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With respect to road crash statistics, on-board 
pedestrian detection is a key task for future 
advanced driver assistance systems. In this 
paper, we describe the implementation of a real-
time pedestrian recognition system that combines 
FPGA-based extraction of image features with a 
CPU-based object localization and classification 
framework. In terms of features, we have 
implemented the Histograms of Oriented 
Gradients (HOG) descriptor that is state-of-the-art  
in the field of human detection from a moving 
camera. While past HOG-related publications 
presented simplified FPGA-based HOG variants, 
often sacrificing classification performance, we 
implemented the original descriptor with minor 
modifications on dedicated hardware. Evaluation 
on the INRIA pedestrian database shows potential 
for deploying the system in practice. The 
descriptor computation runs on a PCIe frame 
grabber with embedded FPGA that can be directly 
integrated into an automotive computer of a test 
vehicle for evaluation purposes. 

1. Introduction 

1.1. Problem Scope 
According to the preliminary report of the German 
Federal Statistical Office [Destatis 2009], 654 
pedestrians were killed in road traffic crashes in 
Germany in 2008, a percentage of 15% of all road 
traffic related deaths (4,482). The global impact of the 
problem can be deduced from the first major 
international report on road traffic [WHO 2004]. 
Worldwide, an estimated 1.2 million people die in road 
traffic crashes annually, while the number injured 
could be as high as 50 million. According to model 
predictions, between 2000 and 2020, there will be a 
global increase of 67%. The majority of deaths are 
currently among vulnerable road users (VRU):   
pedestrians, pedal cyclists and motorcyclists. This is 

especially true in low-income and middle-income 
countries because of the greater variety and intensity 
of traffic mix and the lack of separation from other 
road users. In view of the economic impact, the direct 
costs of global road crashes have been estimated at 
more than US$ 500 billion per annum [WHO 2004]. 

1.2. Recognition of Traffic Participants 
Advanced driver assistance systems (ADAS) have the 
potential to save numerous lives, for a survey see 
[Gandhi 2007]. Future pedestrian recognition systems 
will detect the person, predict the collision risk and 
warn the vehicle’s driver or engage automatic braking, 
manoeuvring or safety devices. In the past decade, 
automotive night vision systems have been introduced 
as optional equipment on few premium vehicles. 
These systems are either based on near infrared 
(NIR, active) or far infrared (FIR, passive) sensors and 
increase the vehicle’s driver perception distance in 
darkness. Traffic participants can be recognized and 
distinguished early when they are all but invisible by 
the vehicle’s headlights. However, to our knowledge 
there is no ADAS commercially available yet that is 
able to recognize pedestrians in daylight situations.  

Owing to the variety of possible applications in the 
field of surveillance, robotics and intelligent vehicles, 
among others, detection of humans in general has 
driven a surge of interest from the computer vision 
community over the past years, see [Gavrila 1999], 
[Moeslund 2006], [Poppe 2007]. As we focus on 
automotive applications, we use the term pedestrian 
in the remainder of the paper. 

Vehicle-based pedestrian recognition systems are one 
component of the solution, but visibility from the 
vehicle is limited. We are developing an infrastructure-
based system for ensuring crossroads safety. Such 
systems could complement vehicle-based hardware 
by monitoring the traffic and transferring the 
information through wireless communication channels. 
The fusion of complementary information of both units 
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can increase the virtual perception range of the 
vehicle and provide a more complete picture of the 
scene, being the foundation for proper judgements 
and reactions of the driver. 

In this work we investigate the entropy of grayscale 
monocular video data for the recognition of objects. 
Our pedestrian detection concept is also applicable to 
moving platforms without algorithmic modification, for 
instance as a future ADAS. The system is running on 
a personal computer equipped with a frame grabber 
with an embedded field programmable gate array 
(FPGA) that can be used as an image pre-processor. 
Thus the framework can be integrated and evaluated 
directly in a test vehicle. 

Our approach is based on a sliding-window method 
that evaluates image sections based on the HOG 
descriptor that is state-of-the-art in human detection 
(Fig. 1). A major contribution of this paper is the 
implementation of the descriptor on dedicated 
hardware with minor modifications compared to the 
scheme originally proposed by Dalal&Triggs [Dalal 
2005]. While maintaining a similar classification 
performance level, the descriptor computation 
outperforms existing approaches in terms of speed. 
Besides, FPGA implementations are applicable for 
automotive applications thanks to established low cost 
production flows. To the best of our knowledge there 
has been no FPGA implementation of a HOG-based 
pedestrian recognition system presented in literature 
before. 

The descriptor computation for the entire image is 
performed on a Xilinx Spartan 3 XC3S 4000 for the 
most part, leaving only a final normalization step to 
the CPU. Classification is performed on a graphics 
processing unit (GPU).  

 

 

Fig. 1: Pedestrians detected with our HOG-based detection 
system. 
 

The paper is organized as follows: We briefly discuss 
previous work in section 2. The description of the 
method in section 3 is followed by implementation 
details in section 4. Experimental results are 

presented in section 5, before we conclude with a 
summary and discuss open issues in section 6. 

2. Related Work 

2.1. State of the Art  
Human detection in images is a challenge because of 
the wide variability in appearance that results from 
different poses and clothing, illumination conditions 
and complex backgrounds that are common in 
outdoor scenes. The excessive amount of interest in 
pedestrian detection led to a broad variety of different 
approaches in terms of system architecture, feature 
concepts and classification schemes.  

In terms of architecture, systems can be divided into 
two major strategies. Part-based approaches [Ioffe 
2001], [Felzenszwalb 2005], [Mikolajczyk 2004] 
employ individual detectors to locate single body parts 
that are interpreted as a human if they are arranged in 
a geometrically plausible configuration. Holistic 
approaches use a single detection window that is 
shifted over the image at dense positions and scales. 
Well known sliding-window systems rely on shape-
based detection (comparison of edge images to a 
hierarchical exemplar dataset) [Gavrila 2007], Haar 
wavelet feature sets [Papageorgiou 2001], rectangle 
filters [Viola 2005] or the periodicity of the human walk 
[Fardi 2006]. Authors of both methods have offered a 
wide range of feature sets and classifier concepts in 
this domain, for a survey see [Wojek 2008b].  

Recent experimental studies [Dollár 2009], [Enzweiler 
2009] show that Histograms of Oriented Gradient 
descriptors are robust features for human detection 
and leading edge in terms of classification 
performance. Dollár et al. benchmarked seven 
promising pedestrian detectors on the Caltech 
Pedestrian Dataset [Caltech], providing an overview of 
state-of-the-art performance. All detectors are based 
on a sliding-window strategy, all use variants of HOG 
or Haar features. The experiments show that HOG 
remains competitive even on this challenging dataset. 
It is keeping pace with the MultiFtr and FtrMine 
feature sets that tend to outperform all other methods 
surveyed [Dollár 2009]. However, the latter two 
descriptors cannot compete with HOG in terms of 
computational load.  

Enzweiler&Gavrila provide an extensive survey of 
pedestrian detection systems and also evaluate state-
of-the-art detection systems. They use a database 
that is made publicly available as the Daimler 
pedestrian detection benchmark set [Daimler]. The 
experimental results show that the HOG approach 
outperforms all other systems they surveyed in terms 
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of classification performance at intermediate 
pedestrian image resolutions (48x96 pixels).  

2.2. Histograms of Oriented Gradients 
The HOG descriptor was introduced by Dalal&Triggs 
in 2005 as a feature set for object recognition tasks. 
At that time, this novel descriptor outperformed 
existing feature sets for human detection significantly. 
The basic idea is that local object appearance and 
shape is characterized by the distribution of local 
intensity gradients or edge directions, without precise 
knowledge of the corresponding gradient or edge 
positions [Dalal 2006]. 

The most important requirement for a pedestrian 
recognition system is the demand for real-time 
operation. However, according to Dalal&Triggs, the 
runtime of the object detection system lies in the 
range of a second for a 320x240 pixels image using a 
support vector machine (SVM) as classifier. For an 
image with twice the width and height, Dollár et al. 
report 13.3 seconds in their benchmark report. There 
have been several different approaches to speed up 
the HOG framework. Zhu et al. [Zhu 2006] accelerate 
the descriptor computation by employing an integral 
map (IMAP) and by replacing the SVM by a cascade-
of-rejectors approach. In contrast to these software-
based acceleration techniques, few authors presented 
HOG implementations on dedicated hardware. 
Besides Wojek et al. [Wojek 2008a] who take 
advantage of the emerging computing power of 
general purpose computation on graphic processing 
units (GPGPU), Cao&Deng [Cao 2008] presented an 
FPGA-based implementation of a simplified HOG 
framework. They realized a real-time stop sign 
detection system on a Xilinx Virtex-4 FPGA that is 
able to process 60 frames of 752x480 pixels per 
second by using a cascaded classifier. 

3. Overview of the Method 

3.1. Sliding-Window Framework 
A common technique to obtain initial object location 
hypotheses is the sliding window scheme, where a 
detection window is shifted on a regular lattice over 
the image at various scales. For each window, a 
feature set (in this case HOG) is generated from the 
corresponding image patch and evaluated by a pre-
trained classifier that categorizes unknown samples 
into one of the predefined classes, pedestrian or non-
pedestrian in this case. Nearby detections of the same 
object are common with sliding-window frameworks 
and are typically merged using non-maxima 
suppression approaches in order to yield bounding 
boxes with confidence levels for the final detections. 

Sliding-window-based detection techniques showed 
promising performance for human recognition and 
have become very popular in this domain in recent 
literature. However, they are often considered 
unfeasible for real-time operation due to the immense 
costs in terms of resources and processing time. 
Significant speed-ups can be obtained by 
incorporating a priori information (scene geometry, 
target object) or by employing special classifier 
concepts e.g. a cascade of weak classifiers with 
increasing complexity. Early rejection often comes 
with a performance loss and methods that sacrifice 
classification performance to achieve speed-ups do 
not stand in the long term [Wojek 2008a]. As a 
consequence, we use a kernel support vector 
machine as classifier, providing the best results in 
Dalal&Triggs’ performance study. 

3.2. Descriptor Computation 
The HOG descriptor is computed for each detection 
window with the process chain illustrated in fig. 2. 

 

 

Fig. 2: HOG descriptor computation scheme. 

 
The default detector introduced by Dalal&Triggs is 
based on a detection window that covers 64x128 
pixels. First of all, the intensity gradient in x- and y-
direction and the resulting magnitude and orientation 
angle is computed for the respective image patch. For 
an illustration of the two-dimensional gradient vectors, 
see fig. 3. 

 

 

 (a)                                  (b) 

Fig. 3a: Pedestrian example from [INRIA]. Fig. 3b: Gradients 
computed for an image section. The yellow arrows 
represent the two-dimensional gradient vector ���   ����. 
Magnitude is encoded by the vector length, orientation by 
the vector angle. 
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The next step is called orientation binning and 
represents the fundamental nonlinearity of the HOG 
descriptor. The detection window is divided into 8x16 
rectangular local spatial regions called cells (Fig. 4). 
The 8x8 cell pixels are then discretized into 9 angular 
bins according to their gradient orientation. Each pixel 
contributes a weighted vote for its corresponding 
angular bin, the vote is a function of the gradient 
magnitude at the pixel. This way the information is 
compressed to a 9-dimensional space per cell. The 
angular histogram bins are evenly spaced over 0°-
180°. 

 

 

Fig. 4: Division of detection window into cells. Histogram 
generated for a single cell. 

 
Gradient strengths vary over a wide range due to 
shadows, local variations in illumination and 
foreground-background contrast. Therefore local 
contrast normalization is essential for good 
performance. For this purpose, groups of 2x2 adjacent 
cells are considered as spatial regions called blocks. 
Each block is represented by a concatenation of the 
corresponding four cell histograms, resulting in a 36-D 
feature vector that is normalized to unit length, using 
the L2 norm. 

The final HOG descriptor is represented by a 
concatenation of all these normalized block 
responses. In fact, blocks typically overlap with each 
other in a sliding-window fashion so that each cell 
response appears several times in the final feature 
vector, each normalized with respect to a different 
block. The default block stride is 8 pixels (1 cell), 
resulting in a fourfold coverage of each cell. To 
summarize: Each detection window is represented by 
7x15 blocks, a block consisting of 2x2 cells, a cell is 
represented by a 9-bin histogram, giving a total of  �7
15
 ∙ �2
2
 ∙ 9 = 3780 features. 

3.3. Classification 
The generated HOG descriptor is used to categorize 
the image patch into one of the predefined classes, 
pedestrian or non-pedestrian. For this classification 
step, Dalal&Triggs employ a support vector machine 
(SVM) that learns an implicit representation of the 
classification object from examples. In case of HOG, 
the classifier is pre-trained with the 3780-dimensional 
descriptor that is generated for all positive 
(pedestrian) and negative (non-pedestrian) samples, 
available from established datasets. 

There are many different classifier concepts in the 
domain of supervised learning. Owing to the 
popularity in literature - in particular for pedestrian 
recognition approaches, see [Gandhi 2007], [Munder 
2006] for a comparison - we also decide in favour of 
support vector machines. 

4. Implementation 

4.1. System Overview 
The proposed system is based on an FPGA-CPU-
GPU network. We outsourced the corpus of the HOG 
descriptor computation to an FPGA. The descriptor 
normalization step is then performed on the CPU, 
being the central entity of our system. The SVM-
based sliding-window evaluation is currently running 
on a publicly available GPGPU solution [cuSVM]. An 
overview of the framework is shown in fig. 5. This 
paper focuses on the FPGA-based HOG descriptor 
generation. 

 

 
 
Fig. 5: Overview of the implemented FPGA-CPU-GPU 
framework. 
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4.2. Rapid Prototyping Platform 
Our implementation is developed and runs on the 
commercially available microEnable IV-FULLx4 image 
acquisition and pre-processing frame grabber board 
from [SiliconSoftware]. It is equipped with two FPGAs, 
in our case a Xilinx Spartan 3 XC3S 2000 and a 
Spartan 3 XC3S 4000. The former provides data 
transfer interfaces to the camera (CameraLink) and to 
the host (PCIe), the latter and on-board memory is 
available for programming individual real-time image 
processing applications. The block diagram of this 
rapid prototyping platform is shown in fig. 6. 

The board provides two external CameraLink ports 
that can operate with any CameraLink conform 
camera with Base, Medium or Full configuration. 
CameraLink is a serial communication protocol in the 
field of industrial image processing that works at a 
pixel frequency of 85 MHz and can transmit up to 680 
MB/s by using parallel streams (taps). We use a CCD 
camera from [Sentech] with UXGA resolution 
(1600x1200 pixels) that operates at a frame rate of 30 
Hz and a pixel frequency of 73.636 MHz. 

 

 

Fig. 6: Block diagram of the rapid prototyping platform 
microEnable IV-FULLx4 from [SiliconSoftware]. 

 
The HOG descriptor computation is implemented on 
the Spartan 3 XC3S 4000 that can access 4x128=512 
MB on-board DDR-RAM memory. Our design is 
running at a frequency of 63 MHz, while parallelization 
enables processing of up to 32 pixels per clock cycle. 
For transferring the computed HOG descriptor into the 
main memory of the host computer, a PCIe x4 (quad 
lane) interface is used that achieves a bandwidth of 
760 MByte/s.  

With this platform, our system can be tested directly in 
a test vehicle by integrating the board into an 

automotive computer that is connected to an on-board 
CameraLink conform camera. 

Based on a rapid prototyping idea, the Spartan 3 
XC3S 4000 can be programmed with VisualApplets 
(VA), a graphic-oriented hardware development 
software from [SiliconSoftware] that is based on tools 
from the Xilinx ISE design suite [Xilinx]. VA enables 
an abstract high-level hardware implementation of 
customized image processing applications operating 
in real-time. The individual design is arranged by 
image processing operators and transport links that 
form a graphical data flow. Each operator/link can be 
parameterized graphically. 

4.3. FPGA Design Components 
Our design computes the HOG descriptor for all 
window positions (pixel-wise) of the entire frame. In 
addition to the HOG descriptor, a reference copy of 
the current frame is transferred through an individual 
direct memory access (DMA) channel. In the 
following, we present each individual system 
component. We report difficulties we faced and show 
our way of tackling these issues with respect to the 
limitations of the rapid prototyping platform. 

Timing synchronization 

The pixel frequency of the stream delivered by the 
camera is higher than the design frequency, hence 
buffering the image first into on-board DDR-RAM is 
necessary in terms of timing synchronization. 
Nonetheless the frequency decrease from camera to 
FPGA is no bottleneck, since for further processing a 
set of pixels can be read from the image buffer in a 
parallel fashion. 

Scaling 

With the current experimental arrangement of our 
infrastructure-based system, the distance of the 
camera to the surveillance zone is large compared to 
the dimensions of the surveillance zone itself. As a 
consequence of this arrangement, variations in 
pedestrian size are negligible and the descriptor is 
computed for one single scale level. The scale factor 
was set to a manually chosen value that shrinks the 
actual pedestrian size to the dimension of the image 
patches used for training [INRIA]. For applications that 
require multiple scale levels, the FPGA design can be 
modified accordingly. The maximum number of scale 
levels is limited by the available hardware resources. 

Gradient Computation 

The first step for generating the HOG descriptor is to 
compute the 1-D point derivatives �� and �� in x- and 
y-direction by convolving the gradient masks �� and �� with the raw image �:  
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 �� = �� ∗ �  �� = [−1  0  1]  

 �� = �� ∗ �  �� = [−1  0  1]� 

 
On the basis of the derivatives �� and �� we then 
compute the gradient magnitude |��
, �
| and 
orientation angle ��
, �
 for each pixel. The gradient 
magnitude expresses the gradient strength at a pixel: 
 

|��
, �
| =  ���
, �
! + ���
, �
! 

 

We do not leave out the extraction of the square root 
since the performance study of Dalal&Triggs reports 
best results with this Euclidean metric. In our FPGA 
implementation, the square root operator cuts off 
decimal places, as we do not observe effects on 
classification accuracy (see section 5.1). The gradient 
magnitude is merely employed as a weighting factor 
for the orientation histogram.  

The gradient orientation angle can be calculated 
straightforward from: 
 

tan&��
, �
' = ���
, �

���
, �
  

 

However, calculating the arctan �
 on an FPGA is 
expensive. As reported by Cao&Deng, there are 
hardware friendly approximation algorithms available, 
but they are generally iterative and slow down the 
system’s speed. On the contrary, using lookup tables 
(LUTs) requires large amounts of memory which 
would increase system’s costs. They propose to 
combine the gradient orientation computation with the 
angular binning step. Thus we are able to directly 
discretize the pixel’s gradient angle into bins without 
computing the angular value explicitly. 

Following this approach [Cao 2008], we introduced 
two improvements. We increased the number of bins 
from 4 to 9 in order to achieve better classification 
performance. In addition to that, we introduced a 
scheme for quantizing the pixel’s gradient angle that 
avoids the use of signs and reduces the required bit 
width for relational operators. 

Gradient Orientation Binning  

As stated in section 3.2, the step following the 
gradient computation is to discretize each pixel’s 
gradient orientation angle into 9 evenly spaced 
angular bins over 0°-180° (unsigned gradient), see fig. 
7a. Based on the previously computed horizontal and 
vertical gradients  �� and �� we first determine the 
angle’s corresponding quadrant according to the 
following rule set: 

���
, �
 > 0    ∧     ���
, �
 > 0     ⇔      -./01/23 � 

���
, �
 < 0    ∧     ���
, �
 > 0     ⇔      -./01/23 �� 

���
, �
 < 0    ∧     ���
, �
 < 0     ⇔      -./01/23 ��� 

���
, �
 > 0    ∧     ���
, �
 < 0     ⇔      -./01/23 �5 

 
   

 
 
(a)                                            (b) 

Fig. 7a: Angular quantization into 9 evenly spaced 
orientation bins over 0°-180° (unsigned gradient). Fig. 7b: 
Quadrant-respective angular binning with respect to the 
horizontal and vertical principal axis of the unit circle. 

 
We then compute the pixel’s gradient orientation 
angle 6 with respect to its respective quadrant (0°-
90°). Hence the corresponding orientation bin can be 
determined by quadrant and angle. The following 
scheme for bin 1 (0°-20°) illustrates how the arctan �
 
computation is replaced by simple integer 
multiplications: 
 

7820. �:   ���
, �
 > 0 ∧  ���
, �
 > 0 ⇔   -./01/23 � 

       ∨   ���
, �
 < 0 ∧  ���
, �
 < 0 ⇔   -./01/23 ��� 

 

7820. ��: 0 <     tan�6
 < tan�20°
 

  0 <    =>?��,�

>@��,�
= < tan�20°
 

  0 <  A���
, �
A   < tan�20°
 ∙ |���
, �
| 
  0 <  A���
, �
A < 0.364 ∙ |���
, �
| 
 
The multiplication in the right part of the last 
inequation above is a floating point operation. For 
FPGA implementation, the inequation is to be 
multiplied by a scalar >> 1 in order to replace the 
floating point by fixed point / integer operations. 
Superior is the use of bit shift operations.  

The quadrant-respective angular binning is performed 
with respect to the horizontal and vertical principal 
axis of the unit circle, respectively. In case the angle 6 



FPGA Implementation of a HOG-based  
Pedestrian Recognition System 

 

MPC-Workshop July 2009                                                                                

to the horizontal axis is less than 40°, the binning is 
based on  tan�6
, else on tan �β
, see fig. 7b. 

 

 tan�6
 = E���
, �

���
, �
E            tan�β
 = E���
, �
���
, �
E 

 
The advantage of this differentiation is illustrated in 
fig. 8. The comparison range in terms of values for condition II  is reduced significantly, resulting in an 
equivalent reduction of bit width for the relational 
operators. 

 

 

 (a)                                         (b) 

Fig. 8a: Standard angular binning of the gradient vector 
����
, �
  ���
, �
��. Fig. 8b: Using both 6 and β for angular 
binning reduces range of values for condition II. 
 

Histogram Generation 

At this stage, we already know the angular bin (1-9) 
for each pixel. Then 9 binary single-channel images JK 
are generated for each bin L, where the value 1 
denotes that the pixel's gradient orientation lies within 
the corresponding angular range, 0 denoting the 
opposite. In a second step, we multiply each of these 
9 binary bin images JK with the gradient magnitude |��
, �
|, providing 9 non-binary magnitude-weighted 
bin images �K.  
For each sliding window position, the histogram entry 
of a specific bin L in a particular cell can be easily 
computed by accumulating the pixel intensity values 
(representing the magnitude) over the cell region 
within �K. In order to calculate these histogram entries 
for all potential sliding window positions over the 
entire image efficiently, recent publications work with 
IMAPs [Zhu 2006], [Cao 2008]. We found that this 
approach is not feasible with our development 
platform due to constraints in terms of buffers. Instead 

we convolute the following sum filter kernel MN with the 
nine magnitude-weighted bin images �K: 
 

OK = MN ∗ �K  MN = P1 ⋯ 1⋮ ⋱ ⋮1 ⋯ 1T 
 

4.4. What remains for the CPU/GPU 
The 9 bin images OK are to be transferred to the PC 
via DMA. On the CPU, the detection window is shifted 
over the entire image in a sliding-window fashion. The 
histogram entries for a specific detection window can 
be easily read out from the FPGA output. After that, 
only the final HOG descriptor block normalization step 
remains. At first the 4 cell histogram vectors of the 
current block are concatenated to a vector U with 4 ∙ 9 = 36 components. The normalization is then 
performed by dividing U by the L2 norm: 
 

U ⟶ U
W‖U‖!! + Y! 

. 
where Y is a small constant inhibiting divisions by 
zero. The values of the normalized vector are then 
clipped to a certain limit ([Dalal 2005]: 0.2) and the 
entire vector is re-normalized. This type of 
normalization is also known as L2-Hys. 

We use a GPGPU Gaussian kernel SVM [cuSVM] for 
classification, operating on the normalized HOG 
feature vectors that are stored line by line in a matrix. 
The GPU can thus parallelize the classification of all 
windows. 

5. Evaluation 

5.1. Classification Performance 
SVM training is performed using the INRIA dataset 
[INRIA] that remains the most widely used benchmark 
set. For the purpose of evaluation, in the following we 
use Dalal&Triggs’ original work as a reference. 
Hence, a per-window evaluation is performed. Though 
in practice, per-window performance measures can 
fail to predict actual per-image performance [Dollár 
2009]. 

In terms of positive training examples, the INRIA 
dataset contains 2,416 image crops (64x128 pixels) of 
people in roughly upright poses. 12,180 negative 
training examples are generated by randomly 
extracting image patches of the same dimension from 
1,218 pedestrian-free photos. The HOG descriptors of 
the training examples are extracted using our FPGA-
based implementation that is modified in a way that 
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the frame grabber module is replaced by a buffer that 
is able to load an image from the PC to the frame 
grabber’s on-board memory. We performed the 
training process on the GPU. It took a few seconds 
using [cuSVM]. 

For evaluation, we classified 1,132 positive and 4,530 
negative unseen examples (randomly sampled from 
453 pedestrian-free images) from [INRIA], visualized 
with Detection Error Tradeoff (DET) curves on a log-
log scale. DET curves plot miss rate versus false 
positives per window (FPPW). Miss rate is the 
proportion of pedestrian instances that were wrongly 
classified as non-pedestrian. On the contrary, FPPW 
is the proportion of non-pedestrian instances that 
were wrongly classified as pedestrian, denoted as 
false alarm.  

We verified each individual step of our FPGA 
implementation by comparison to an equivalent C/C++ 
reference implementation running on a CPU. Fig. 9 
shows that the classification performance of both our 
implementations is roughly consistent. In addition, 
DET curves from Dalal&Triggs’ performance study are 
presented. 

 

 

Fig. 9: Classification performance of our FPGA- and CPU-
HOG implementation. The curves for Kernel SVM R-HOG, 
Linear SVM R-HOG, Wavelet and PCA-SIFT are extracted 
from [Dalal 2005]. 
 

Compared to Dalal&Triggs’ original kernel R-HOG 
performance curve, we approach a miss rate of +6% 
at 10Z[ FPPW. We deduce this difference as follows: 

Essentially, in contrast to Dalal&Triggs, we have not 
yet applied retraining techniques such as 
bootstrapping that can improve the classifier 
performance by one order of magnitude [Munder 
2006]. Furthermore, our testing set of 4,530 negative 

samples cannot produce positive FPPWs less than 2.2 ∙ 10Z\.  

We expect minor declines in classification 
performance due to the following implementation 
differences to Dalal&Triggs: 

• We currently work on grayscale images, 
leading to a 1.5% lower detection rate at 10Z\ 
FPPW compared to color images. 

• Gradient magnitude is calculated with integer 
accuracy, i.e. all decimal places are lost when 
the square root is extracted. 

• Our implementation does not interpolate votes 
between neighbouring histogram bin centres 
in both orientation and position to reduce 
aliasing effects with the histogram generation 
step. 

• We do not down-weight pixels near the edges 
of the block by applying a Gaussian spatial 
window before accumulating orientation votes 
into cells. The resulting loss is about 1% at 10Z\ FPPW. 

5.2. Computation Time and Resources 
With respect to computation time, we evaluate our 
work by measuring latency and throughput time. For 
latency measurements, VA operators can be used to 
count the number of clock cycles that elapse between 
the time a pixel enters a design section and the time 
the result is available at the section’s output. 

Table 1 shows latencies of the HOG descriptor 
computation steps, obtained by that measurement, for 
a UXGA camera input downscaled to a processing 
resolution of 800x600 pixels (SVGA) and a design 
frequency of 63 MHz. The histogram generation step 
accounts for about 2/3 of the entire latency due to the 
costs of convolution with the 8x8 filter kernel MN. 

.  
Table 1: Latencies of HOG steps for a UXGA camera input 
downscaled to a processing resolution of 800x600 pixels 
and a design frequency of 63 MHz. 

HOG step Latency [µs] 

Image Buffer 26.2 

Scaling 26.0 

Gradient 52.0 

Magnitude/Orientation 0.14 

Histogram 207.2 

TOTAL 311.54 
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The throughput-time for one entire frame that is 
processed on-the-fly while grabbing the pixels is 30.8 
ms for a SVGA processing resolution, the full 30 fps 
delivered by the camera are available via DMA. 

As an indication for computation speed, one may 
relate the total sum of 312µs to one of the fastest 
implementations for HOG descriptor generation, 
recently published [Wojek 2008a] and running on a 
GPU. For the HOG steps we perform on hardware 
(one-time down-scaling, gradient computation, 
gradient magnitude, orientation binning, histogram 
generation) Wojek et al. report about 13 ms for an 
image of 320x240 pixels, computing the HOG 
descriptor for multiple scales.  

For the SVGA image dimensions used for the latency 
measurements presented before, the resource usage 
level for the Xilinx Spartan 3 XC3S 4000 is shown in 
table 2. 

 
Table 2: Xilinx Spartan 3 XC3S 4000 resource usage level 
for a processing resolution of 800x600 px. 

Resource Type Total 
number 

Usage 
Level 

4-input LUTs 42,435 76% 

Internal Block RAM (18 kbit) 60 62% 

Embedded Multipliers (18x18) 18 18% 

6. Summary and Conclusions 
As shown in section 5.2, the proposed HOG 
descriptor computation fits into a low-cost Xilinx 
Spartan 3 XC3S 4000 device. On a commercial PCIe 
frame grabber with embedded FPGA, it runs already 
fast enough that it can be directly integrated into an 
automotive computer of a test vehicle for evaluation 
purposes. The latency of the HOG descriptor 
generation is 312 µs and we approach classification 
levels in terms of pedestrian detection close to 
Dalal&Triggs (miss rate +6% at 10Z[ FPPW).  

Essential improvements of classification performance 
are expected from applying retraining techniques 
which have not yet been used. While Gaussian down-
weighting has not yet been implemented, the 
histogram bin interpolation scheme does not fit into 
our computation approach. 

Our pedestrian recognition framework based on an 
FPGA-CPU-GPU network currently runs in real-time in 
an infrastructure-based crossroads assistance system 
with a limited surveillance zone. The computation time 
for a detection window is below 150 µs, including the 
proportionate time for the FPGA-based HOG 
descriptor generation (312 µs for the entire image), 

CPU-based normalization (25µs) and GPU-based 
Kernel SVM classification (~110µs). 

The system is running with 20 fps and can evaluate 
more than 300 detection window hypotheses per 
frame. This rate meets the demands of our 
application, as we perform a pre-selection of 
hypothesis windows. 

There is still room to further speed up the framework. 
Outsourcing further parts of our recognition framework 
to the FPGA requires additional resources that are 
provided by available extension boards with additional 
FPGA processor and RAM. We are working on 
integrating the HOG descriptor normalization and 
SVM prediction [Irick 2008] into the FPGA, and on 
applying the framework for the classification of other 
traffic participants. 
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