Comparison of High-Speed Ray Casting on GPU
using CUDA and OpenGL

Andreas Weinlich, Benjamin Keck, Holger Scherl, Markus koschik and Joachim Hornegger

Abstract—Iterative 3D volume reconstruction is one of the
most compute- and memory-intensive applications in the fiel of
medical image processing. The iterative reconstruction atsists
of two major compute intensive steps: Forward- and back-
projection. Both steps have to be applied repeatedly in eaciter-
ation and several iterations are necessary until a reconstiction
result with high image quality is available. As a consequere
iterative reconstruction techniques are rarely used in pratical
CT-like systems. To step towards clinical usage it is mandaty to
apply highly parallelized low-cost processing architecttes such
as the stream processors on current GPUs (Graphics Processi
Units). In order to achieve high image quality we implementd
the forward-projection using a volumetric ray cast method. We
have carefully adapted our implementation to two recent GPUY
programming tools, CUDA (NVIDIA Compute Unified Device
Architecture) and OpenGL (Open Graphics Language). In terns
of execution performance and implementation complexity we
compared both tools for the forward-projection step.

Index Terms—computed tomography, iterative reconstruction,
volumetric ray casting, CUDA, OpenGL, forward-projection

I. INTRODUCTION

efficient solutions are modern graphics cards [7]. For examp
NVIDIAs GeForce 8800 GTX and QuadroFX5600, which
we utilized for our tests, use 128 stream processors inlphral
and can additionally benefit from some hardware-accel@rate
features like texture interpolation. Recently NVIDIA has-d
veloped a C-like general purpose API for these GPUs to
implement for example parallelized numerical algorithms.
Unfortunately, the first CUDA versions up to 1.1 had still
some drawbacks like missing support for 3D textures. This
feature was introduced in the recently published majorasse
CUDA 2.0. But maybe still the compiler is not as sophis-
ticated as in the OpenGL graphics programming language.
Furthermore, as a matter of principle, it can only be used on
modern NVIDIA graphics cards. On the other hand there exists
another very interesting hardware platform for CUDA apgplic
tions called NVIDIA Tesla. In this paper we compare highly
optimized implementations of ray casting using CUDA 1.1,
CUDA 2.0 and OpenGL regarding programming techniques,
implementation time, and execution performance.

For the last years mostly analytical methods like the fil- Il. RELATED WORK
tered back-projection have been used in clinical Cone-beamn the medical field, perspective projections are often used
CT (Computed Tomography) systems in order to achiete simulate and approximate the physical process of X-ray
3D volume reconstructions out of acquired 2D projectioattenuation. Over two decades ago, Joseph [8] introduced an
images. lIterative 3D reconstruction algorithms like SARimproved algorithm for forward-projecting rays. His algbhm
(Simultaneous Algebraic Reconstruction Technique) orTSIRs not as precise as a ray cast based algorithm, but less
(Simultaneous Iterative Reconstruction Technique) [1h ca&zomputationally complex, which was more important at this
produce less reconstruction artifacts [2], i.e. recomsions time. Later Xu et. al. compared popular interpolation and
using a small amount of projections, even though they airgegration methods for use in CT [5] and showed that a
much more time consuming than the conventional Feldkamgy cast based algorithm is comparable to the other superior
algorithm [3]. The iterative reconstruction consists ofotwmethods regarding the root mean square (RMS) error. Because
major compute- and memory-intensive parts: A forward- andodern GPUs provide hardware-accelerated interpolatven,
a back-projection step. We recently showed a comparisondscided to implement the forward-projection using rayiogst
latest acceleration technologies for the back-projecttap The iterative reconstruction performance of graphics lacce
[4]. Especially ray-driven implementations of the forwarderators has often been evaluated using OpenGL and shading
projection like a volume ray caster, which are used for thdanguages [7], [9].
superior precision [5], suffer from their computationairgend.
Also in other application domains ray casting algorithms ar I1l. METHODS

extensively used, like in the field of 2D-3D registration.[6] | this section we describe the principle of the forward-

To overcome the limitations and build real time solutions fqyrgjection step. Second, we explain our CUDA-based and
clinical application, it is necessary to use hardware &chi openGL-based implementations.

tures with massively parallel computation capabilitieskel.
in similar applications, one of the most appropriate and coR Forward-projection

A. Weinlich, B. Keck and J. Hornegger are with the Friedridexander- We use a volumetric ray casting approach for the forward-
University Erlangen-Nuremberg, Department of Computeer8e, Chair of projection step. Its basic functionality is shown in Figrlrand
Pattern Recognition (LME), Martensstr. 3, D-91058 Erlang8ermany.

H.Scherl and M. Kowarschik are with Siemens Healthcare, KZ!Vdical the algorlthm IS ShOWﬂ n Algonthm 1. TO determme the grey
Electronics & Imaging Solutions, P.O.Box 3260, D-9105(Eden, Germany. level value of a certain pixel on the image plane, a straight

detector

T T
volume | | |
. - =
sample point [‘ S1 ! ! !
p p - ———ZAN T~~~ @ - - - I — — — = e |
source L : | | |
L : I I I
@\ I RS I I N\ N S2 i
- reeeole . [[i
. = L | | |
direction vector T A T ray] S3 | |
L volume N\ r---- ----- -
L | | |
Sy [[[
,,,,, L |

Fig. 1. Ray casting principle.

texture

line ("ray”) is drawn pointing from the optical center tovasr
the pixel position. Afterwards voxel intensity values besi Fig. 2. Volume representation in a 2D texture by Slicks
the cuboid are sampled equidistantly along the ray. These
sampling values add up to the desired gray level value in
the image. As a result we get a perspective projection of t

ﬂ%m the homogeneous projection matrix which is designed
volume data.

to project a 3D point to the image plane. Depending on the
- — - - — _output format of the projection (2D image- vs. 3D world-
Algorithm 1 Forward-projection with a ray casting algomhmcoordinates) this matrix has three or four rows. In theelatt
for all projectionsdo " . . case, the vector can be found in the fourth column of the
compute source p05|t_|on_out of p_rolectlon matrix inverted matrix (first three components). In the case of:a 3
compute mv_ert_ed prolectl(_)n mat”x 4 matrix it is possible to drop the fourth column, invert the 3
for all rays mSId? the_ prolectlodg . 3 matrix and multiply the inverse with the previously drogpe
comque ray dlrgctlon depending on the image plan‘1:r’ourth column to get the center position. This holds, beeaus
normalize direction vector in case of a perspective projection with projection masijce
[IRAY CASTING . this fourth column depicts the shift of the optical centethtte
f:omput_e entrance a_nd exit point of the ray to the CUbOEaigin of the coordinate system. But due to the fact that this
if ray hits the cu_b0|dhen . translation occurs not before the rest of the transformatio
,Se,t_ sgmple pqlnt to the entrance point these have to be undone in multiplying the inverse. Galigeke
|n|t!al|ze the p|xellva!ue- . , et. al. have shown already how to reproject using projection
while sample point is inside the cuboitb matrices in [11].
add up the computed sample value at current . _
position to the pixel value In the next step the entrance position of the ray into the
compute new sample point for given step size volume has to be calculated. The used method to get the
end while entering and leaving points depends on the implementation.
else Between those points the cube is equidistantly sampledefo g
one sampling position, we take the entry vector and add the
direction vector multiplied with the step size times a ceunt

set pixel value to zero

end if
normalize pixel value to world coordinate system unitga”able' The following sampling step itself proves to be
end for crucial for the algorithm’s efficiency. In order to get sting
end for results, a sub-pixel sampling is required, which introduae

trilinear interpolation.

The physical process of acquiring an X-ray image worlﬁ_s For a realistic S|mulat|gn of X-ray imaging, the Beer-
. ; L . : ambert law has to be fulfilled approximately:
just as well. In particular, in this case the optical cenegidts
the X-ray source whereas the image plane depicts the detecto
While Strobel et. al. [10] have shown that the image quality o B "(ﬂdjtecwf)p(z(t))dt
a reconstruction can be improved by using projection mesric T=1Iy-e ‘(soucd B 1)
instead of assuming an ideal geometry, we decided to use this
parameterization in our implementation.

Furthermore this section describes some general featufé®e densitiep are integrated along the line(t) (or added
that are common to both implementations, CUDA as well agp in a discrete manner). Afterwards, they are transformed
OpenGL. There are some different methods to get the directiwith the exponential-function and multiplied with an iaiti
vector of the ray, which is the first step in the inner for loo-ray intensity to get the target intensity value. This sibs
in Algorithm 1. A simple one is to take two position vectorsguent transformation will not be considered here as it can be
compute the difference vector, and normalize it. Such jorsit computed for example during a post-processing step. For the
are the optical center, the 3D coordinate of the pixel pmsjti application in algebraic reconstruction, a pre-procegsirthe
or the points where the ray enters or leaves the cuboid. Figinal X-ray images may be also appropriate to fit the ray
example the position of the optical center can be obtainedster projections.

B. ImpIementation in CUDA NVIDIA GeForce | NVIDIA QuadroFX
8800GTX 5600

CUDA offers an easy to use C-like application programming

. Core clock | 575 MHz | 600 MHz
interface with some extensions. There are two differerntspar

each CUDA implementation: A host part, which executes in a __Staderclock | 1850MHz | 1400 Mz
CPU thread, and a device part (kernel), which is invoked ey th _ Memory amount | 768 MB | 1500 MB
controlling CPU thread, but runs in parallel on the GPU devic ~ Memory interface | 384-bit | 384-bit
In our case the program instructs the graphics card to ceeate memory clock speed| 900 MHz | 800 MHz
semi-parallel thread for each ray. On our hardware up to 128 o Memory bandwidth | 86.4 GBJs | 76.8 GBS

these threads can be processed in parallel. Most of our CPU
code uses CUDA specific API functions for allocating data TABLE |
structures on the device and to transfer data to the graphicEECHN'CALSPEC'F'CAT'ONE?/ZLBSATT'TOGNRAPH'CS CARDS USED IN OUR
memory and back to RAM.

In the kernel code, the inverse of the projection matrix

is used to get the ray direction out of the pixel position in))
the projection image. In order to check whether a samplirli nsferred to the shader, the six faces of the cuboid arerdra

position is inside the cuboid, the entrance and exit diﬁandjsfing verticgs, thg cuboid is rendered to a texture and yinall
with respect to the optical center are computed. In each sf@b’s texture is copied back to host memory.

the entrance position is incremented by a step size valiie unt PUring the rendering, the instructions within the shader
it reaches the exit distance. A critical issue in CUDA 1.1 jgrogram are executed instead of the texture lookup. These

the sampling step since it does not provide support for dpstructions differ slightly from the corresponding CUDA

textures. So unfortunately a trilinear hardware interpota CCde- Corners of the 3D texture have been assigned to the

is not available for the CUDA 1.1 APl In consequencé:omers of the cuboid, so the OpenGL texturing step provides

a workaround had to be applied that used just the bilinetl}e entrance position of the ray automatically in terms of

interpolation capability of the GPU. It does a successijaterpolated texture coordinates. The ray direction vecem
linear software interpolation in between stacked 2D textu

pe obtained like it was outlined in the last section. In each

slices (see Figure 2). Therefor, desired values are fetch_%a_p the program checks, w_hetherthe sampli_ng positioriilis st
from proximate stack slices with hardware-acceleratédéar nSide the cuboid. As mentioned, the sampling itself reduce
interpolation. These sampling steps are substituted witl o ©© @ Simple 3D texture fetch.

one hardware-accelerated 3D texture fetch in CUDA 2.0 and
OpenGL. IV. RESULTS

In order to compare the performance of both approaches,
C. Implementation in OpenGL we measured execution times with different test parameters
. L . . on an NVIDIA GeForce8800 GTX as well as on an NVIDIA
The OpenGL implementation is more tricky in some ass .
L uadroFX 5600. Even though both graphics cards are as-
pects. This is a consequence of the fact, that OpenGL . » ,)
:) . o sembled with the NVIDIA GPU "G80" they are slightly
intended to be used in graphics applications. Neverthel%sﬁ . .) .
there are some similarities like the perspective projectio ! erent stated in Table l. Our ev_aluatlon system Is a E_uﬂt
Siemens Workstation "R650” using the Intel 5400 chip set.

the past years, the API itself was made more flexible by me . :
.) : . e graphics cards are connected each via a PCl Express x16
of shader languages, which makes it possible to implement a

forward projection using OpenGL [12]. slot.

Like in CUDA, the implementation divides into a CPU and
a GPU part. The CPU part (OpenGL code) was written in For measurement purpose we used different projection
C++. In our implementation the GPU fragment shader progrageometries and volume phantoms. If the phantom fits inside
is written in the shader language, GLslang. The OpenGhe field of view, there exist rays that do not go through the
API invokes this code for each pixel in the projection. Dueuboid at all (case "far”). These rays consume a minimum of
to the fact that a pixel exactly corresponds to a ray, thike computation time and the computation finishes notigeabl
threading is the same as in CUDA. However, unlike CUDAaster compared to the test case where optical center arggima
this partitioning can not be defined by the programmer diyectplane are close to the cuboid (case "near”). Associatechpara
In fact this correspondence is a fixed OpenGL fragment shadgers that have direct impact on the computational comigiexi
feature. of the ray caster are image size (number of pixels and with

In the OpenGL code, there are some initializations estabb-number of rays) as well as the sampling rate along one
lishing a desktop window for rendering. Furthermore, frammay (distance of sampling positions compared to the size of a
buffer objects are initialized in order to store the prajeinto voxel). Due to the fact that in CUDA the execution of the
a texture. As stated above, the volume data resides in a B&nel and thus the ordering of the texture fetches can be
texture like in CUDA 2.0. This fact allows for the utilizatio configured by the block configuration [13], we also compared
of hardware supported tri-linear interpolation. The petign this parameter for CUDA 1.1 and CUDA 2.0. Large images
matrix for an image has to be transformed in order to fit theave some additional side effects. On one hand, they allow a
OpenGL coordinate system. Afterwards some variables arore flexible schedule of threads, on the other hand each ray

5122 pixels 10242 pixels 20482 pixels 5122 pixels

Blocksz. near far | near far | near far #Proj. FoV | CUDA1.1 CUDA2.0 OpenGL
16 x 16 | 48.2 87.7| 106 107 | 409 301 1 near 6.22 1.60 3.25
32x8 | 505 101| 109 111 | 412 315 far | 647 1.60 3.24

16 near 14.2 3.30 5.32
32x 16 | 464 113| 107 116 | 411 308 o | 1g 1o e
64 x 4 | 59.8 127 | 109 138 | 424 340 100 near 55.5 13.1 21.7
64 X 8 | 54.4 129 | 111 127 | 415 330 far 92.5 24.4 25.3
128 x 2 | 74.0 132 | 121 222 | 425 397 400 near 145 41.8 47.0

far 386 88.7 90.3
128 x 4 | 57.8 124 | 115 185 | 431 372
256 x 1 | 98.2 140 | 169 302 | 449 597 TABLE Il
COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN

256 x 2 | 68.9 124|122 218 | 448 467 SECONDS(CUDA 1.1vs. CUDA 2.0vs. OPENGL) WITH A PROJECTION
512x1 | 100 141 | 167 253 | 441 593 SIZE OF512 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF0.250F THE VOXELSIZE

TABLE Il
BLOCK PARAMETER COMPARISON OF RUNTIMES USINGCUDA 2.00N

THE NVIDIA G EFORCE8800GTX IN SECONDS WITH400PROJECTIONS
AND DIFFERENT PROJECTION SIZES AT A STEP SIZE OF. 250F THE The measurements do not include the time required to write-

VOXELSIZE back the projections to the host memory or even to hard disk,
because it is not required for a complete GPU implemen-
tation of iterative CT reconstruction. Moreover, those &im
needs some initial calculation steps apart from the sany|plin(esloec'a".y the write back o disk) can be hldde.n bghmd the
computation of the next slices. For example a projectiorDff 1

Unless otherwise noted, a block consists16fx 16 pixels . : . .)
within the projection. A block parameter comparison for thgnages,1024>< 1024 including write back takes approximately

GeForcess00 GTX using CUDA 2.0 is shown in Table II. one additional second on the QuadroFX 56033 sec write

Another important parameter is the number of projections Pack to host().19 sec write back to hard disc and 0.54 sec for

be acquired from the same volume data. The time required oeflet|on of data, etc.). In most cases OpenGL and CUDA 2.0

initialization steps, preparing the data structures ariteg operate two or three times faster than CUDA 1.1. For a small

the volume data to the device, is spent just once. So, a hl:étrjlmber of projections, the results seem to depend on the othe

-) arameters, i.e. the initialization time of the API, whictkés
number O.f projections reduces the influence of such preged Bnger for OpenGL. In contrast, the tests with 400 projettio
?:rmopgéitg)fzr(]efhglguz%?ggissfgéoguDA and.2 seconds show a more interesting behavior. The best executed results
, , o o are highlighted in bold in Table IV, IIl, V and VI. In Table IV

If both implementations are well optimized, it is expecte| . he seen that CUDA 2.0 is faster in all tests by a constant
that OpenGL will perform better than CUDA 1.1 and COMP&5¢tset of approximately 8 seconds on the GeFaye@) GTX.
rable to CUDA 2.0. In Figure the dependency on the step size for the two difteren

We use a projection size 612 x 512 or 1024 x 1024 pixels. geometric setups in a common setting for SIRT x 1024
The resulting execution times for the GeForg&)0 GTX pixels; 400 projections) is shown. The time increases almos
and QuadroFX5600 using a projection size 0f024 x 1024 jinear with the step size except for an offset.
are shown in Table IV and Table V, and for the QuadroFX Tq give an impression of GPUs computational performance
5600 in Table Il using a projection size df12 x 512 and e finally compare a specific test case also with a CPU
2048 % 2048 in Table V1. In Figure IV we give an overview jmplementation. The CPU implementation is a single-theeiad
of the dependency on the projection size using the Quadrok¥n.optimized straight-forward implementation of the qast
5600. In order to hit most of the voxels in the volume, thenethod as stated in Algorithm 1. The program is executed
step size (sampling rate) must not be greater than 1 voxgh our test system equipped with two Intel Xeon E5410
If we actually do not want to loose information, it should brocessors running at33 GHz. For a simple comparison we
at most 0.5 of the voxel size. In favor of a smooth projectiofised16 projections1024 x 1024 at a step size o.25 of the
image a step size of 0.25 voxels would be even better. A dirggie| size. Table V proves a performancesof6 seconds for
comparison between GeForgg00 GTX and QuadroFX600 sych configuration using the "near” field of view setting on
for the computation time depending on the step size is shoye NVIDIA QuadroFX5600. We measured64 seconds for

in Figure 7. The number of projections that can be computggk single threaded CPU program. This indicates a maximal
consecutively depends on the reconstruction algorithmt. Feheedup factor of 148.

example, SART computes only a single projection per volume
update. In contrast, SIRT processes all projections cansec
tively before a volume update is performed in the iteration.
Certainly there are algorithms in between such as the ocddere
subset approach. V. DISCUSSION
In Figure 6 we can see the dependency of the executiorAt higher numbers of projections the execution times for the
time on the chosen step size for most common parameteC&lDA implementation which uses 2-D textures to compute

10242 piXeIS Varying small number of projection (near object)
#Proj FoOV | CUDA1.1 CUDA2.0 OpenGL 1 ' cggi\"zelé' gg‘gg px, gepéize:ggg vo)‘(e} !
.0, * px, Stepsize: voxel -—-x—--
16 OpenGL, 1024:1024 pX, Stepsizes 0.25 voxek<- é B
toonear) 94 3 Al ol KA S el 2
far 9.4 3.8 11.9 1 CUDA 2.0, 2048+2048 px. Stepsize+0.25 VOxe).--0 -
16 near| 20.6 75 155 " P
far 27.3 8.2 155 g
100 near| 86.4 28.4 36.4 £ o
far 126 30.2 37.3 7 8 Lt
400 near| 299 107 115 LI B S N —
far 527 108 116 P P W BN By
4 et e ani L
TABLE IV I T s e LN
COMPARISON OF RUNTIMES USING THENVIDIA G EFORCE8800GTX IN
SECONDS(CUDA 1.1vs. CUDA 2.0vs. OPENGL) WITH A PROJECTION 05 - - - . m - ” .
SIZE OF1024SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A ProjectionCount

STEP SIZE OF0.250F THE VOXELSIZE

Fig. 3. CUDA 2.0 and OpenGL comparison for varying projettgize and

10242 pixels a small amount of projections.
Proj. FoV ‘ CUDA1.1 CUDA20 OpenGL
1 near 6.38 1.60 3.22
far 6.71 1.59 3.25 Varying number of projection (near object)
400 T T T T T 7]
16 near 16.2 5.16 6.94 OpenGL, 512:512 px, Stepsize: 0.25 voxel —+—=
far ‘ 21.4 5.02 7.09 CpenGL 1024:104 b Stepsize 026 Vol </
. .) 350 CUDA 2.0, 1024*1024 px, Stepsize: 0.25 voxél - |
OpenGL, 2048*2048 px, Stepsize: 0.254/0xel — &~
100 near 70.5 251 27.4 CUDA 2.0, 2048+2048 px, Stepsize; 0:25 voxel --o--
far 114 24.6 29.5 30
400 near 245 99.8 103 9 20 L
far 515 90.9 109 g A
o 200 -
TABLE V 7
COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN g 1% e
SECONDS(CUDA 1.1vs. CUDA 2.0vs. OPENGL) WITH A PROJECTION
SI1ZE OF1024SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A 100 s
STEP SIZE OF0.250F THE VOXELSIZE T

ProjectionCount

trilinear interpolations are much longer than for our other
implementations using 3D textures (CUDA 2.0 or OpenGL). It ‘ - _
is therefore essential to use the hardware-acceleratetidog Fi9- 4. OpenGL and CUDA 2.0 comparison with similar exeautiime
. L . behavior for varying projection count and size.

of the GPU in order to optimize the execution performance
of our CT reconstruction applications. The constant exenut

time offset in each test case (approx. 12 seconds in OpenGL

and 4 seconds in CUDA 2.0 on the GeFofs®0 GTX) can giterence in initialization time between OpenGL and CUDA.
be explained with the copy process of the volume data 10 the expected, the increase in runtime is almost linear in it s
graphics memory along with some other |n|t|aI|zat|ons.hlVltSiZe and the number of projections. With increasing image
a QuadroFX5600 card we observed a significantly smallegizes’ OpenGL and CUDA are able to dispatch the parallel

computations more efficiently to the multiprocessors of the
GPU up to a certain amount. This is the reason why the execu-

20482 pixels) . . .
#Proj. FoV ‘ CUDA11 CUDA20 OpenGL tion time increases remarkably slower and does not scake wit
1 near | 7.70 159 327 the number qf pixel_s in an image. Merely2t48 x 2048 pixels
far ‘ 7.26 1.58 3.26 and an ROI including the complete data, there can be seen a
16 near| 377 15.8 177 strong increase in execution time. As a consequence, itseem
far 30.6 11.4 13.3 that projection images with024 x 1024 pixels are optimally
100 near| 208 954 98 suited for current GPUs generations. An implementation in
far ‘ 173 67.4 70.4 OpenGL requires more implementation efforts for non-etger
400 near 841 392 397 because it was built as a graphics programming language for
far 864 284 290 real-time rendering of vertex-based 3D scenes. In contaast
TABLE VI ray casting in the C programming language can be more easily

COMPARISON OF RUNTIMES USING THEI\IVIDIAQUADROFX5600IN ported to CUDA' as it Only requ”es some adaptatlons fOI’
SECONDS(CUDA 1.1vs. CUDA 2.0vs. OPENGL) wiTH A PROJECTION the parallelization strategy. However an OpenGL expert can
SIZE OF2048SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A implement SUCh an algorithm in equivalent time Compared to

STEP SIZE OF0.250F THE VOXELSIZE .
a C-Programmer using CUDA.

Dependency on projection size (400 projections, stepsize: 0.25 voxel)
400

350

300

250

200

processing time (sec)
processing time (sec)

150

100

50 g

400 600 800 1000 1200 1400

ProjectionSize

1600 1800 2000 2200

Fig. 5. The projection size dependency on the Quadr6B00.

Dependency on step size (1024*1024 px, 400 projections)
600

T T
OpenGL near —+—
CUDA 1.1 near ------
CUDA 2.0 near ---%---
n OpenGL far &
CUDA 1.1 far ——#—
S CUDA 2.0 far ---o--

(1]

500

400

: (2]

300

processing time (sec)

. 3]

200 g >

\\\Xr»,‘x ~. S [4]

100 B S B .

0.2 0.4 0.6 0.8 1 1.2

Stepsize

6]
Fig. 6. The stepsize dependency on the Quadré6B00.
[6]

VI. CONCLUSION
(7]

We have presented three highly optimized implementations
of volume ray casting usable i.e. as the forward-projectiep
in iterative reconstruction. Our comparison of the exeputi [8]
times shows that the performance of the recent CUDA version
is even slightly better than an implementation using OpenGlyg)
Older CUDA versions should not be used for ray casting due to
the lack of 3D texture support. CUDA unveils the processiqgo]
power of graphics cards even for programmers that are not
specialists in computer graphics. The OpenGL implememati
required much more implementation time, however it can also
be used with no CUDA capable devices. On the other hand,
the Tesla series from NVIDIA can only be used together with
CUDA.

[11]

ACKNOWLEDGMENTS [12]

This work is being supported by Siemens Healthcare, CV,
Medical Electronics & Imaging Solutions. We wish to give

special thanks to Dr. Klaus Engel who supported us with h[lls3]
wide OpenGL API knowledge.

Fig. 7.
using CUDA 2.0.

GeForce 8800 vs. Quadro FX 5600 comparison step size (1024*1024 px, 400 projections)

T T T
GeForce 8800 GTX near —+——
GeForce 8800 GTX far ---x---
Quadro FX 5600 near ---*---
Quadro FX 5600 far &

70

60

50

40

30

20

10

0.2 0.4 0.6 0.8 1 1.2

Stepsize

14 16

GeForceB800 GTX to QuadroFX5600 comparison on step-size

REFERENCES

A. Andersen and A. Kak, “Simultaneous algebraic recargdion tech-
nique (sart): A superior implementation of the art algarithUItrasonic
Imaging, vol. 6, no. 1, pp. 81-94, January 1984.

K. Mueller and R. Yagel, “Rapid 3d cone-beam reconstarctwith
the algebraic reconstruction technique (art) by utiliziegture mapping
graphics hardware,Nuclear Science Symposium, 1998. Conference
Record. 1998 |IEEE, vol. 3, pp. 1552-1559, 1998.

L. Feldkamp, L. Davis, and J. Kress, “Practical conerbeglgorithm,”
Journal of the Optical Society of America, vol. Al, no. 6, pp. 612619,
1984.

H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, ‘Fa®U-Based
CT Reconstruction using the Common Unified Device Architeet
(CUDA),” in Nuclear Science Symposium, Medical Imaging Conference
2007, E. C. Frey, Ed., 2007, pp. 4464-4466.

F. Xu and K. Mueller, “A comparative study of popular inelation
and integration methods for use in computed tomograpBigtmedical
Imaging: Nano to Macro, 2006. 3rd |EEE International Symposium on,
pp. 1252-1255, April 2006.

A. Kubias, F. Deinzer, T. Feldmann, S. Paulus, D. PauBisSchreiber,
and T. Brunner, “2d/3d image registration on the gpu,Pioceedings
of the 7th Open German/Russian Workshop on Pattern Recognition and
Image Understanding (OGRW), FGAN-FOM, Ettlingen, 2007.

K. Mueller, F. Xu, and N. Neophytou, “Why do commodity gtdacs
hardware boards (GPUs) work so well for acceleration of asengb
tomography?” inSPIE Electronic Imaging Conference, San Diego, 2007,
(Keynote, Computational Imaging V).

P. M. Joseph, “An improved algorithm for reprojectingysahrough pixel
images,”|EEE Transactions on Medical Imaging, vol. MI-1, no. 3, pp.
192-196, 1982.

M. Churchill, “Hardware-accelerated cone-beam retamsion on a
mobile C-arm,” inProceedings of SPIE, J. Hsieh and M. Flynn, Eds.,
vol. 6510, 2007, p. 65105S.

N. K. Strobel, B. Heigl, T. M. Brunner, O. Schuetz, M. M.itsthke,
K. Wiesent, and T. Mertelmeier, “Improving 3D image qualilyx-ray
C-arm imaging systems by using properly designed poserdigtation
systems for calibrating the projection geometry,” NMfedical Imaging
2003: Physics of Medical Imaging. Edited by Yaffe, Martin J.; Antonuk,
Larry E. Proceedings of the SPIE, Volume 5030, pp. 943-954 (2003).,
ser. Presented at the Society of Photo-Optical Instrurtient&ngineers
(SPIE) Conference, M. J. Yaffe and L. E. Antonuk, Eds., vOB®, Jun.
2003, pp. 943-954.

D. H. R. Galigekere, K. Wiesent, “Cone-beam reprojattiusing
projection-matrices,"|EEE Transactions on Medical Imaging, vol. 22,
no. 10, pp. 1202-1213, 2003.

K. Muller, “Fast and accurate three-dimensional restouction from
cone-beam projection data using algebraic methods,” RlidSertation,
Department of computer and information science, Ohio Statieersity,
Columbus, Ohio, USA, 1998.

N. Corp.,, “NVIDIA CUDA Compute
Architecture Programming Guide,” 2007.
http://www.nvidia.com/cuda

Unified
[Online].

Device
Availeh

