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This paper addresses segmentation of multiple sclerosis lesions in 

multispectral 3-D brain MRI data. For this purpose, we propose a novel fully 

automated segmentation framework based on probabilistic boosting trees, 

which is a recently introduced strategy for supervised learning. By using the 

context of a voxel to be classified and its transformation to an overcomplete 

set of Haar-like features, it is possible to capture class specific characteristics 

despite of the well-known drawbacks of MR imaging. By successively 

selecting and combining the most discriminative features during ensemble 

boosting within a tree structure, the overall procedure is able to learn a 

discriminative model for voxel classification in terms of posterior 

probabilities. The final segmentation is obtained after refining the preliminary 

result by stochastic relaxation and a standard level set approach. A 

quantitative evaluation within a leave-one-out validation shows 

the applicability of the proposed method. 
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,QWURGXFWLRQ�

Quantitatively assessing disease progression is a major concern in the case of 

multiple sclerosis (MS)—a common disease of young adults that primarily 

affects cerebral white matter within the human brain. One of the indices 

characteristic of the evolution of the disease is the volume of the lesions that 

are observable on magnetic resonance (MR) images. However, quantitative 

measurements performed manually by radiologists suffer from substantial 

intra- and inter-rater variability [1], such that there is a need for accurate and 

reliable automatic segmentation tools to facilitate valid MS lesion 

quantification. 

3UREOHP�DQG�$SSURDFK�

For the purpose of MS lesion segmentation we aim to partition multispectral 

(FLAIR, T1, T2) MR volumetric data (408×512×19 and 408×512×21) 

without contrast enhancement into two regions—foreground, i.e. lesion, and 

background. In order to do so, we adopt a learning based approach called a 

probabilistic boosting tree (PBT) [2] in a similar manner to [3] to derive a 

discriminative model for individual image voxels from training data. 

Subsequently, the results obtained by PBT are refined by stochastic relaxation 

[4] and a standard zero level set approach that is implemented in the Insight 

Segmentation and Registration Toolkit (ITK, www.itk.org).  The latter uses 

anisotropic diffusion filtering [5] on one of the input images to obtain a 

feature image guiding evolution of the zero level set. Due to the low axial 
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resolution of the input data, we restrict our approach to operate on down-

sampled 2-D axial slices (256×256) without taking into account interslice 

voxel neighborhoods. Down-sampling is mainly due to the intent to capture 

”macroscopic” context information by all the Haar-like features instead of 

local noise characteristics in the immediate neighborhood of each voxel. 

Figure 1 depicts the overall processing pipeline.  

�
Figure 1: The proposed segmentation framework. 

3UREDELOLVWLF�ERRVWLQJ�WUHH�

As detailed in [2], PBT recursively groups boosted ensembles of weak 

hypothesis to a tree structure during learning from annotated training data. 

When used with Discrete AdaBoost [6], this resembles building a regression 

tree as the final hypothesis 
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generated for a feature vector [ [by Discrete AdaBoost through a weighted 

combination of ∈7 IN weak hypothesis )([�K  with individual weights �α , 

},,1{ 7W �∈ , asymptotically approaches an additive logistic regression model 

[7]:S
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where }1,1{−∈\  denotes the classification outcome. Therefore, at each inner 

vertex Y  of the resulting PBT with strong hypothesis �+  and outgoing 

arrows 1−U  and 1U  associated with the possible classifications, an 

approximation of the overall discriminative model )|(~ [\S�  can be computed 

by the recursive formula 
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where )(Uβ  denotes the vertex where arrow U  ends. At leaf nodes, a hard 

classification 1)|1(~ =−= [\S �  and 0)|1(~ == [\S �  or 0)|1(~ =−= [\S 
  

and 1)|1(~ == [\S �  is returned. 

+DDU�OLNH�)HDWXUHV�

In order to adequately capture the structural variability of foreground and 

background voxels, the feature vectors ? � do not only consist of the 

multispectral intensity and gradient values at the associated index L [but also, 

additionally, of 17,472 Haar-like features computed on a 15×15 square 

centered at the voxel of interest. Those features derived from a subset of the 

extended set of Haar-like feature prototypes [8] are represented implicitly in 

memory by so-called “Integral Images” . This allows for fast recomputation of 

the features with respect to a given voxel when actually assessed. Details can 

also be found in [9].S
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6WRFKDVWLF�5HOD[DWLRQ�

The probabilities )|1( ��\S [=  and )|1( ��\S [−=  obtained by the PBT are 

smoothed by stochastic relaxation assuming the segmentation < to be a 

Markov random field with individual spatial priors 
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where ),( ��� � \\9  denotes the two-elemented clique potential of the 

classification �\  at voxel L  and the mean classification �\  of a neighboring 

voxel M . We use 10 iterations of an algorithm similar to iterated conditional 

modes (ICM) [10] doing mean fieldlike approximation to the true posteriors 

)( �\S . The neighborhood iN  considered for each voxel L  is an intraslice 8-

neighborhood. 

As obvious edges tend to get oversmoothed by this approach, the final 

segmentation result for every slice is obtained by means of the Laplacian 

level set filter from ITK, which uses anisotropic diffusion filtering [5] on the 

slices of the FLAIR sequence to get a feature image guiding evolution of the 

zero level set (see Fig. 1). 

0DWHULDO��([SHULPHQWDO�6HWWLQJ��DQG�5HVXOWV�

For training and evaluation of the proposed method, there were 6 manually 

segmented multispectral MRI scans (FLAIR, T1, T2) of sizes 408×512×21 

and 408×512×19 available. In a C++ implementation of our segmentation 

framework, it takes less than five minutes to process one of the MRI volumes 
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on a Fujitsu Siemens Computers notebook equipped with an Intel Pentium M 

2.0 GHz processor and 2 GB of memory. The leave-one-out approach was 

used to train six different classifiers from approximately 70 000 randomly 

selected training samples, i.e., voxels inside the head of the patients, 

uniformly distributed over all the input slices. The maximum number of 

features selected by AdaBoost were increased level wise beginning with 1. 

The maximum depth of the trees learned was restricted to 10. For stochastic 

relaxation, 21 = .β  was chosen for empirical reasons. The parameter settings 

for anisotropic diffusion filtering and Laplacian level set segmentation were 

adopted from ITK’s introductory example. With the same hardware as above, 

building one classifier takes about 12 hours. The table depicts the quantitative 

results obtained when segmenting all of the available datasets. Results in 

terms of actual images are shown in Fig. 2. Although the visual impression is 

good for most of the data volumes, this does not necessarily coincide with 

very high indices. Unfortunately, the method fails completely for data set 

number 5 (see the table), where there are almost no visible MS lesions. 
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(a) (b) © (d) (e) 
 
Figure 2: Segmentation results obtained by leave-one-out validation. The first row shows selected 
slices of the FLAIR sequences of five different data sets. The second row shows the associated 
segmentation result. 

 

Performance indices obtained by leave-one-out validation for all of the 
examined data sets. From left to right the columns contain the achieved Dice 
coefficient, Pearson correlation coefficient, sensitivity, specificity, positive 
predictive value, and negative predictive value. 

 Dice Pearson Sens. Spec. PPV NPV 
1 0.7338 0.7356 0.8014 0.9989 0.6767 0.9994 
2 0.7509 0.7575 0.6578 0.9995 0.8746 0.9984 
3 0.5602 0.5601 0.5220 0.9987 0.6044 0.9981 
4 0.8570 0.8581 0.9371 0.9967 0.7895 0.9992 
5 0.0000 -0.0001 0.0000 0.9995 0.0000 0.9998 
6 0.4912 0.5067 0.3929 0.9997 0.6550 0.9990  

�
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&RQFOXVLRQ�

In this paper, a new method for the segmentation of multiple sclerosis lesions 

in multispectral 3-D brain MRI data was presented. The results show that, 

even though supervised techniques based on individual voxel intensities for 

tissue classification within MR data are mostly considered inappropriate due 

to inter-scan variabilities, this is not necessarily true for structural approaches 

that additionally consider the context of a voxel for the purpose of 

classification. This encourages further investigation of medical image 

segmentation approaches based on boosting weak classifiers in the sense of 

features from large sets of feature candidates. 
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