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Abstract Using a real world School Time Tabling problem we compare the perfor-

mance of different optimization algorithms, namely Tabu Search, Simulated Annealing,

Genetic Algorithm and Branch & Bound. All experiments are being executed using the

same problem specification. The used software was developed by the authors to com-

pare several optimization algorithms under identical conditions.

Keywords School Time Tabling Problem, Tabu Search, Simulated Annealing,

Genetic Algorithms, Branch & Bound Algorithms

1 Introduction

The global goal of our software development is to provide a software framework which

is capable of solving various timetabling problems. When a problem is specified it is of

particular interest what algorithm delivers the most suitable solution, indeed depending

on the context.

We will show how computation time and solution quality differ for the school prob-

lem depending on the chosen algorithm.

Here we will focus on this problem. The authors are more than happy to answer

any questions regarding the software used or to arrange for a test drive.

2 The School Time Tabling Problem

The School Time Tabling problem is well known, therefore we here list just the specifics

of our case. The school is a German high school with 113 teachers, 100 rooms and

43 classes. The framework supports basically two kinds of constraints, namely hard
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and soft constraints. Some algorithms, like Branch & Bound, forbids the violation of a

hard constraint. Algorithms, e.g. which uses neighborhood search techniques, allow the

violation of hard constraints, because the path to a better solution can over a invalid

solution lead. Therefore hard constraints must get higher weights then soft constraints.

The hard constraints of our school problem definition are time clashes for teachers,

classes and rooms and the room size constraint. Time clashes are assigned 200 penalty

points, while room size constraint violations cost 50 points. For every event and resource

type is specified the minimal and maximal count of resources which should be assigned

to this event. Dropping the minimum count or exceeding the maximum causes in each

case penalty of 10 * diff points. Whereby diff = min - x respectively diff = x -max

and x is the count of assigned resources. The search space is in several tests limited to

solutions which comply with minimum and maximum constraint. That is the case by

Simulated Annealing, Tabu Search and Genetic Algorithm.

3 Test Settings

Every algorithm has been run 10 times on a Laptop with a Intel Core Duo 1.6 GHz

and 2.0 GB RAM, running Linux with kernel 2.6.17.

3.1 Tabu Search

Tabu Search (TS) finds improvements for about 6 minutes, which is equivalent to

approx. 6,000 iterations. Tests have shown that not significant improvement was found

after 10 minutes or more. Because TS is able to find better solution until the end of

the computation, we decided to perform 200 moves within 1 iteration, e.g. keep the

number of iterations quite high and the number of moves in an iteration step low. The

best regular tabu list length seems to be approx. 40 elements. For diversification the

tabu list length was extended to 300 for 4,000 iterations when no improvement was

found after 10,000 iterations.

3.2 Simulated Annealing

In our experiments we decided to use a reduction factor of 0.9 and an initial acceptance

probability of 0.8 to cool down quite slow. As the three hard constraints of the School

Problem differ quite a lot in there impact we used 3,000 moves to determine the costs

of two neighbour. A steady state is reached by a quite high level of coolingConst =

1,400. In case a move improves the solution cooling is 10 times (factorReconf=10,

factorSucessfulReconf=1) faster as otherwise. The cooling factor decreaseFactor is set

to 0.9. The computation ends after maximal 20 Million iterations respectively 2 hours

or if a plan with zero costs is found.

3.3 Genetic Algorithm

Our Genetic Algorithm uses 30 individuals and runs at most 2 hours i.e. 7,200 seconds.

The best individual of a generation will survive and 5 % of the individuals. The other
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will be generated by crossover over two individuals. Every resource list of the individual

is subject to mutation with a probability of 0.5 %.

3.4 Branch & Bound

We were interested in how an algorithm able to find the global optimum would perform

compared to the local optimum search algorithms described above. So we implemented

Branch & Bound as a reference algorithm. If there would be endless computation time

spent, Branch & Bound would find the best result. But in real world time is limited. So

we spend only 8 hours for the computation. Because of the peculiarities of the algorithm

minimum constraints must not be a hard constraint. So minimum constraints could be

violated.

4 Summary

Tabu Search requires compared to the other algorithm only a short time to find good

solutions. It finds them quite fast and improves until the very end. It is remarkable

the Tabu Search in none of the runs even violated a Clash Constraint. The Room Size

Constraint was violated once every time, so no correct solutions were found by Tabu

Search. The initial solution was improved by 99.9 % in a 6 minutes run. The best

solution was found after 100 seconds.

Tabu Search find good solution quicker than Simulated Annealing, e.g. Tabu finds

a solution with 50 penalty points in 347 sec, while Simulated Annealing has found a

solution with 1050 penalty points at this point in time, but is able to reduce costs to an

optimum of 0 further on. Simulated Annealing is slower than Tabu Search, it’s solution

become better after approx. 450 seconds. Simulated Annealing beat Tabu Search in

best and average performance. All generated time tables are valid and do not violate

any hard constraints. The initial solution is improved by perfect 100% in 8 minutes

run time.

The Genetic Algorithm was able to improve the best found solution during the

whole 2 hours run time. There might be a chance that this would continue if more

compute time would be spent. In our experiments all generated time tables violate one

or more hard constraints, e.g. no valid time table was produced. Compared to Tabu

Search the violation caused by Genetic Algorithm are even more severe. In 2 hours the

Genetic Algorithm was able to improve the initial solution by 99%.

Branch & Bound required the longest computation time - as expected. After 8

hours the best solution 3300 penalty points, which is quite expensive, the improvement

was 79%, which is in some degree good. Branch & Bound violates only but always the

Minimum Constraint, i.e. no valid solutions were generated. In best solution Minimum

Constraint was violated 128 times.

Figure 1 shows the time - cost chart of the computation of the best solutions for

each algorithm.

The solution of Simulated Annealing violates no constraint, Branch & Bound 128

times the Min Constraint, figure 2 compares the solution quality of Tabu Search and

Genetic Algorithm.
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Fig. 1 Time - cost chart of Genetic Algorithm, Branch & Bound, Tabu Search and Simulated
Annealing in comparison

Fig. 2 Constraint violations caused by Tabu Search and Genetic Algorithm

In the given circumstances we would recommend Simulated Annealing to generate

the School Time tables, because it is the best tradeoff between execution time and

quality of result.
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2. M. Gröbner and P. Wilke. A general view on timetabling problems. In Edmund Burke and
Patrick De Causmaecker, editors, Proc. of the 4th International Conference on the Practice
and Theory of Automated Timetabling, pages pp. 221–227. PATAT 2002, August 2002.
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