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Abstract

Glaucoma as a neurodegeneration of the optic nerve is one of the most common causes of blindness. Because
revitalization of the degenerated nerve fibers of the optic nerve is impossible early detection of the disease is essential.
This can be supported by a robust and automated mass-screening. We propose a novel automated glaucoma detection
system that operates on inexpensive to acquire and widely used digital color fundus images. After a glaucoma
specific preprocessing, different generic feature types are compressed by an appearance-based dimension reduction
technique. Subsequently, a probabilistic two-stage classification scheme combines these features types to extract the
novel Glaucoma Risk Index (GRI) that shows a reasonable glaucoma detection performance. On a sample set of 575
fundus images a classification accuracy of 80% has been achieved in a 5-fold cross validation setup. The GRI gains
a competitive area under ROC (AUC) of 88% compared to the established topography-based Glaucoma Probability
Score of scanning laser tomography with AUC of 87%. The proposed color fundus image-based GRI achieves a
competitive and reliable detection performance on a low-priced modality by the statistical analysis of entire images
of the optic nerve head.
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1. Introduction

Glaucoma is one of the most common causes of
blindness with a mean prevalence of 2.4 % for all
ages and of 4.7 % for ages above 75 years (Klein
et al., 1992). The disease is characterized by the
progressive degeneration of optic nerve fibers and
astrocytes showing a distinct pathogenetic image of
the optic nerve head.

Glaucoma leads to (i) structural changes of the
optic nerve head (ONH) and the nerve fiber layer

Preprint submitted to Medical Image Analysis 30 December 2009



and (ii) a simultaneous functional failure of the vi-
sual field. The structural changes are manifested by
a slowly diminishing neuroretinal rim indicating a
degeneration of axons and astrocytes of the optic
nerve (Fig. 1).

As lost capabilities of the optic nerve can not be
recovered, early detection and subsequent treatment
is essential for affected patients to preserve their vi-
sion (Michelson et al., 2008). Commonly, glaucoma
diagnosis is based on the patient’s medical history,
intraocular pressure, visual field loss tests and the
manual assessment of the ONH via ophthalmoscopy
or stereo fundus imaging (Lin et al., 2007). To ad-
ditionally objectify the glaucoma stage and its pro-
gression geometric parameters of the ONH are docu-
mented. These geometric parameters measure ONH
structures that are changing in case of glaucoma dis-
ease: optic disk diameter, optic disk area, cup diam-
eter, rim area, mean cup depth etc.

This contribution provides a data driven frame-
work extracting a novel glaucoma parameter from
fundus images. Contrary to the established detec-
tion techniques, it does not require accurate mea-
surements of geometric ONH structures as it per-
forms a statistical data mining technique on the im-
age patterns themselves. The proposed methodol-
ogy can be transferred to other domains and might
be able to extract further parameters providing new
insights to other ophthalmic questions.

2. Background

The glaucoma disease is characterized by the de-
generation of optic nerve fibers and astrocytes that is
often accompanied by an increased intraocular pres-
sure. Due to the loss of nerve fibers the retinal nerve
fiber layer (RNFL) thickness is descreasing. In the
course of disease, the interconnection between the
photoreceptors and the visual cortex is reduced. In
the worst case, the visual information of the photore-
ceptors can no longer be transmitted to the brain
and visual field loss up to blindness is threatening.
The disappearance of axons and astrocytes affects
the structural appearance of the ONH and causes a
reduction of the functional capabilities of the retina.
The ONH can be examined by ophthalmoscopy or
by stereo fundus photography: in the course of the
disease the neuroretinal rim gets thinner while the
cup is expanding due to the loss of nerve fibers and
astrocytes (Fig. 1).

The qualitative assessment of the ONH structure

Fig. 1. Major structures of the optic nerve head that are vis-
ible in color fundus photographs: The optic disk is margined
by the optic disk border and can be divided into two ma-
jor zones: (i) the neuroretinal rim is composed of astrocytes
and nerve fibers while (ii) the brighter cup or excavation
exclusively consists of supporting tissue.

and the functional abilities in addition with the pa-
tient’s medical history and intraocular pressure are
the common base for a reliable glaucoma diagnosis
by ophthalmologists. This inherent subjectivity of
the gained conclusion leads to a considerable inter-
and intra-observer variability in differentiating be-
tween normal and glaucomatous ONHs (Varma
et al., 1992).

However, quantitative parameters can help to
make the qualitative assessment more objective, re-
producible and lead to a reduction of the observer
variability or to track glaucoma progression in pa-
tient follow-up. Such parameters can be gained
manually or even by computer based technologies
from several imaging modalities.

Stereoscopic images of the ONH are commonly
used for documenting its cup shaped structure. Im-
portant ONH characteristics such as disk area, disk
diameter, rim area, cup area or cup diameter can
be extracted from the stereo image by planimetry
(Betz et al., 1982) to also gain the well established
cup-to-disk ratio. For the glaucomatous disease the
cup-to-disk ratio measures the decrease of rim area
while the disk area remains constant.

Although, this ratio is highly influenced by the
disk size, it gives a general estimation whether the
ONH shape is within its normal limits or it has to
be considered conspicuous.

There exist several imaging modalities which pro-
vide quantitative parameters of the ONH in glau-
coma: (i) Confocal Scanning Laser Ophthalmoscopy
(CSLO), (ii) Scanning Laser Polarimetry (SLP) or
(iii) Optical Coherence Tomography (OCT). CSLO,
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commercially available as Heidelberg Retina Tomo-
graph (HRT, Heidelberg Engineering, Heidelberg,
Germany), provides a 2.5-dimensional topographic
image of the ONH through the undilated pupil
(Fig. 2(b)). After a manual outlining of the optic
disk border, the device is able to generate geomet-
ric parameters such as the cup volume, cup depth,
cup shape measure or even retinal height varia-
tions along the rim contour. Discriminant analysis
(Moorfields Regression Analysis (MRA)) properly
combines these geometric parameters. It shows a
good classification performance that was validated
by Miglior et al. (2003) and Wollstein et al. (1998).
Due to the manual outlining of the optic disk bor-
der, the gained quantitative parameters are not
fully objective. However, the Glaucoma Probability
Score (GPS) of the latest version of HRT utilizes
the parameters of a non-linear shape model of the
topographic ONH shape for glaucoma classifica-
tion. As this cup model is automatically fitted to
original shape, this method overcomes the sub-
jectivity of contour based methods while it shows
a comparable overall diagnostic accuracy to the
MRA (Burgansky-Eliash et al., 2007). In a series of
consecutive acquisitions over years the progression
of glaucomatous degeneration could be quanti-
fied. The temporal glaucomatous structural ONH
changes are automatically located and quantified
by the HRT Topographic Change Analysis (TCA)
from consecutive acquisitions. Thus, this technique
is promising to quantify a further progression of
glaucoma (Chauhan et al., 2000).

Alongside the structural changing of the ONH,
the degeneration of the nerve fibers is depicted by
a thinning of the RNFL in the course of glaucoma
disease, too. The thickness of the RNFL can be
measured by SLP or OCT (Fig. 2(c)). In SLP the
retina is illuminated by polarized light and RNFL
thickness can be directly determined from the po-
larization change of the reflected light (Sehi et al.,
2007). OCT provides complete depth profiles of the
retina utilizing low-coherence interferometry of near
infrared light. The desired structural RNFL can be
extracted from these depth profiles utilizing manual
or automated segmentation techniques (Fernández
et al., 2005). From these thickness maps several
global and sectoral geometric parameters such as
average thickness, minimum thickness etc. can be
extracted that differentiate between glaucomatous
and control cases (Medeiros et al., 2004b).

Beside structural characteristics of the retina, the
loss of functional capacities of the optic nerve is

(a) (b)

(c)

Fig. 2. Example images of the central retina: Optic nerve
head (ONH) centered fundus photograph (a) is used for
automated glaucoma detection by the proposed glaucoma
risk index while glaucoma probability score utilizes HRT
2.5-dimensional topography images (b). OCT line scan (c)
traversing the ONH illustrates different layers of the retina
such as nerve fiber layer as the top one.

one major criteria for reliably diagnosing glaucoma.
Modalities such as Standard Automated Perime-
try (SAP), Short-wavelength Automated Perimetry
(SWAP) or Frequency Doubling Technology (FDT)
stimulate retinal regions to identify visual field de-
fects. Quantitative medical parameters are derived
from the number and the location of missing stimu-
lated spots. Although this technology shows a high
specificity for detecting glaucoma, it can only de-
tect already occurred functional damage (Medeiros
et al., 2004a).

Overall, these structural parameters of the op-
tic nerve head are well established in the medical
community and verified in several studies (Greaney
et al., 2002; Sharma et al., 2008). As these param-
eters are derived from structural measurements to
characterize structural glaucomatous changes they
are very meaningful and intuitive to the physician.

We propose a data-driven framework that is able to
extract a novel glaucoma parameter from ONH de-
picted on color fundus images. The proposed data
mining technique is based on the idea of “Eigenim-
ages” (Turk and Pentland, 1991) that statistically
analyzes the pixel input data to capture character-
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Fig. 3. Processing pipeline in detail: Glaucoma risk calculation consists of three steps: (i) Preprocessing eliminates the disease
independent variations from the input image, (ii) Feature extraction transforms the preprocessed input data to characteristic
and compact representation, and (iii) Classification generates the Glaucoma Risk Index (GRI) by a two-stage probabilistic
SVM classifier.

istic variations that look promising for differenti-
ating between glaucomatous optic nerve heads and
controls. Due to the analysis of pure image data,
the achieved parameters are influenced by the ap-
pearance of the whole ONH and not by structural
measurements as it is the case for some established
quantitative glaucoma parameters.

3. The concept of Eigenimages for glaucoma
detection

Due to the high variability of the ONH appear-
ance, the established determination of geometric
ONH parameters utilized for glaucoma detection is
difficult to automate.

We consider the described situation for auto-
mated glaucoma detection similar to that one
stated by Turk and Pentland (1991) for early face
detection methods. Before the 1990’s face detection
systems characterized faces by a set of geometric
parameters such as normalized distances or ratios
between characteristic facial landmarks (Bledsoe,
1966). Based on this previous work Turk and Pent-
land (1991) concluded that the established methods
“on automated face recognition [have] [. . . ] ignored
the issue of just what aspects of the face stimulus
are important for identification”. This time, they
proposed an information theory approach that cap-
tures facial variations from a set of training images
to gain a compact, but meaningful collection of pa-
rameters that are usable for classification purposes.
As an information theory technique they proposed
the Principal Component Analysis (PCA). This
method models a linear transformation that projects
the image space to a low dimensional feature space
while a maximum of data variation is preserved.
The captured variation between the images can
then be represented by a set of Eigenimages. This
so called appearance-based method is still consid-

ered as the baseline face recognition system.

In this contribution, the idea of appearance-based
recognition is transferred to the domain of glaucoma
recognition in order to get novel differentiating non-
geometric parameters and to possibly gain new in-
sights to the glaucoma disease. The major procedure
illustrated in Fig. 3 consists of three steps:

(i) Preprocessing : The appearance-based tech-
niques preserve the data variation in the low
dimensional representation independent from
its origin although it might not be related to
the classification task. Variations such as il-
lumination inhomogeneities are not linked to
the glaucoma disease and have to be excluded
from the image data beforehand.

(ii) Feature extraction: Beside the common Eigen-
image approach on raw pixel intensities we
propose further types of data representation
in order to capture additional image informa-
tion. These feature types are then compressed
separately by PCA to gain a low dimensional
image representation for classification.

(iii) Classification: In the last processing step, a
probabilistic two-stage classifier scheme com-
bines the different types of features to gain one
single glaucoma prediction.

4. Image preprocessing

The proposed appearance-based approach ana-
lyzes the entire input image data to capture the glau-
coma characteristics. To emphasize these desired
characteristics in the input data, the variations not
related to the glaucoma disease are excluded from
the images in a preprocessing step. This includes
variations due to image acquisition, such as inhomo-
geneous illumination or different optic nerve head
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locations, but also retinal structures not directly re-
lated to glaucoma, e.g. the vessel tree.

Due to the reflection properties of the eye ground,
the red channel of the fundus photos is often over-
saturated (especially in the central, optic nerve head
region), while the blue channel can be undersatu-
rated and noisy. Therefore, we used the green chan-
nel for a proper image processing as only this chan-
nel shows a reliable saturation.

4.1. Illumination correction

The acquired images can be disturbed by bright
speckles or inhomogeneous background e.g. due to
different visual angle of the patients during image
acquisition. Although, these interferences are not
originated by glaucoma they affect the illumination
of the ONH and would have an influence to the sub-
sequent statistical analysis.

To avoid this behavior, we desire (i) a homoge-
neous lightning of the ONH and (ii) a similar illu-
mination level among all images of the sample set.
This can be achieved by global correction techniques
(Youssif et al., 2006) applying a background correc-
tion. These methods subtract the estimated retinal
background from the original image to gain a homo-
geneously illuminated fundus image. The estimation
of a background can be done by average intensity fil-
tering within a large neighborhood (Chrástek et al.,
2005; Hoover et al., 2000) or polynomial surface fit-
ting (Narasimha-Iyer et al., 2006).

We implemented a correction method similar to
the one proposed by Narasimha-Iyer et al. (2006)
as it does not require a time consuming image low
pass filtering as in case of average intensity filtering.
According to their lighting model, the observed in-
tensity in each color channel of an input image I ∈
Rn×m is a pixel-wise product of a luminosity com-
ponent L and a reflectance component R. The first
component is due to the source illumination, while
the second one is related to the structures in the
retina and their properties. Taking the logarithm,
the pixel at (x, y) becomes an additive term:

log(I(x, y)) = log(L(x, y)·R(x, y))
= log(L(x, y)) + log(R(x, y)).

(1)

Low frequency changes of image intensities are
considered as illumination inhomogeneities and can
be well described by a 4th-order polynomial surface.
This two dimensional polynomial is defined by the
coefficients c ∈ R15 which are determined by a least-

square estimate from the following (weighted) linear
equation system (Narasimha-Iyer et al., 2006):

log(i) = (WS)c , (2)

where i is the vector representation of I. The matrix
S ∈ RN×15 with N = n · m stores the polynomial
coefficients of the pixel locations. Retinal structures
such as optic nerve head or vessel tree set apart
from background and have to be excluded from the
least square polynomial fitting. The diagonal ma-
trix W ∈ RN×N is used to mask out these regions
from the computation. The diagonal elements are 1
where a pixel is considered as background and 0 for
foreground structures.

We consider pixels having intensities between the
15th and 85th percentile of the image histogram as
background while the remaining pixels mainly be-
long to retinal structures such as the bright ONH
structure or the dark vessel structures. It is only of
importance that the set of background pixels does
not contain any structure pixels as only these pix-
els are utilizable to estimate the background. There-
fore, the masking of the structures does not need to
be very accurate.

The vector of the logarithmic reflectance compo-
nent r is then recovered as

log(r) = log(i)− Sc . (3)

The reflectance component R is obtained by reshap-
ing rlog to matrix notation and transforming it back
from logarithmic space. It shows a considerably re-
duced amount of illumination artifacts and intensity
inhomogeneities (Fig. 4 second row).

4.2. Vessel removal

The glaucoma disease is mainly related to the
optic nerve fibers and astrocytes. The vessel tree
strongly varies among different patients, but the
vessel location and the vessel diameters are min-
imally affected by glaucoma itself. The proposed
appearance-based approach captures these varia-
tions of the used training sample set. In case of the
utilization of images without removed vessel that
would lead to the emphasis of the vessels and not
of glaucoma (Meier et al., 2007). To avoid this be-
havior, the vessel structures in the eye ground are
removed by (i) segmentation and subsequent (ii)
inpainting of the detected vessel tree.

First, we perform a rough segmentation of the
retinal vascular structure. In the literature, sev-
eral automated vessel detection methods were pro-
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posed over the last years (Niemeijer et al., 2004).
Most of these techniques exploit the local appear-
ance of the vessel including (i) edge-based (Al-Diri
et al., 2009; Martinez-Perez et al., 2007; Sofka and
Stewart, 2006), template-matching (Ricci and Per-
fetti, 2007; Sofka and Stewart, 2006; Wang et al.,
2007) or supervised approaches (Niemeijer et al.,
2007; Ricci and Perfetti, 2007; Soares et al., 2006;
Staal et al., 2004) as well as a combination of those
(Ricci and Perfetti, 2007; Sofka and Stewart, 2006).
Based on the initial pixel-wise segmentation con-
tinuative methods ensure the global connectivity
and topography of the vessel tree (Grisan et al.,
2004; Niemeijer et al., 2009b). We combined edge-
based and template-matching techniques to extract
the vessel tree from the fundus images. Initially, we
use an adaptive thresholding technique, wherein for
each pixel, the median of its 15×15 neighborhood
is taken as a threshold to separate foreground from
background. The size of the neighborhood was de-
termined to approximately match the size of the
structures, i.e. the vessels. Then, the information
of this mask and a Canny edge map (Canny, 1986)
is combined. This generated mask is filtered such
that small objects are removed and only structures
that are bounded by parallel running pairs of edges
are kept. These potential vessel parts are validated
by gridding and a matched filter technique (Can
et al., 1999) where edge templates are applied to the
grid points at different orientations and distances.
A morphological closing of the valid regions yields
the final vessel mask (Fig. 4 third row).

Second, an iterative inpainting technique, used in
photo restoration and video processing (Bertalmio
et al., 2000; Shen and Chan, 2002), replaces the in-
valid pixels of the vessel mask by those of the neigh-
borhood in a visually pleasing way. In our imple-
mentation, the vessel regions are iteratively filled
layer by layer from outside inwards. The missing
pixels become a distance weighted average of the
already valid neighboring values. Finally, we gain
a vessel-free photography of the optic nerve head
(Fig. 4 fourth row).

4.3. Optic nerve head normalization

For glaucoma detection the ONH is one of the
most important structures for observing glauco-
matous characteristics. As known from face de-
tection (Turk and Pentland, 1991), the proposed
appearance-based method requires at least rough

Fig. 4. Image preprocessing eliminates glaucoma disease in-
dependent variations and allows an appearance-based post-
processing. Row-to-row: (i) Original fundus photos. (ii) Il-
lumination corrected images with (iii) overlaid vessel mask
which is then (iv) inpainted to hide the vessel tree. (v) Final
normalized optic nerve head image used for feature extrac-
tion.

point correspondences to be able to gain a reason-
able performance. Consequently, we normalize the
rim area according to the optic nerve head border
within distinct ranges of optic nerve head sizes.

First, the ONH rim has to be determined. In
the literature, some methods restrict the segmented
ONH rim to be circular or elliptical using e.g.
Hough transform (Blanco et al., 2006; Zhu et al.,
2009) while other techniques allow higher variabil-
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ity of the ONH shape using parametric or free-form
deformable models (Chrástek et al., 2005; Li and
Chutatape, 2003; Xu et al., 2007). The performance
of the proposed segmentation techniques strongly
rely on proper initialization with the location of the
ONH: Proposed algorithms utilize ONH template-
matching, intensity assumptions or the convergence
of the vessel tree (Chrástek et al., 2005; Hoover and
Goldbaum, 2003; Lowell et al., 2004; Youssif et al.,
2008). Besides, supervised techniques were also suc-
cessfully applied for both purposes (Abràmoff et al.,
2007; Merickel et al., 2007; Niemeijer et al., 2009a).
As we are interested in a circular mapping of the
ONH rims, we utilize the segmentation technique of
Chrástek et al. (2005) that determines the circular
rim contour of the ONH border as the first process-
ing step: Assuming the ONH as the brightest spot
in the fundus image, a center estimate is achieved
by a strong intensity smoothing and further thresh-
old probing. This estimation then restricts the sub-
sequent circular Hough transform that is performed
on the edge map to find the optic disk border.

Second, a square box of size three times the cal-
culated ONH radius, centered at the ONH center is
cropped and then scaled to the preprocessed image
P of fixed reference size of 128 × 128 pixels (Fig. 4
last row).

This proposed procedure ensures images of
the same dimension in addition with circularly
mapped ONH rims that is required for a reasonable
appearance-based feature computation.

5. Feature extraction

The performed image preprocessing emphasizes
glaucomatous variations among the images and al-
lows a generic and appearance-based feature extrac-
tion. The high dimensional preprocessed images P
are statistically compressed by PCA to gain com-
pact, and meaningful features f. To capture comple-
mentary image information we propose three differ-
ent generic image representations with different spa-
tial and frequency resolution for feature extraction.

5.1. Pixel intensity values

Like the standard appearance-based approach
(Turk and Pentland, 1991), we serialized the pre-
processed 2-dimensional images P ∈ R128×128 to
an image vector p ∈ R128·128. This is then decom-
posed by a precalculated decomposition matrix to

low dimensional feature vector fraw. According to
Turk and Pentland (1991) this decomposition ma-
trix was determined by an implicit computation
of Eigen vectors from images of a training set. We
have shown (Meier et al., 2007) that thirty principal
components capture already at least 95 % of data
variation. Therefore, the feature vector from raw
pixel intensities was restricted to dimensionality of
fraw ∈ R30.

5.2. FFT coefficients

In contrast to the spatial pixel intensities, Fourier
coefficients capture the image’s global frequency in-
formation and are computable from an image by
Fourier transform (FT). We apply a discrete ver-
sion of FT, the Fast Fourier Transform (FFT), on
the preprocessed image P and compress the real re-
sponse of its Fourier coefficients by PCA to feature
ffft ∈ R30.

5.3. B-spline coefficients

In addition to the described feature types, B-
spline coefficients decode spatial frequency infor-
mation as they are defined by piecewise polynomi-
als over a pixel neighborhood (Ibanez et al., 2005;
Unser, 1999; Unser et al., 1993a,b).

The discrete input image P of size n × m with
x = {1, . . . , n} and y = {1, . . . ,m} is transformed
to B-spline coefficients c(k, l) with k = {1, . . . , n}
and l = {1, . . . ,m}.

p(x, y) =
n,m∑

k=0,l=0

c(k, l)βd(x− k, y − l) (4)

with d denoting the degree of the central B-spline
βd(x, y). The (d + 1)-fold convolution of the rectan-
gular B-spline β0 generates splines of higher degree
which are symmetrical bell shaped (Unser, 1999):

β0(x, y) =






1, |(x, y)T |2 <
1
2

1
2
, |(x, y)T |2 =

1
2

0, otherwise

(5)

βd(x, y) = β0 " β0 " . . . " β0(x, y)︸ ︷︷ ︸
(d+1) times

(6)

Because the number of input pixels p(x, y) is equal
to the used number of spline coefficients, equation
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(4) defines a projection and no image information
will be lost.

Our processing calculates coefficients c(k, l) of B-
splines of degree n = 4 from preprocessed images P.
The coefficients C are subsequently compressed by
PCA and denoted as features fspline ∈ R30.

6. Classification

In the final classification step (Fig. 3), a glaucoma
probability and the associated class label such as
“glaucoma” or “not glaucoma” is computed from the
three different feature types f that will be denoted
as the Glaucoma Risk Index (GRI).

6.1. Classifier

In general, classifiers achieve good results if their
underlying separation model fits well to the distri-
bution of the sample data.

In our previous investigations (Bock et al.,
2007), we evaluated the glaucoma detection perfor-
mance for three different kinds of classifiers in an
appearance-based pipeline configuration. The Sup-
port Vector Machine classifier (SVM) shows similar
results compared to other classifiers such as the
naive Bayes classifier or k-nearest neighbor classi-
fier. In this work, we decided to use the SVM as it
is known that the SVM is less prone to a sparsely
sampled feature space compared to the other clas-
sifiers as it is the case here. This SVM classifier
determines a maximum-margin and soft hyperplane
that best separates the considered classes in a ker-
nel transformed feature space (Chen et al., 2005;
Schölkopf et al., 2000).

A further improvement of classification perfor-
mance could not be verified in our elaborate eval-
uations (Bock et al., 2007) that additionally uti-
lized different classifier enhancement methods like
AdaBoost or attribute selection in combination with
SVM classifier. Therefore, a stand-alone SVM clas-
sification scheme is performed for the proposed clas-
sification purpose.

6.2. Two-stage classification combines different
feature types

In order to be able to benefit from the complemen-
tary information captured by the three proposed fea-
ture types, they have to be combined. We propose a

two-stage classification scheme that synthesizes one
final result from them.

In the first stage, each feature type (fraw, ffft,
fspline) obtained from feature extraction is classi-
fied separately. A probabilistic SVM classifier deter-
mines a probability p(G) for the normalized PCA
compressed feature (e.g. praw(G) from raw pixel in-
tensities fraw).

In the second stage, these probabilities are con-
catenated to one low-dimensional, common feature
space by composing a feature vector:

fp =
(
praw(G), pfft(G), pspline(G)

)T
. (7)

Probabilistic SVM now processes this generated vec-
tor of probabilities as feature fp and outputs one
common glaucoma probability p(G).

7. Evaluation

Based on the presented fully automated process-
ing procedure illustrated in Fig. 3, we achieved a
novel probabilistic index that we refer to as Glau-
coma Risk Index (GRI). In order to quantify its
ability in detecting glaucoma from color fundus im-
ages the performance of GRI is first characterized
in more detail by some key figures and a reliability
analysis. Furthermore, its performance is compared
to (i) that of glaucoma experts and (ii) to medically
relevant and well established glaucoma parameters
such as Glaucoma Probability Score (GPS) of the
HRT III device (Swindale et al., 2000) and the cup-
to-disk ratio (Betz et al., 1982).

Our evaluations showed that the proposed two-
stage classification scheme outperforms configura-
tions using one common single feature space and
that it is competitive to common glaucoma param-
eters.

7.1. Image data set and setup

The used data set of fundus images was randomly
selected from the Erlangen Glaucoma Registry
(EGR) which contains more than 2,000 records of
multi-modal fundus images of a long-term screening
study. The gold standard diagnosis was given by an
experienced ophthalmologist based on a complete
ophthalmological examination with anamnesis, oph-
thalmoscopy, visual field test, intraocular pressure
(IOP), and scanning laser tomography (Heidelberg
Retina Tomograph, HRT II). The color fundus pho-
tos were acquired by a Kowa NonMyd alpha digital
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fundus camera with a optic nerve head centered 22◦
field of view and an image size of 1600× 1216 pixels
(Fig. 9).

For the performance evaluation of the GRI we
used a data set of 575 ONH centered color fundus im-
ages from 358 persons with normal sized ONHs (av-
erage vertical ONH diameter: 1.8± 0.22mm). The
mean age was 56.1± 11.4 years, 52.2% female. The
samples had an unambiguous gold standard diagno-
sis with 239 glaucomatous images and 336 normals.
For comparison, the corresponding topography im-
ages were applied with HRT III device to calculate
the GPS. The linear cup-to-disk ratio was also ex-
tracted from HRT topography images based on the
manually outlined optic disk border. A subset of 240
images (160 normals, 80 glaucomatous) from the
data set was additionally evaluated by two ophthal-
mologists experienced in diagnosing glaucoma. The
findings were done on the fundus images exclusively
without using any anamnesis or further image data
to fairly rank the ability of fundus image based GRI.

We performed a 5-fold cross validation setup to
gain a robust statistical evaluation. Each fold con-
tained nearly the same number of subjects and a
similar ratio of glaucomatous versus controls. As
SVM classifier the libSVM implementation (EL-
Manzalawy and Honavar, 2005) was utilized with
non-linear radial basis kernel and probabilistic out-
put. For the first stage classification, the PCA com-
pressed features f were normalized beforehand by
min-max normalization. The parameters of SVM
were manually optimized based on the classification
accuracy of the first fold.

For reliability analysis, we successively captured
images of 17 selected subjects. The consecutive ac-
quisitions were done at the same day, but with suffi-
cient relaxation time in-between to avoid a decline of
image quality due to miosis. For each eye three im-
ages were acquired and processed individually which
are referred to as one image series. Because of bad
image quality, seven of the 102 images had to be
excluded from the analysis as they showed obvious
processing failure such as missed vessel segmenta-
tion or wrong optic nerve head localization. Finally,
the analysis was done on 95 images linked to 32 eyes.

7.2. Properties of the proposed Glaucoma Risk Index

For the novel GRI, we proposed a two-stage clas-
sification scheme to combine the different feature
types (fraw, ffft, fspline). In principle, two alternative

Table 1
Performance of proposed classifiers indicated by classifica-
tion accuracy, area under Receiver Operating Characteris-
tic curve (AUC), sensitivity and specificity (%) for detect-
ing glaucoma: The performance of the proposed two-stage
Glaucoma Risk Index (GRI) is compared to (i) single-feature
classification (fraw, ffft, fspline), (ii) single-stage classifica-
tion setup and (iii) human experts and established quanti-
tative glaucoma parameters i.e.Glaucoma Probability Score
(GPS) and cup-to-disk ratio (CDR).
The p-values denote the statistical significance for a different
ROC compared to GRI: * p ≤ 0.05.

Setup Accuracy AUC Sensitivity Specificity p-value

GRI 80 88 73 85 –

fraw 80 87 69 88 0.07

ffft 79 86 71 85 0.01*

fspline 81 88 69 90 0.46

single-stage 79 86 70 85 0.08

expert 1 83 – 54 97 –

expert 2 83 – 51 98 –

GPS 78 87 88 72 0.96

CDR 68 88 93 50 0.51

configurations are also possible: (i) Single-feature
classification: Instead of combining the three differ-
ent feature types, only one single feature type is uti-
lized that provides the best detection performance.
(ii) Single-stage classification: To combine different
features, these feature are concatenated to one sin-
gle high dimensional feature space. This is then re-
duced by attribute selection to gain an expedient
feature dimensionality that can directly be used for
classification.

In this section, the properties of the GRI are char-
acterized in more detail by key numbers and a reli-
ability analysis in order to show the advantages of
the proposed two-stage scheme compared to alter-
native classification setups. For calculation of accu-
racy, sensitivity and specificity the decision thresh-
old was fixed at a 0.5 level.

7.2.1. Performance figures
The Receiver Operating Characteristic (ROC)

curve shows classifier performance for different
decision thresholds. Therefore, it provides infor-
mation on how to tune the decision threshold in
order to achieve the best tradeoff between sensi-
tivity and specificity for the desired application. A
non-parametric test based on Mann-Whitney-U-
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Fig. 5. Receiver operating characteristic (ROC) curves for
detecting glaucoma. In comparison to the ROC curve of the
single-stage classification (- -), the ROC curve of GRI (—)
shows higher sensitivities for specificities lower than 0.8. This
improvement might be due to the repeated usage of class in-
formation that allows the determination of boundaries better
separating the two classes.

statistics (DeLong et al., 1988; Vergara et al., 2008)
is used to show the significance of the ROC curve
differences (statistical significance level: p ≤ 0.05).

The proposed two-stage GRI gains an area under
ROC curve (AUC) of 88 % (Table 1) and a sensitivity
of 73% at a specificity of 85 % (Fig. 5).

Comparing the single-feature classifications
among themselves, the classifications on ffft or fraw
with an AUC of 86% or 87 % respectively nearly
reach the performance on fspline with an AUC of
88 %. While the ROC curve from fspline (p = 0.46)
is comparable to the one of GRI, the performance
of the remaining single-feature classifications show
at least a trend to be significant inferior (p ≤ 0.07).

The single-stage classification gains an AUC of
86 % and a sensitivity of 70 %. This setup is not com-
petitive to GRI as the ROC curves of both setups
are nearly significant different (p≤ 0.08). Especially,
for high specificities, the sensitivity is decreasing as
it is illustrated by the ROC curves shown in Fig. 5.

7.2.2. Distribution of glaucoma probabilities
The distribution of gained glaucoma probabilities

P(G) (specified by the histogram of p(G) from the
sample set) expresses the separability of the two dif-
ferent classes and the classifier’s certainty (Fig. 6).
As the data set (Section 7.1) consists of cases with
a definitive diagnosis and thus without any suspi-
cious cases, we expect an undoubtful classification
with an high confidence level of the classification.

With a high confidence level (i.e., p(G) ≤ 0.1

(a)

(b)

(c)

Fig. 6. The probability distributions P(G) of control and
glaucomatous cases. The two-stage GRI setup (a) shows two
compact distributions with distinct peaks at the borders.
This reflects the definitive disease stages of our samples. The
two other configurations, namely single-feature classification
represented by fspline (b) and single-stage (c) are character-
ized by undesired widely scattered distributions.
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or p(G) ≥ 0.9) 58.6 % of the controls and 48.3 %
of the glaucomatous cases are correctly classified
with GRI. The histogram of the calculated glaucoma
probabilities p(G) (Fig. 6(a)) illustrates the desired
distinct peaks at the borders. As representation for
single-feature classification setup, we show the his-
togram for feature fspline that provides a classifica-
tion performance comparable to GRI. However, a
correct classification at a high confidence level is
achieved in only 31.5% of the controls and 23.3 % of
the glaucomatous cases (Fig. 6(b)). Similar results
are gained in case of a common single-stage classifi-
cation where a high confidence level is only reached
for 33.6 % of the controls and 17.8 % of the glauco-
matous (Fig. 6(c)). These lower confidence levels are
also reflected by their histograms of the calculated
glaucoma probabilities p(G) which do not show the
desired instance accumulation around p(G) = 0 for
the control class or p(G) = 1 for glaucomatous cases
respectively. Although, the majority of clearly diag-
nosed subjects were correctly classified the distribu-
tion is widely scattered.

In conclusion, the proposed two-stage classification
assembly of the GRI shows a superior performance
compared to the alternative configurations. Only for
fsplines the classification performance was compara-
ble. However, only the GRI exclusively provides a
high classification confidence level for the majority
of the instances that well reflects the present defini-
tive stages of disease of our data set. For this reason,
we consider the two-stage classification setup of GRI
as the standard procedure that is further validated
in a reliability analysis and in comparison to other
quantitative glaucoma parameters.

7.2.3. Reliability
Beside the system performance, the reliability of

the proposed algorithm is also a relevant issue. Only
if the system gains similar results for the same pa-
tient but from different acquisitions is it usable for
reliable screening applications.

As quantitative reliability measure, we report the
maximal absolute deviation from the median of the
GRIs calculated from the three images (i.e. image
series) acquired from the same subject and eye.

Figure 7 shows the histogram of the deviations
with respect to the glaucoma probability which in-
dicates that for the majority of the image series
the intra-subject deviation is low. In 19 of 32 se-
ries (59%) the maximal deviation was less than 2 %
and the largest reported deviation was 11% for one

Fig. 7. Reliability measure as maximal absolute deviation
from the median of the GRIs calculated from fundus images
acquired in series. The occurrence of deviations illustrated by
the histogram indicates that for the majority of the samples
the intra-subject deviation is less than 2%.

single series. Due to these reported deviations, we
consider the processing procedure and classification
scheme reliable.

7.3. Comparing GRI to experts and glaucoma
parameters

Based on the preceding evaluations the GRI gains
a reliable glaucoma detection performance with an
AUC of 88%. A comparison of GRI with (i) the
rating of human experts on sole fundus images and
(ii) established quantitative glaucoma parameters in
the following section shows a competitive detection
performance.

7.3.1. Expert performance
In contrast to the usual clinical glaucoma diag-

nosis utilizing medical history, different imaging
modalities and preceding examinations, the glau-
coma experts investigated the color fundus images
on its own. This setup ensures a fair performance
comparison as it provides the experts the same
information that is also utilized by GRI.

Both experts classified 83 % of the instances cor-
rectly that is slightly superior compared to GRI (Ta-
ble 1). Their performance is highly specific while
still reaching a moderate sensitivity over 50 %. By
putting theses values in relation to the ROC curve
(Fig. 8), it is obvious that the human experts out-
perform the GRI and also GPS, however on a mod-
erate level of sensitivity.

Based on the evaluation of digital color fundus im-
ages which is not conform to the daily clinical work-
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Fig. 8. The Receiver operating characteristic (ROC) curve
of GRI (—) in comparison: (i) human experts (•, !) on
single fundus images without medical history are very specific
while the sensitivity reaches a moderate level. (ii) The GRI
shows a competitive performance compared to Glaucoma
Probability Score (GPS) and linear cup-to-disk ratio (CDR)
in particular for a specificity around 0.8.

flow, our proposed GRI almost reaches the perfor-
mance of the human experts.

7.3.2. Glaucoma Probability Score (GPS)
The HRT III software offers a module to deter-

mine the GPS from 2.5-dimensional topographic im-
ages of the ONH gained by scanning laser tomogra-
phy technique. The score is established in the clinical
workflow and was validated by several trials (Alen-
car et al., 2008; Burgansky-Eliash et al., 2007). The
GPS is an objective measurement as it does not de-
pend on manual outlining of the optic disk border
and can be considered as a de facto standard in au-
tomated glaucoma detection from HRT topography
images.

On our data set, the GPS achieves a classification
accuracy of 78 % and an AUC of 87 % (Table 1). For
glaucoma detection we get a sensitivity of 88 % at a
specificity of 72%.

The AUC for the GPS is similar to GRI (p = 0.96).
This is also reflected by the ROC curves (Fig. 8)
which behave quite similar especially for a specificity
around 0.8.

Although, GRI and GPS were calculated from
different imaging modalities, they show comparable
detection performance.

7.3.3. Cup-to-disk ratio
The cup-to-disk ratio measures the ratio of the di-

ameter of the cup to the diameter of the entire disk.

Commonly, this ratio can be determined by planime-
try (Betz et al., 1982) from color fundus images by
outlining the optic disk border and the cup. The
HRT provides an equivalent ratio, the linear cup-to-
disk ratio, from topography images that can be de-
termined from manually outlined optic disk rim. In
order to avoid the manual outlining of the cup, we
compare the GRI to the linear cup-to-disk ratio of
HRT.

On our data set, the cup-to-disk ratio, achieves a
similar AUC of 88 % compared to GRI, however the
accuracy drops down to 68 % assuming a decision
threshold of 0.5 (Table 1). The ROC curves of cup-
to-disk ratio and GRI (Fig. 8) are comparable with
p = 0.51.

In summary, the GRI provides a detection perfor-
mance on color fundus photographs that is com-
petitive to human experts on single fundus images,
the topography based GPS and cup-to-disk ratio. In
particular for specificities around 80 % the markers
show a competitive sensitivity. Thus, the novel GRI
provides a new tool to automatically detect glau-
coma from the low priced and widespread fundus
camera.

8. Discussion

A reliable and competitive scheme for an auto-
matic glaucoma detection was presented. The ma-
jority of the subjects were correctly classified as al-
ready shown. To give a better impression on the
classification outcome, Fig. 9 shows examples of cor-
rectly classified and misclassified fundus images.

Figure 9 (a)-(c) illustrates correctly classified con-
trols characterized by a typical small cup. In con-
trast, an expanded cup denotes the correctly clas-
sified images of glaucomatous eyes (Fig. 9 (d)-(f))
which corresponds to the common glaucoma disease
pattern.

Some images of control and glaucomatous ONH
were misclassified. In case of misclassified controls,
shown in Fig. 9 (g)-(i), we suppose that the GRI
calculation procedure might be misled by the pale
neuroretinal rim or an increased disk size with in-
creased cup area. The misclassified glaucomatous
cases (Fig. 9 (j)-(l)) are marked by a low contrast
between rim and cup and a greater optic disk size.

As described in Section 4.3, we perform a down-
sampling of larger ONH during normalization step
to gain well mapped tissue structures that are re-
quired for appearance-based recognition. We are
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9. Example images automatically assessed by GRI: (a)-(c) correctly classified controls, (d)-(f) correctly classified glauco-
matous cases, (g)-(i) misclassified controls, (j)-(l) misclassified glaucomatous cases.
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aware that this normalization can bias the pure
glaucomatous variations and may decrease the
classification performance. To account for this ef-
fect, we utilized a data set of limited ONH diam-
eter variations (average vertical ONH diameter:
1.8± 0.22mm) and of one race. Considering the
wrong classified images (Fig. 9 (g)-(l)) it seems as if
the GRI is sensitive to larger optic disk diameters.
However, the GRI classification is able to properly
handle different optic disk sizes as the correctly
classified images (Fig. 9 (a)-(f)) show highly vary-
ing optic disk diameters. In order to apply the GRI
in a widespread study, we propose to generate a
separate model for each cluster of different ONH
diameters and races.

As the GRI procedure is applied on color fun-
dus images, the index can only capture glaucoma-
tous signs that are visible on these images. Thus,
it can only provide first indicators for the multilay-
ered and progressive glaucoma disease. However, the
digital color fundus camera is much cheaper than
other ophthalmic imaging devices such as HRT or
OCT. In the future, the GRI can provide a first low-
priced glaucoma indication in order to possibly re-
duce the amount of false positives misrouted to the
cost-intensive elaborate clinical investigations.

The proposed appearance-based technique known
from face recognition statistically analyzes the en-
tire image pixel pattern to emerge the competitive
GRI and does not rely on accurately determined ge-
ometric parameters. Due to this approach, the GRI
only provides a general statement, but does not in-
dicate conspicuous retinal regions that might hinder
its acceptance in clinical environment.

The required preprocessing of the fundus images
performs a rough determination of the retinal vessel
tree and the ONH rim for normalization. An accu-
rate segmentation of the cup rim as for automated
determination of cup-to-disk ratio can be omitted.
Based on the shown high reliability, we conclude that
the appearing unavoidable variations originated by
segmentation only lead to negligible variations of the
GRI.

9. Conclusion

Based on color fundus photos of the eye, the pre-
sented procedure for robust and reliable appearance-
based feature extraction allows the automated quan-
tification of the probability to suffer from glaucoma
disease.

Due to glaucoma specific preprocessing and the
appropriate combination of generic features, we are
able to successfully apply the generic data-driven ap-
proach for this medical classification task. The pro-
posed two-stage classification scheme helps to com-
bine classifiers of different image inputs. The eval-
uation showed that this assembly improves the cer-
tainty of the classification and it makes the final de-
cision more robust. Established methods early re-
duce the amount of feature dimensionality by us-
ing parametric models or structural measurements.
In contrast, we compress the whole image data into
discriminating features.

The obtained Glaucoma Risk Index (GRI)
reached a classification accuracy of 80% in a two
class problem (control vs. glaucomatous eyes) tak-
ing a gold standard diagnosis by ophthalmologists
as a basis. The AUC was 88 % with a sensitivity
of 73% at a specificity of 85% in detecting glau-
coma. The results in our evaluation with 575 images
were comparable to the commercial and established
Glaucoma Probability Score (GPS) of the HRT III
and cup-to-disk ratio.

Overall, this contribution provides a competitive,
reliable and probabilistic glaucoma risk index from
images of the low-cost digital color fundus camera
as its performance is comparable to medical relevant
glaucoma parameters. This proves, data-driven GRI
is able to extract relevant glaucoma features. In the
future, it might give a first, low-cost glaucoma indi-
cation to route the patients to more elaborate clini-
cal trials only if necessary.
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Merickel, M. B. J., Abràmoff, M. D., Sonka, M., Wu,
X., 2007. Segmentation of the optic nerve head
combining pixel classification and graph search.
Proceedings of SPIE 6512 (1), 651215.

Michelson, G., Wärntges, S., Hornegger, J., Lausen,
B., 2008. The papilla as screening parameter for
early diagnosis of glaucoma. Dtsch Arztebl Int
105 (34-35), 583–589.

Miglior, S., Guareschi, M., Albe’, E., Gomarasca,
S., Vavassori, M., Orzalesi, N., 2003. Detection of
glaucomatous visual field changes using the Moor-
fields regression analysis of the Heidelberg retina
tomograph. Am J Ophthalmol 136 (1), 26–33.

Narasimha-Iyer, H., Can, A., Roysam, B., Stewart,
C. V., Tanenbaum, H. L., Majerovics, A., Singh,
H., 2006. Robust detection and classification of
longitudinal changes in color retinal fundus im-
ages for monitoring diabetic retinopathy. IEEE
Trans Biomed Eng 53 (6), 1084–1098.
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