution performance
of our CT reconstruction applications. The constant execution
time offset in each test case (approx. 12 seconds in OpenGL
and 4 seconds in CUDA 2.0 on the GeForce8800 GTX) can
be explained with the copy process of the volume data to the
graphics memory along with some other initializations. With
a QuadroFX5600 card we observed a significantly smaller

20482 pixels
Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 7.70 1.59 3.27
far 7.26 1.58 3.26

16 near 37.7 15.8 17.7
far 30.6 11.4 13.3

100 near 208 95.4 98
far 173 67.4 70.4

400 near 841 392 397
far 864 284 290

TABLE VI
COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN

SECONDS(CUDA 1.1 VS. CUDA 2.0VS. OPENGL) WITH A PROJECTION

SIZE OF2048SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF0.25OF THE VOXELSIZE.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

ProjectionCount

Varying small number of projection (near object)

OpenGL, 512*512 px, Stepsize: 0.25 voxel
CUDA 2.0, 512*512 px, Stepsize: 0.25 voxel

OpenGL, 1024*1024 px, Stepsize: 0.25 voxel
CUDA 2.0, 1024*1024 px, Stepsize: 0.25 voxel

OpenGL, 2048*2048 px, Stepsize: 0.25 voxel
CUDA 2.0, 2048*2048 px, Stepsize: 0.25 voxel

Fig. 3. CUDA 2.0 and OpenGL comparison for varying projection size and
a small amount of projections.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

ProjectionCount

Varying number of projection (near object)

OpenGL, 512*512 px, Stepsize: 0.25 voxel
CUDA 2.0, 512*512 px, Stepsize: 0.25 voxel

OpenGL, 1024*1024 px, Stepsize: 0.25 voxel
CUDA 2.0, 1024*1024 px, Stepsize: 0.25 voxel

OpenGL, 2048*2048 px, Stepsize: 0.25 voxel
CUDA 2.0, 2048*2048 px, Stepsize: 0.25 voxel

Fig. 4. OpenGL and CUDA 2.0 comparison with similar execution time
behavior for varying projection count and size.

difference in initialization time between OpenGL and CUDA.
As expected, the increase in runtime is almost linear in the step
size and the number of projections. With increasing image
sizes, OpenGL and CUDA are able to dispatch the parallel
computations more efficiently to the multiprocessors of the
GPU up to a certain amount. This is the reason why the execu-
tion time increases remarkably slower and does not scale with
the number of pixels in an image. Merely at2048×2048 pixels
and an ROI including the complete data, there can be seen a
strong increase in execution time. As a consequence, it seems
that projection images with1024× 1024 pixels are optimally
suited for current GPUs generations. An implementation in
OpenGL requires more implementation efforts for non-experts
because it was built as a graphics programming language for
real-time rendering of vertex-based 3D scenes. In contrast, a
ray casting in the C programming language can be more easily
ported to CUDA, as it only requires some adaptations for
the parallelization strategy. However an OpenGL expert can
implement such an algorithm in equivalent time compared to
a C-Programmer using CUDA.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 400 600 800 1000 1200 1400 1600 1800 2000 2200

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

ProjectionSize

Dependency on projection size (400 projections, stepsize: 0.25 voxel)

OpenGL near
OpenGL far

CUDA 2.0 near
CUDA 2.0 far

Fig. 5. The projection size dependency on the QuadroFX5600.

 0

 100

 200

 300

 400

 500

 600

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Stepsize

Dependency on step size (1024*1024 px, 400 projections)

OpenGL near
CUDA 1.1 near
CUDA 2.0 near

OpenGL far
CUDA 1.1 far
CUDA 2.0 far

Fig. 6. The stepsize dependency on the QuadroFX5600.

VI. CONCLUSION

We have presented three highly optimized implementations
of volume ray casting usable i.e. as the forward-projectionstep
in iterative reconstruction. Our comparison of the execution
times shows that the performance of the recent CUDA version
is even slightly better than an implementation using OpenGL.
Older CUDA versions should not be used for ray casting due to
the lack of 3D texture support. CUDA unveils the processing
power of graphics cards even for programmers that are not
specialists in computer graphics. The OpenGL implementation
required much more implementation time, however it can also
be used with no CUDA capable devices. On the other hand,
the Tesla series from NVIDIA can only be used together with
CUDA.

ACKNOWLEDGMENTS

This work is being supported by Siemens Healthcare, CV,
Medical Electronics & Imaging Solutions. We wish to give
special thanks to Dr. Klaus Engel who supported us with his
wide OpenGL API knowledge.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Stepsize

GeForce 8800 vs. Quadro FX 5600 comparison step size (1024*1024 px, 400 projections)

GeForce 8800 GTX near
GeForce 8800 GTX far
Quadro FX 5600 near

Quadro FX 5600 far

Fig. 7. GeForce8800 GTX to QuadroFX5600 comparison on step-size
using CUDA 2.0.

REFERENCES

[1] A. Andersen and A. Kak, “Simultaneous algebraic reconstruction tech-
nique (sart): A superior implementation of the art algorithm,” Ultrasonic
Imaging, vol. 6, no. 1, pp. 81–94, January 1984.

[2] K. Mueller and R. Yagel, “Rapid 3d cone-beam reconstruction with
the algebraic reconstruction technique (art) by utilizingtexture mapping
graphics hardware,”Nuclear Science Symposium, 1998. Conference
Record. 1998 IEEE, vol. 3, pp. 1552–1559, 1998.

[3] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,”
Journal of the Optical Society of America, vol. A1, no. 6, pp. 612–619,
1984.

[4] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, “Fast GPU-Based
CT Reconstruction using the Common Unified Device Architecture
(CUDA),” in Nuclear Science Symposium, Medical Imaging Conference
2007, E. C. Frey, Ed., 2007, pp. 4464–4466.

[5] F. Xu and K. Mueller, “A comparative study of popular interpolation
and integration methods for use in computed tomography,”Biomedical
Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on,
pp. 1252–1255, April 2006.

[6] A. Kubias, F. Deinzer, T. Feldmann, S. Paulus, D. Paulus,B. Schreiber,
and T. Brunner, “2d/3d image registration on the gpu,” inProceedings
of the 7th Open German/Russian Workshop on Pattern Recognition and
Image Understanding (OGRW), FGAN-FOM, Ettlingen, 2007.

[7] K. Mueller, F. Xu, and N. Neophytou, “Why do commodity graphics
hardware boards (GPUs) work so well for acceleration of computed
tomography?” inSPIE Electronic Imaging Conference, San Diego, 2007,
(Keynote, Computational Imaging V).

[8] P. M. Joseph, “An improved algorithm for reprojecting rays through pixel
images,”IEEE Transactions on Medical Imaging, vol. MI-1, no. 3, pp.
192–196, 1982.

[9] M. Churchill, “Hardware-accelerated cone-beam reconstruction on a
mobile C-arm,” inProceedings of SPIE, J. Hsieh and M. Flynn, Eds.,
vol. 6510, 2007, p. 65105S.

[10] N. K. Strobel, B. Heigl, T. M. Brunner, O. Schuetz, M. M. Mitschke,
K. Wiesent, and T. Mertelmeier, “Improving 3D image qualityof x-ray
C-arm imaging systems by using properly designed pose determination
systems for calibrating the projection geometry,” inMedical Imaging
2003: Physics of Medical Imaging. Edited by Yaffe, Martin J.; Antonuk,
Larry E. Proceedings of the SPIE, Volume 5030, pp. 943-954 (2003).,
ser. Presented at the Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference, M. J. Yaffe and L. E. Antonuk, Eds., vol. 5030, Jun.
2003, pp. 943–954.

[11] D. H. R. Galigekere, K. Wiesent, “Cone-beam reprojection using
projection-matrices,”IEEE Transactions on Medical Imaging, vol. 22,
no. 10, pp. 1202–1213, 2003.

[12] K. Müller, “Fast and accurate three-dimensional reconstruction from
cone-beam projection data using algebraic methods,” Ph.D.dissertation,
Department of computer and information science, Ohio StateUniversity,
Columbus, Ohio, USA, 1998.

[13] N. Corp., “NVIDIA CUDA Compute Unified Device
Architecture Programming Guide,” 2007. [Online]. Available:
http://www.nvidia.com/cuda

