
FPGA Implementation of a HOG-based
Pedestrian Recognition System

MPC-Workshop July 2009

FPGA Implementation of a HOG-based
Pedestrian Recognition System

Sebastian Bauer, Ulrich Brunsmann, Stefan Schlotterbeck-Macht

Faculty of Engineering

Aschaffenburg University of Applied Sciences, Aschaffenburg, Germany

{sebastian.bauer, ulrich.brunsmann, stefan.schlotterbeck-macht}
@fh-aschaffenburg.de

With respect to road crash statistics, on-board
pedestrian detection is a key task for future
advanced driver assistance systems. In this
paper, we describe the implementation of a real-
time pedestrian recognition system that combines
FPGA-based extraction of image features with a
CPU-based object localization and classification
framework. In terms of features, we have
implemented the Histograms of Oriented
Gradients (HOG) descriptor that is state-of-the-art
in the field of human detection from a moving
camera. While past HOG-related publications
presented simplified FPGA-based HOG variants,
often sacrificing classification performance, we
implemented the original descriptor with minor
modifications on dedicated hardware. Evaluation
on the INRIA pedestrian database shows potential
for deploying the system in practice. The
descriptor computation runs on a PCIe frame
grabber with embedded FPGA that can be directly
integrated into an automotive computer of a test
vehicle for evaluation purposes.

1. Introduction

1.1. Problem Scope
According to the preliminary report of the German
Federal Statistical Office [Destatis 2009], 654
pedestrians were killed in road traffic crashes in
Germany in 2008, a percentage of 15% of all road
traffic related deaths (4,482). The global impact of the
problem can be deduced from the first major
international report on road traffic [WHO 2004].
Worldwide, an estimated 1.2 million people die in road
traffic crashes annually, while the number injured
could be as high as 50 million. According to model
predictions, between 2000 and 2020, there will be a
global increase of 67%. The majority of deaths are
currently among vulnerable road users (VRU):
pedestrians, pedal cyclists and motorcyclists. This is

especially true in low-income and middle-income
countries because of the greater variety and intensity
of traffic mix and the lack of separation from other
road users. In view of the economic impact, the direct
costs of global road crashes have been estimated at
more than US$ 500 billion per annum [WHO 2004].

1.2. Recognition of Traffic Participants
Advanced driver assistance systems (ADAS) have the
potential to save numerous lives, for a survey see
[Gandhi 2007]. Future pedestrian recognition systems
will detect the person, predict the collision risk and
warn the vehicle’s driver or engage automatic braking,
manoeuvring or safety devices. In the past decade,
automotive night vision systems have been introduced
as optional equipment on few premium vehicles.
These systems are either based on near infrared
(NIR, active) or far infrared (FIR, passive) sensors and
increase the vehicle’s driver perception distance in
darkness. Traffic participants can be recognized and
distinguished early when they are all but invisible by
the vehicle’s headlights. However, to our knowledge
there is no ADAS commercially available yet that is
able to recognize pedestrians in daylight situations.

Owing to the variety of possible applications in the
field of surveillance, robotics and intelligent vehicles,
among others, detection of humans in general has
driven a surge of interest from the computer vision
community over the past years, see [Gavrila 1999],
[Moeslund 2006], [Poppe 2007]. As we focus on
automotive applications, we use the term pedestrian
in the remainder of the paper.

Vehicle-based pedestrian recognition systems are one
component of the solution, but visibility from the
vehicle is limited. We are developing an infrastructure-
based system for ensuring crossroads safety. Such
systems could complement vehicle-based hardware
by monitoring the traffic and transferring the
information through wireless communication channels.
The fusion of complementary information of both units

FPGA Implementation of a HOG-based
Pedestrian Recognition System

MPC-Workshop July 2009

can increase the virtual perception range of the
vehicle and provide a more complete picture of the
scene, being the foundation for proper judgements
and reactions of the driver.

In this work we investigate the entropy of grayscale
monocular video data for the recognition of objects.
Our pedestrian detection concept is also applicable to
moving platforms without algorithmic modification, for
instance as a future ADAS. The system is running on
a personal computer equipped with a frame grabber
with an embedded field programmable gate array
(FPGA) that can be used as an image pre-processor.
Thus the framework can be integrated and evaluated
directly in a test vehicle.

Our approach is based on a sliding-window method
that evaluates image sections based on the HOG
descriptor that is state-of-the-art in human detection
(Fig. 1). A major contribution of this paper is the
implementation of the descriptor on dedicated
hardware with minor modifications compared to the
scheme originally proposed by Dalal&Triggs [Dalal
2005]. While maintaining a similar classification
performance level, the descriptor computation
outperforms existing approaches in terms of speed.
Besides, FPGA implementations are applicable for
automotive applications thanks to established low cost
production flows. To the best of our knowledge there
has been no FPGA implementation of a HOG-based
pedestrian recognition system presented in literature
before.

The descriptor computation for the entire image is
performed on a Xilinx Spartan 3 XC3S 4000 for the
most part, leaving only a final normalization step to
the CPU. Classification is performed on a graphics
processing unit (GPU).

Fig. 1: Pedestrians detected with our HOG-based detection
system.

The paper is organized as follows: We briefly discuss
previous work in section 2. The description of the
method in section 3 is followed by implementation
details in section 4. Experimental results are

presented in section 5, before we conclude with a
summary and discuss open issues in section 6.

2. Related Work

2.1. State of the Art
Human detection in images is a challenge because of
the wide variability in appearance that results from
different poses and clothing, illumination conditions
and complex backgrounds that are common in
outdoor scenes. The excessive amount of interest in
pedestrian detection led to a broad variety of different
approaches in terms of system architecture, feature
concepts and classification schemes.

In terms of architecture, systems can be divided into
two major strategies. Part-based approaches [Ioffe
2001], [Felzenszwalb 2005], [Mikolajczyk 2004]
employ individual detectors to locate single body parts
that are interpreted as a human if they are arranged in
a geometrically plausible configuration. Holistic
approaches use a single detection window that is
shifted over the image at dense positions and scales.
Well known sliding-window systems rely on shape-
based detection (comparison of edge images to a
hierarchical exemplar dataset) [Gavrila 2007], Haar
wavelet feature sets [Papageorgiou 2001], rectangle
filters [Viola 2005] or the periodicity of the human walk
[Fardi 2006]. Authors of both methods have offered a
wide range of feature sets and classifier concepts in
this domain, for a survey see [Wojek 2008b].

Recent experimental studies [Dollár 2009], [Enzweiler
2009] show that Histograms of Oriented Gradient
descriptors are robust features for human detection
and leading edge in terms of classification
performance. Dollár et al. benchmarked seven
promising pedestrian detectors on the Caltech
Pedestrian Dataset [Caltech], providing an overview of
state-of-the-art performance. All detectors are based
on a sliding-window strategy, all use variants of HOG
or Haar features. The experiments show that HOG
remains competitive even on this challenging dataset.
It is keeping pace with the MultiFtr and FtrMine
feature sets that tend to outperform all other methods
surveyed [Dollár 2009]. However, the latter two
descriptors cannot compete with HOG in terms of
computational load.

Enzweiler&Gavrila provide an extensive survey of
pedestrian detection systems and also evaluate state-
of-the-art detection systems. They use a database
that is made publicly available as the Daimler
pedestrian detection benchmark set [Daimler]. The
experimental results show that the HOG approach
outperforms all other systems they surveyed in terms

FPGA Implementation of a HOG-based
Pedestrian Recognition System

MPC-Workshop July 2009

of classification performance at intermediate
pedestrian image resolutions (48x96 pixels).

2.2. Histograms of Oriented Gradients
The HOG descriptor was introduced by Dalal&Triggs
in 2005 as a feature set for object recognition tasks.
At that time, this novel descriptor outperformed
existing feature sets for human detection significantly.
The basic idea is that local object appearance and
shape is characterized by the distribution of local
intensity gradients or edge directions, without precise
knowledge of the corresponding gradient or edge
positions [Dalal 2006].

The most important requirement for a pedestrian
recognition system is the demand for real-time
operation. However, according to Dalal&Triggs, the
runtime of the object detection system lies in the
range of a second for a 320x240 pixels image using a
support vector machine (SVM) as classifier. For an
image with twice the width and height, Dollár et al.
report 13.3 seconds in their benchmark report. There
have been several different approaches to speed up
the HOG framework. Zhu et al. [Zhu 2006] accelerate
the descriptor computation by employing an integral
map (IMAP) and by replacing the SVM by a cascade-
of-rejectors approach. In contrast to these software-
based acceleration techniques, few authors presented
HOG implementations on dedicated hardware.
Besides Wojek et al. [Wojek 2008a] who take
advantage of the emerging computing power of
general purpose computation on graphic processing
units (GPGPU), Cao&Deng [Cao 2008] presented an
FPGA-based implementation of a simplified HOG
framework. They realized a real-time stop sign
detection system on a Xilinx Virtex-4 FPGA that is
able to process 60 frames of 752x480 pixels per
second by using a cascaded classifier.

3. Overview of the Method

3.1. Sliding-Window Framework
A common technique to obtain initial object location
hypotheses is the sliding window scheme, where a
detection window is shifted on a regular lattice over
the image at various scales. For each window, a
feature set (in this case HOG) is generated from the
corresponding image patch and evaluated by a pre-
trained classifier that categorizes unknown samples
into one of the predefined classes, pedestrian or non-
pedestrian in this case. Nearby detections of the same
object are common with sliding-window frameworks
and are typically merged using non-maxima
suppression approaches in order to yield bounding
boxes with confidence levels for the final detections.

Sliding-window-based detection techniques showed
promising performance for human recognition and
have become very popular in this domain in recent
literature. However, they are often considered
unfeasible for real-time operation due to the immense
costs in terms of resources and processing time.
Significant speed-ups can be obtained by
incorporating a priori information (scene geometry,
target object) or by employing special classifier
concepts e.g. a cascade of weak classifiers with
increasing complexity. Early rejection often comes
with a performance loss and methods that sacrifice
classification performance to achieve speed-ups do
not stand in the long term [Wojek 2008a]. As a
consequence, we use a kernel support vector
machine as classifier, providing the best results in
Dalal&Triggs’ performance study.

3.2. Descriptor Computation
The HOG descriptor is computed for each detection
window with the process chain illustrated in fig. 2.

Fig. 2: HOG descriptor computation scheme.

The default detector introduced by Dalal&Triggs is
based on a detection window that covers 64x128
pixels. First of all, the intensity gradient in x- and y-
direction and the resulting magnitude and orientation
angle is computed for the respective image patch. For
an illustration of the two-dimensional gradient vectors,
see fig. 3.

 (a) (b)

Fig. 3a: Pedestrian example from [INRIA]. Fig. 3b: Gradients
computed for an image section. The yellow arrows
represent the two-dimensional gradient vector ��� ����.
Magnitude is encoded by the vector length, orientation by
the vector angle.

FPGA Implementation of a HOG-based
Pedestrian Recognition System

MPC-Workshop July 2009

The next step is called orientation binning and
represents the fundamental nonlinearity of the HOG
descriptor. The detection window is divided into 8x16
rectangular local spatial regions called cells (Fig. 4).
The 8x8 cell pixels are then discretized into 9 angular
bins according to their gradient orientation. Each pixel
contributes a weighted vote for its corresponding
angular bin, the vote is a function of the gradient
magnitude at the pixel. This way the information is
compressed to a 9-dimensional space per cell. The
angular histogram bins are evenly spaced over 0°-
180°.

Fig. 4: Division of detection window into cells. Histogram
generated for a single cell.

Gradient strengths vary over a wide range due to
shadows, local variations in illumination and
foreground-background contrast. Therefore local
contrast normalization is essential for good
performance. For this purpose, groups of 2x2 adjacent
cells are considered as spatial regions called blocks.
Each block is represented by a concatenation of the
corresponding four cell histograms, resulting in a 36-D
feature vector that is normalized to unit length, using
the L2 norm.

The final HOG descriptor is represented by a
concatenation of all these normalized block
responses. In fact, blocks typically overlap with each
other in a sliding-window fashion so that each cell
response appears several times in the final feature
vector, each normalized with respect to a different
block. The default block stride is 8 pixels (1 cell),
resulting in a fourfold coverage of each cell. To
summarize: Each detection window is represented by
7x15 blocks, a block consisting of 2x2 cells, a cell is
represented by a 9-bin histogram, giving a total of �7
15 ∙ �2
2 ∙ 9 = 3780 features.

3.3. Classification
The generated HOG descriptor is used to categorize
the image patch into one of the predefined classes,
pedestrian or non-pedestrian. For this classification
step, Dalal&Triggs employ a support vector machine
(SVM) that learns an implicit representation of the
classification object from examples. In case of HOG,
the classifier is pre-trained with the 3780-dimensional
descriptor that is generated for all positive
(pedestrian) and negative (non-pedestrian) samples,
available from established datasets.

There are many different classifier concepts in the
domain of supervised learning. Owing to the
popularity in literature - in particular for pedestrian
recognition approaches, see [Gandhi 2007], [Munder
2006] for a comparison - we also decide in favour of
support vector machines.

4. Implementation

4.1. System Overview
The proposed system is based on an FPGA-CPU-
GPU network. We outsourced the corpus of the HOG
descriptor computation to an FPGA. The descriptor
normalization step is then performed on the CPU,
being the central entity of our system. The SVM-
based sliding-window evaluation is currently running
on a publicly available GPGPU solution [cuSVM]. An
overview of the framework is shown in fig. 5. This
paper focuses on the FPGA-based HOG descriptor
generation.

Fig. 5: Overview of the implemented FPGA-CPU-GPU
framework.

FPGA Implementation of a HOG-based
Pedestrian Recognition System

MPC-Workshop July 2009

4.2. Rapid Prototyping Platform
Our implementation is developed and runs on the
commercially available microEnable IV-FULLx4 image
acquisition and pre-processing frame grabber board
from [SiliconSoftware]. It is equipped with two FPGAs,
in our case a Xilinx Spartan 3 XC3S 2000 and a
Spartan 3 XC3S 4000. The former provides data
transfer interfaces to the camera (CameraLink) and to
the host (PCIe), the latter and on-board memory is
available for programming individual real-time image
processing applications. The block diagram of this
rapid prototyping platform is shown in fig. 6.

The board provides two external CameraLink ports
that can operate with any CameraLink conform
camera with Base, Medium or Full configuration.
CameraLink is a serial communication protocol in the
field of industrial image processing that works at a
pixel frequency of 85 MHz and can transmit up to 680
MB/s by using parallel streams (taps). We use a CCD
camera from [Sentech] with UXGA resolution
(1600x1200 pixels) that operates at a frame rate of 30
Hz and a pixel frequency of 73.636 MHz.

Fig. 6: Block diagram of the rapid prototyping platform
microEnable IV-FULLx4 from [SiliconSoftware].

The HOG descriptor computation is implemented on
the Spartan 3 XC3S 4000 that can access 4x128=512
MB on-board DDR-RAM memory. Our design is
running at a frequency of 63 MHz, while parallelization
enables processing of up to 32 pixels per clock cycle.
For transferring the computed HOG descriptor into the
main memory of the host computer, a PCIe x4 (quad
lane) interface is used that achieves a bandwidth of
760 MByte/s.

With this platform, our system can be tested directly in
a test vehicle by integrating the board into an

automotive computer that is connected to an on-board
CameraLink conform camera.

Based on a rapid prototyping idea, the Spartan 3
XC3S 4000 can be programmed with VisualApplets
(VA), a graphic-oriented hardware development
software from [SiliconSoftware] that is based on tools
from the Xilinx ISE design suite [Xilinx]. VA enables
an abstract high-level hardware implementation of
customized image processing applications operating
in real-time. The individual design is arranged by
image processing operators and transport links that
form a graphical data flow. Each operator/link can be
parameterized graphically.

4.3. FPGA Design Components
Our design computes the HOG descriptor for all
window positions (pixel-wise) of the entire frame. In
addition to the HOG descriptor, a reference copy of
the current frame is transferred through an individual
direct memory access (DMA) channel. In the
following, we present each individual system
component. We report difficulties we faced and show
our way of tackling these issues with respect to the
limitations of the rapid prototyping platform.

Timing synchronization

The pixel frequency of the stream delivered by the
camera is higher than the design frequency, hence
buffering the image first into on-board DDR-RAM is
necessary in terms of timing synchronization.
Nonetheless the frequency decrease from camera to
FPGA is no bottleneck, since for further processing a
set of pixels can be read from the image buffer in a
parallel fashion.

Scaling

With the current experimental arrangement of our
infrastructure-based system, the distance of the
camera to the surveillance zone is large compared to
the dimensions of the surveillance zone itself. As a
consequence of this arrangement, variations in
pedestrian size are negligible and the descriptor is
computed for one single scale level. The scale factor
was set to a manually chosen value that shrinks the
actual pedestrian size to the dimension of the image
patches used for training [INRIA]. For applications that
require multiple scale levels, the FPGA design can be
modified accordingly. The maximum number of scale
levels is limited by the available hardware resources.

Gradient Computation

The first step for generating the HOG descriptor is to
compute the 1-D point derivatives �� and �� in x- and
y-direction by convolving the gradient masks �� and �� with the raw image �:

FPGA Implementation of a HOG-based
Pedestrian Recognition System

MPC-Workshop July 2009

 �� = �� ∗ � �� = [−1 0 1]

 �� = �� ∗ � �� = [−1 0 1]�

On the basis of the derivatives �� and �� we then
compute the gradient magnitude |��
, �| and
orientation angle ��
, � for each pixel. The gradient
magnitude expresses the gradient strength at a pixel:

|��
, �| = ���
, �! + ���
, �!

We do not leave out the extraction of the square root
since the performance study of Dalal&Triggs reports
best results with this Euclidean metric. In our FPGA
implementation, the square root operator cuts off
decimal places, as we do not observe effects on
classification accuracy (see section 5.1). The gradient
magnitude is merely employed as a weighting factor
for the orientation histogram.

The gradient orientation angle can be calculated
straightforward from:

tan&��
, �' = ���
, �
���
, �

However, calculating the arctan � on an FPGA is
expensive. As reported by Cao&Deng, there are
hardware friendly approximation algorithms available,
but they are generally iterative and slow down the
system’s speed. On the contrary, using lookup tables
(LUTs) requires large amounts of memory which
would increase system’s costs. They propose to
combine the gradient orientation computation with the
angular binning step. Thus we are able to directly
discretize the pixel’s gradient angle into bins without
computing the angular value explicitly.

Following this approach [Cao 2008], we introduced
two improvements. We increased the number of bins
from 4 to 9 in order to achieve better classification
performance. In addition to that, we introduced a
scheme for quantizing the pixel’s gradient angle that
avoids the use of signs and reduces the required bit
width for relational operators.

Gradient Orientation Binning

As stated in section 3.2, the step following the
gradient computation is to discretize each pixel’s
gradient orientation angle into 9 evenly spaced
angular bins over 0°-180° (unsigned gradient), see fig.
7a. Based on the previously computed horizontal and
vertical gradients �� and �� we first determine the
angle’s corresponding quadrant according to the
following rule set:

���
, � > 0 ∧ ���
, � > 0 ⇔ -./01/23 �

���
, � < 0 ∧ ���
, � > 0 ⇔ -./01/23 ��

���
, � < 0 ∧ ���
, � < 0 ⇔ -./01/23 ���

���
, � > 0 ∧ ���
, � < 0 ⇔ -./01/23 �5

(a) (b)

Fig. 7a: Angular quantization into 9 evenly spaced
orientation bins over 0°-180° (unsigned gradient). Fig. 7b:
Quadrant-respective angular binning with respect to the
horizontal and vertical principal axis of the unit circle.

We then compute the pixel’s gradient orientation
angle 6 with respect to its respective quadrant (0°-
90°). Hence the corresponding orientation bin can be
determined by quadrant and angle. The following
scheme for bin 1 (0°-20°) illustrates how the arctan �
computation is replaced by simple integer
multiplications:

7820. �: ���
, � > 0 ∧ ���
, � > 0 ⇔ -./01/23 �

 ∨ ���
, � < 0 ∧ ���
, � < 0 ⇔ -./01/23 ���

7820. ��: 0 < tan�6 < tan�20°

 0 < =>?��,�
>@��,�= < tan�20°

 0 < A���
, �A < tan�20° ∙ |���
, �|
 0 < A���
, �A < 0.364 ∙ |���
, �|

The multiplication in the right part of the last
inequation above is a floating point operation. For
FPGA implementation, the inequation is to be
multiplied by a scalar >> 1 in order to replace the
floating point by fixed point / integer operations.
Superior is the use of bit shift operations.

The quadrant-respective angular binning is performed
with respect to the horizontal and vertical principal
axis of the unit circle, respectively. In case the angle 6

FPGA Implementation of a HOG-based
Pedestrian Recognition System

MPC-Workshop July 2009

to the horizontal axis is less than 40°, the binning is
based on tan�6, else on tan �β, see fig. 7b.

 tan�6 = E���
, �
���
, �E tan�β = E���
, ����
, �E

The advantage of this differentiation is illustrated in
fig. 8. The comparison range in terms of values for condition II is reduced significantly, resulting in an
equivalent reduction of bit width for the relational
operators.

 (a) (b)

Fig. 8a: Standard angular binning of the gradient vector
����
, � ���
, ���. Fig. 8b: Using both 6 and β for angular
binning reduces range of values for condition II.

Histogram Generation

At this stage, we already know the angular bin (1-9)
for each pixel. Then 9 binary single-channel images JK
are generated for each bin L, where the value 1
denotes that the pixel's gradient orientation lies within
the corresponding angular range, 0 denoting the
opposite. In a second step, we multiply each of these
9 binary bin images JK with the gradient magnitude |��
, �|, providing 9 non-binary magnitude-weighted
bin images �K.
For each sliding window position, the histogram entry
of a specific bin L in a particular cell can be easily
computed by accumulating the pixel intensity values
(representing the magnitude) over the cell region
within �K. In order to calculate these histogram entries
for all potential sliding window positions over the
entire image efficiently, recent publications work with
IMAPs [Zhu 2006], [Cao 2008]. We found that this
approach is not feasible with our development
platform due to constraints in terms of buffers. Instead

we convolute the following sum filter kernel MN with the
nine magnitude-weighted bin images �K:

OK = MN ∗ �K MN = P1 ⋯ 1⋮ ⋱ ⋮1 ⋯ 1T

4.4. What remains for the CPU/GPU
The 9 bin images OK are to be transferred to the PC
via DMA. On the CPU, the detection window is shifted
over the entire image in a sliding-window fashion. The
histogram entries for a specific detection window can
be easily read out from the FPGA output. After that,
only the final HOG descriptor block normalization step
remains. At first the 4 cell histogram vectors of the
current block are concatenated to a vector U with 4 ∙ 9 = 36 components. The normalization is then
performed by dividing U by the L2 norm:

U ⟶ U
W‖U‖!! + Y!

.
where Y is a small constant inhibiting divisions by
zero. The values of the normalized vector are then
clipped to a certain limit ([Dalal 2005]: 0.2) and the
entire vector is re-normalized. This type of
normalization is also known as L2-Hys.

We use a GPGPU Gaussian kernel SVM [cuSVM] for
classification, operating on the normalized HOG
feature vectors that are stored line by line in a matrix.
The GPU can thus parallelize the classification of all
windows.

5. Evaluation

5.1. Classification Performance
SVM training is performed using the INRIA dataset
[INRIA] that remains the most widely used benchmark
set. For the purpose of evaluation, in the following we
use Dalal&Triggs’ original work as a reference.
Hence, a per-window evaluation is performed. Though
in practice, per-window performance measures can
fail to predict actual per-image performance [Dollár
2009].

In terms of positive training examples, the INRIA
dataset contains 2,416 image crops (64x128 pixels) of
people in roughly upright poses. 12,180 negative
training examples are generated by randomly
extracting image patches of the same dimension from
1,218 pedestrian-free photos. The HOG descriptors of
the training examples are extracted using our FPGA-
based implementation that is modified in a way that

FPGA Implementation of a HOG-based
Pedestrian Recognition System

MPC-Workshop July 2009

the frame grabber module is replaced by a buffer that
is able to load an image from the PC to the frame
grabber’s on-board memory. We performed the
training process on the GPU. It took a few seconds
using [cuSVM].

For evaluation, we classified 1,132 positive and 4,530
negative unseen examples (randomly sampled from
453 pedestrian-free images) from [INRIA], visualized
with Detection Error Tradeoff (DET) curves on a log-
log scale. DET curves plot miss rate versus false
positives per window (FPPW). Miss rate is the
proportion of pedestrian instances that were wrongly
classified as non-pedestrian. On the contrary, FPPW
is the proportion of non-pedestrian instances that
were wrongly classified as pedestrian, denoted as
false alarm.

We verified each individual step of our FPGA
implementation by comparison to an equivalent C/C++
reference implementation running on a CPU. Fig. 9
shows that the classification performance of both our
implementations is roughly consistent. In addition,
DET curves from Dalal&Triggs’ performance study are
presented.

Fig. 9: Classification performance of our FPGA- and CPU-
HOG implementation. The curves for Kernel SVM R-HOG,
Linear SVM R-HOG, Wavelet and PCA-SIFT are extracted
from [Dalal 2005].

Compared to Dalal&Triggs’ original kernel R-HOG
performance curve, we approach a miss rate of +6%
at 10Z[FPPW. We deduce this difference as follows:

Essentially, in contrast to Dalal&Triggs, we have not
yet applied retraining techniques such as
bootstrapping that can improve the classifier
performance by one order of magnitude [Munder
2006]. Furthermore, our testing set of 4,530 negative

samples cannot produce positive FPPWs less than 2.2 ∙ 10Z\.

We expect minor declines in classification
performance due to the following implementation
differences to Dalal&Triggs:

• We currently work on grayscale images,
leading to a 1.5% lower detection rate at 10Z\
FPPW compared to color images.

• Gradient magnitude is calculated with integer
accuracy, i.e. all decimal places are lost when
the square root is extracted.

• Our implementation does not interpolate votes
between neighbouring histogram bin centres
in both orientation and position to reduce
aliasing effects with the histogram generation
step.

• We do not down-weight pixels near the edges
of the block by applying a Gaussian spatial
window before accumulating orientation votes
into cells. The resulting loss is about 1% at 10Z\ FPPW.

5.2. Computation Time and Resources
With respect to computation time, we evaluate our
work by measuring latency and throughput time. For
latency measurements, VA operators can be used to
count the number of clock cycles that elapse between
the time a pixel enters a design section and the time
the result is available at the section’s output.

Table 1 shows latencies of the HOG descriptor
computation steps, obtained by that measurement, for
a UXGA camera input downscaled to a processing
resolution of 800x600 pixels (SVGA) and a design
frequency of 63 MHz. The histogram generation step
accounts for about 2/3 of the entire latency due to the
costs of convolution with the 8x8 filter kernel MN.

.
Table 1: Latencies of HOG steps for a UXGA camera input
downscaled to a processing resolution of 800x600 pixels
and a design frequency of 63 MHz.

HOG step Latency [µs]

Image Buffer 26.2

Scaling 26.0

Gradient 52.0

Magnitude/Orientation 0.14

Histogram 207.2

TOTAL 311.54

FPGA Implementation of a HOG-based
Pedestrian Recognition System

MPC-Workshop July 2009

The throughput-time for one entire frame that is
processed on-the-fly while grabbing the pixels is 30.8
ms for a SVGA processing resolution, the full 30 fps
delivered by the camera are available via DMA.

As an indication for computation speed, one may
relate the total sum of 312µs to one of the fastest
implementations for HOG descriptor generation,
recently published [Wojek 2008a] and running on a
GPU. For the HOG steps we perform on hardware
(one-time down-scaling, gradient computation,
gradient magnitude, orientation binning, histogram
generation) Wojek et al. report about 13 ms for an
image of 320x240 pixels, computing the HOG
descriptor for multiple scales.

For the SVGA image dimensions used for the latency
measurements presented before, the resource usage
level for the Xilinx Spartan 3 XC3S 4000 is shown in
table 2.

Table 2: Xilinx Spartan 3 XC3S 4000 resource usage level
for a processing resolution of 800x600 px.

Resource Type Total
number

Usage
Level

4-input LUTs 42,435 76%

Internal Block RAM (18 kbit) 60 62%

Embedded Multipliers (18x18) 18 18%

6. Summary and Conclusions
As shown in section 5.2, the proposed HOG
descriptor computation fits into a low-cost Xilinx
Spartan 3 XC3S 4000 device. On a commercial PCIe
frame grabber with embedded FPGA, it runs already
fast enough that it can be directly integrated into an
automotive computer of a test vehicle for evaluation
purposes. The latency of the HOG descriptor
generation is 312 µs and we approach classification
levels in terms of pedestrian detection close to
Dalal&Triggs (miss rate +6% at 10Z[FPPW).

Essential improvements of classification performance
are expected from applying retraining techniques
which have not yet been used. While Gaussian down-
weighting has not yet been implemented, the
histogram bin interpolation scheme does not fit into
our computation approach.

Our pedestrian recognition framework based on an
FPGA-CPU-GPU network currently runs in real-time in
an infrastructure-based crossroads assistance system
with a limited surveillance zone. The computation time
for a detection window is below 150 µs, including the
proportionate time for the FPGA-based HOG
descriptor generation (312 µs for the entire image),

CPU-based normalization (25µs) and GPU-based
Kernel SVM classification (~110µs).

The system is running with 20 fps and can evaluate
more than 300 detection window hypotheses per
frame. This rate meets the demands of our
application, as we perform a pre-selection of
hypothesis windows.

There is still room to further speed up the framework.
Outsourcing further parts of our recognition framework
to the FPGA requires additional resources that are
provided by available extension boards with additional
FPGA processor and RAM. We are working on
integrating the HOG descriptor normalization and
SVM prediction [Irick 2008] into the FPGA, and on
applying the framework for the classification of other
traffic participants.

Acknowledgements
The authors acknowledge the support of the
Bayerisches Staatsministerium für Wissenschaft,
Forschung und Kunst in the context of the
Forschungsschwerpunkt Intelligente Sensorik at
Aschaffenburg University of Applied Sciences.

References

[Caltech] Caltech Pedestrian Dataset, 2009.

http://www.vision.caltech.edu/
Image_Datasets/CaltechPedestrians/

[Cao 2008] T. P. Cao and G. Deng. Real-time vision-
based stop sign detection system on FPGA.
In Proc. of the International Conference on
Digital Image Computing: Techniques and
Applications (DICTA), pages 465-471, IEEE
Computer Society, 2008.

[cuSVM] http://www.patternsonascreen.net

[Daimler] Daimler Pedestrian Detection Benchmark,
2009.http://www.science.uva.nl/research/isla/
downloads/pedestrians/

[Dalal 2005] N. Dalal and B. Triggs. Histograms of
oriented gradients for human detection. In
Proc. of the IEEE International Conference
on Computer Vision and Pattern Recognition
(CVPR), pages I:886-893, 2005.

[Dalal 2006] N. Dalal. Finding People in Images and
Videos. PhD thesis, Institut National
Polytechnique de Grenoble, 2006.

[Destatis 2009] Statistisches Bundesamt Deutschland, 2009.

[Dollár 2009] P. Dollár, C. Wojek, B. Schiele, P. Perona.
Pedestrian detection: A benchmark. In Proc.
of the IEEE International Conference on
Computer Vision and Pattern Recognition
(CVPR), 2009.

FPGA Implementation of a HOG-based
Pedestrian Recognition System

MPC-Workshop July 2009

 [Enzweiler 2009] M. Enzweiler and D. M. Gavrila.
Monocular Pedestrian Detection:
Survey and Experiments. IEEE
Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 2008.

[Fardi 2006] B. Fardi, I. Seifert, G. Wanielik, J.
Gayko. Motion-based pedestrian
recognition from a moving vehicle. In
Proc. of the IEEE International
Symposium on Intelligent Vehicles,
pages 219-224, 2006.

[Felzenszwalb 2005]

P.F. Felzenszwalb and D.P.
Huttenlocher. Pictorial structures for
object recognition. International Journal
of Computer Vision (IJCV), 61(1):55-
79, 2005

[Gandhi 2007] T. Gandhi and M.M. Trivedi. Pedestrian
protection systems: Issues, survey, and
challenges. IEEE Transactions on
Intelligent Transportation Systems,
8(3):413-430, 2007.

[Gavrila 1999]

D. M. Gavrila. The visual analysis of
human movement: A survey. Computer
Vision and Image Understanding
(CVIU), 73(1):82–98, 1999.

[Gavrila 2007]

D. M. Gavrila and S. Munder. Multi-cue
pedestrian detection and tracking from
a moving vehicle. International Journal
of Computer Vision (IJCV), 73(1):41-
59, 2007.

[INRIA] INRIA Person Dataset, 2005.
http://lear.inrialpes.fr/data/human

[Irick 2008] K.M. Irick, M. DeBole, V. Narayanan,
A. Gayasen. A Hardware Efficient
Support Vector Machine Architecture
for FPGA. In Proc. of the IEEE
International Symposium on Field-
Programmable Custom Computing
Machines (FCCM), pages 304-305,
2008.

[Ioffe 2001] S. Ioffe and D.A. Forsyth. Probabilistic
methods for finding people.
International Journal of Computer
Vision (IJCV), 43(1):45-68, 2001.

[Mikolajczyk 2004] K. Mikolajczyk, C. Schmid, A.
Zisserman. Human detection based on
a probabilistic assembly of robust part
detection. In Proc. of the IEEE
European Conference on Computer
Vision (ECCV), pages I:69-82, 2004.

[Moeslund 2006] T.B. Moeslund, A. Hilton, V. Kruger. A
survey of advances in vision-based
human motion capture and analysis.
Computer Vision and Image
Understanding (CVIU), 103(2-3):90-
126, 2006.

[Munder 2006] S. Munder and D.M. Gavrila. An
experimental study on pedestrian
classification. IEEE Transactions on
Pattern Analysis and Machine

Intelligence (PAMI), 28(11):1863-1868,
2006.

[Papageorgiou 2000] C. Papageorgiou and T. Poggio. A
trainable system for object detection.
International Journal of Computer
Vision (IJCV), 38(1):15-33, 2000.

[Poppe 2007] R. Poppe. Vision-based human motion
analysis: An overview. Computer
Vision and Image Understanding
(CVIU), 108(1-2):4-18, 2007.

[Sentech] Sensor Technologies America, Inc.
http://www.sentechamerica.com

[SiliconSoftware] Silicon Software GmbH, 2009.
http://www.silicon-software.com

[Viola 2005] P. Viola, M. J. Jones, D. Snow.
Detecting pedestrians using patterns of
motion and appearance. International
Journal of Computer Vision (IJCV),
63(2):153-161, 2005.

[WHO 2004] World Health Organization (WHO) and
World Bank. World report on road
traffic injury. Geneva, 2004.

[Wojek 2008a]

C.Wojek, G. Dorko, A. Schulz, B.
Schiele. Sliding-windows for rapid
object class localization: A parallel
technique.
In Deutsche Arbeitsgemeinschaft für
Mustererkennung (DAGM), 2008.

[Wojek 2008b] C. Wojek and B. Schiele. A
Performance evaluation of single and
multi-feature people detection. In
Deutsche Arbeitsgemeinschaft für
Mustererkennung (DAGM), 2008.

[Xilinx] Xilinx, Inc.
http://www.xilinx.com/tools/
designtools.htm

[Zhu 2006] Q. A. Zhu, M. C. Yeh, K. T. Cheng, and
S. Avidan. Fast human detection using
a cascade of histograms of oriented
gradients. In Proc. of the IEEE
International Conference on Computer
Vision and Pattern Recognition
(CVPR), pages II:1491-1498, 2006.

