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ABSTRACT

We describe a GMM-UBM-based evaluation system for patholog
voices that uses standard cepstral features. Per speakés W

is created and its components are used to create a so-caidtl G
supervector. The supervector of each speaker is labelddtigt
intelligibility values obtained by human evaluation anduged to
train an SVR. We studied different GMM supervectors coritgn
different GMM components. On a database of 85 pathologialspe
ers, we achieved a correlation between the automatic syesterthe
expert listeners of = 0.83 when using a 13312-dimensional super-
vector containing the values of the diagonal covarianceiogst of
26-dimensional Gaussians.

Index Terms— Gaussian Mixture Models, Support Vector Ma-
chines, Acoustic Analysis, Pathologic Voices

1. INTRODUCTION

For speech therapy, it is very important to evaluate a pigienice
by a speech therapist. Objective, automatic measures eydekp-
ful for this task. In previous works we showed that the worcLaiacy
(WA) of an automatic speech recognition system can be eregloy
as objective intelligibility measure for tracheoesoplegribstitute

WA— epiglottis

hyoid bone

thyroid cartilage
vestibular fold

glottis vocal fold

Fig. 1. Anatomy of an intact larynx

In this work we present an approach which is only based on
the acoustic properties of affected speakers. To our kruyele¢his
approach has not been used before for speech assessmens- We a
sume that there is a similarity between these automaticabyputed

voices [1]. These are voices where the larynx has been reimoveacoustic properties and the intelligibility scores fronpest listen-

completely and the source of voice is located in the pharyesppha-
geal segment. A correlation ¢f| = 0.8 to human evaluations
could be achieved. If the cancer is detected in early andnrge
diate stages, a partial laryngectomy, i.e., a partial reho¥ the
larynx, is a sufficient means to stop the propagation of theea
The advantage is that in most cases at least one of the vddal fo
or the vestibular folds can be preserved (see Figure 1). @medp
to the total laryngectomy with tracheoesophageal sulbstitaice,
the voice after partial laryngectomy sounds almost norraatbm-

ers. The acoustic features of a speaker are modele@dmgsian
Mixture Models(GMMs). The system usesldniversal Background
Model(UBM) that is adapted biylaximum A PosterioffMAP) adap-
tation to speaker-specific spectral features. Based onptaker-
specific GMM, supervectors are extracted. Supervectortsooer-
tain components of the GMMs. These supervectors are labeéthd
the experts’ intelligibility score and are used as inputtoesfor a
Support Vector Regressi¢gB8VR). In order to evaluate the acoustics
of a speaker equally, it is important that every patient sésmbaks

monly hoarse. This work focuses on a database of 85 patliologithe same text or a text, that contains all phonemes of a ndemai

speakers, before and after partial laryngectomy.

In a previous study, the correlation between the WA and the su
jective raters was low|{| = 0.6) [2]. It is assumed that due to the
higher and more uniform voice quality of partially laryng@mized
persons the WA alone is not a sufficient feature to achievie tig-
relations to the intelligibility scores of the expert lisers on a small
evaluation text of 107 words.

guage. Assuring this, all speaker GMMs are created with dinees
information and should be similar for speakers with simgathol-
ogy. Patient’s with different states of pathology are sigggbto be
represented by different GMMs.

The remainder of the paper is organized as follows. Section 2
introduces the dataset used for training and evaluatiorctid®e3
gives some details on the subjective evaluation perfornyegkpert
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Table 1. Correlation between intelligibility scores of one rateda
the mean value of the others

listeners and shows their inter-rater agreements. Sedtitascribes
the evaluation system and the different employed GMM-based
pervectors. In Section 5 we present leave-one-speakeresutts
achieved with these supervectors. The paper concludesaveitim-
mary and proposed future research.

2. DATA

The dataset contains recordings of 85 patients. 75 of thermates
and 10 are females. They suffer from cancer in differentomeg)i
of the larynx. 65 of them had already undergone partial igegn
tomy, 20 speakers were still awaiting surgery. The formeugr
was recorded on the average 2.4 months after surgery. Thagave
age of all speakers was 60.7 years with a standard deviati®ry o
years. The youngest and the oldest person were 34 and 83ojears
respectively.

Each person read the text “Der Nordwind und die Sonne”, a

phonetically balanced text with 108 words (71 disjunctiwéjich
is used in German speaking countries in speech therapyntaics
all phonemes of the German language. The English versiomisk

to pronounce a vowel or word always in the same way. Pathologi
speakers have difficulties in doing that. So not only the nveators
but also the variances seem to be important to perform anatiah
of pathologic speech. In this section we describe the systeletail.
First, short-time features in form dflel-Frequency Cepstrum
Coefficienty MFCCs) andPerceptive Linear PredictiofPLP) are
extracted from the speech signal. GMMs are employed to model
these features for each speaker, i.e., a GMM for each spésker
adapted from a UBM. Such a system has been used for voice dis-
order assessments in [8, 9]. In our system the GMM is then used
as meta feature vector for an SVR, i.e., GMM-based supeskect
We evaluated different kinds of supervectors. They arerdest in
Section 4.2.

4.1. Feature Extraction

The first type of features we studied were MFCCs. A Hamming
window with a size of 16 ms and a time shift of 10 ms is applied
to the speech signal. The Mel spectrum with 25 triangle §lisr
calculated afterwards. At the end, a 24-dimensional featector,
which contains log energy, 11 Mel-frequency cepstral coeffits
and the first-order derivatives of these 12 static featusegeéated
(D = 24).

The second set of features is revised PLP (RPLP) [10], a simpl
fied and improved variant of PLP [11] employing the Mel filteank
instead of the Bark filter-bank. We took the first 13 cepstafe
ficients of the PLP model spectrum and their first-order d¢ives

as “The North Wind and the Sun” [3]. The speech data were SaMnich results in a feature dimension Bf= 26.

pled with 16 kHz and an amplitude resolution of 16 bit. Theyave
recorded in a quiet room in the university clinics in Erlangend
digitally stored on a server by a client/server-based sy$4é.

3. SUBJECTIVE EVALUATION

Five experienced phoniatricians and speech scientishsated each
speaker’s intelligibility according to a 5-point Likertae [5] with
the labels “very high”, “high”, “moderate”, “low”, and “nasf. For
each patient five different intelligibility labels were tmdted. Each
rater’s decision was converted to an integer number betdeewl 5.
As reference for the automatic evaluation, the mean valtilesofive
ratings was calculated for each patient. The speech datlatled
with this reference value and used in the automatic system.
Table 1 shows the correlation between the intelligibilitpie of

one rater and the mean values of the four other experts. Tihe co

relations vary from 0.76 to 0.86. This is similar to the agneeat

of highly pathologic speakers, i.e., speakers with traekephageal
substitute voices [6]. So the agreement within the five satan be
regarded as reliable.

4. EVALUATION SYSTEM

In this paper we employ an evaluation system which is bas&lpn
port Vector RegressiofsVR) andGaussian Mixture Model&GGMM).
We first published the system in [7] where it was used to ddteym
the age of children. For that kind of evaluation, we assunhed t
the acoustics are changing during the growth of the vocat.ti&ve
based our evaluation only on a shift of the mean vectors fioen t

Since we use the same filter-bank and a simplified version of
PLP, the sole difference between RPLP and MFCC is that RPLP
performs an additional spectral smoothing step by appl¥iimear
prediction (LP) on the Mel filter-bank spectrum and obtagnthe
cepstral coefficients from the resulting PLP model spectlp

4.2. GMM-based Supervectors

The basic idea behind the GMM supervector approach is to mode
the acoustic features of a speaker by a GMM. This is the stdnda
approach in speaker identification/verification [12]. A GMMis
composed of\f unimodal Gaussian densities:

M

pleln) = wipi(elpi, 2i) (1)
i=1

M
—(1/2)(e—p)T=] He—py)

1
:Zwl —(2W)D/2|2i|<1/2)6 ) (2)
=1
wherew; denotes the weighBZ; the covariance matrix and; the
mean vector of the-th Gaussian density.

4.2.1. GMM Training

After extraction of the acoustic features, i.e., MFCCs oPBLa
UBM is created with all the available training data, using &M
algorithm [13]. The UBM is then employed as an initial mod=i &
MAP adaptation [14]. The MAP adaptation adjusts the UBM ® th
speaker-dependent training data in a single iteration atelocom-

UBM to the mean vectors of a speaker GMM. In this work, our mainbines these new densities with the UBM parameters based@rn a r

intention was that the acoustics of a pathologic speakfardifo the
acoustics of a normal speaker. Normal speakers have thibitioss

evance parameter. The relevance parameter considersrtieenof
speaker-specific feature vectors. Finally, a GMM is creéde@ach
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Fig. 2. Principle of the Support Vector Regression (SVR) system

speaker. We did not observe major differences between ridlici
agonal covariance matrices. Because of that we only preékent
results achieved with diagonal covariance matrices, amadtation
3 refers to the values of a diagonal covariance matrix.

4.2.2. Different Realizations of Supervectors

A GMM-based supervector is constructed by a selection oBtiid/
components, i.e., weights;, mean vectorg:; and diagonal covari-
ance matriceX; of each Gaussian densityIn terms of age recog-
nition, as described in [7], the supervector contained tmymean
vectors. For the evaluation of pathologic voices, we exgakthe
other GMM components, e.g. covariance matrices and weights
be very important for an automatic intelligibility assessm Due to
the fact that persons with speech disorders have difficuitigoro-
nouncing certain phones, we expected the variance, whichsents
the acoustic variety of a certain phoneme, to be more impbfta
our task. In order to examine the importance of the diffeempiects,
we defined different types of GMM-based supervectors wiffedi
ent GMM component combinations:

o w (dimension: M)
o i (dimension:D - M)
e X (dimension:D - M)
o n+3 (dimension:D - M - 2)
e wtp (dimension:M + D - M)
o w+ 3 (dimension:M + D - M)
s wt+p+3X (dimension:M + D - M - 2)

4.3. Support Vector Regression System

Figure 2 shows the principle of the training and the workieg s

model )\; is derived from the background mod&lsm. Note that
the background model is the same that is used to create the GMM
of the training speakers. Again, the GMM supervector istectéor
speaker, and an intelligibility prediction is performed by SVR [15]
For our experiments we employed a linear kernel.

5. RESULTS

We evaluated our system on 85 patients with pathologic goase
described in Section 2. We employed the MFCC and PLP approach
for acoustic feature extraction. The first part of Table 48ves

the results achieved with MFCCs, and the second part cantae
results with PLP features. We based the experiments on ffleeatfit
supervectors described in Section 4.2. With MFCCs a maximum
correlation to the mean value of the 5 human expert raters ef

0.77 was achieved when using a supervector composed of weights,
mean vectors and diagonal covariance matrices of the sp&akisl.

The number of Gaussian densities in this experiment wasst?iBie
dimension of the supervector wi88- (24-2+1) = 6272. The best
results with PLP features were achieved when using suptemngec
that contain the diagonal covariance matrices of GMMs wikb 2
Gaussians. The correlation to the human expertsiwas0.83 in

this case.

Hence, a system based on RPLP features seems to have a clear
advantage compared to an MFCC-based system (correlati@@®f
vs. 0.77). Due to the low number of patients (85 speakers) thi
argument can be weakened; the improvements are not significa
(p > 0.1; only five patterns are different).

However, a reason for the better performance of RPLP could
be the “peak-hugging property” of LP in combination with tiiel-
cepstrum features: The LP model spectrum is more influenged b
the peaks than by the dips [16]. This leads to a more accunate a
robust modeling of the vocal tract transfer function.

Another fact that should be mentioned is that the covarisote
the Gaussians are very important to assess pathologicsvoidee
PLP-based systems achieved the best correlation-010.83 when
the supervector contained the 256 diagonal entries of tharieo
ance matrices. Comparing this value with the results aeklidy
a supervector containing the 256 mean vectors=(0.75) the im-
provements are significant at the< 0.1 significance level. Patients
with pathologic voices often have difficulties in articutet one and
the same phone equally at different times. Phones are nmibtgle
weighted mixtures of different Gaussians. A different pnociation
of a specific phone in different realizations leads to Gaumssivith
a higher variance. So the shape and size of the varianceyismer
portant for the assessment of pathologic voices.

When comparing the results of the two systems with a supervec
tor that contains the covariance matrix entries, one cantsatthe
PLP-based system outperforms the MFCC-based system. éro€as
GMMs with 256 Gaussians, the PLP-based system achievese cor
lation coefficient of 0.83 and the MFCC-based system 0.78ees

quence of the SVR system. For each speaker of the training sdively. This again is significant at the < 0.1 significance level.
a GMM M\ is created. A GMM-based supervector is created for eacliPatients with a stronger pathology have difficulties incattting
GMM. These supervectors are used as input vectors for the SVBne and the same phone similar in different realizationgs TBads

training. They can be regarded as a mapping from the aceustic
a speaker (MFCCs or PLPs) to a higher-dimensional featw®re
which represents the speaker himself or his/her charatitsri In
the case of this paper, the property of interest is the igtbility.

to a higher variance of the voice. As mentioned above, PLRffes
are representing the phones more precisely, i.e., diffexaliza-
tions are noticeable. So the higher variance of the voiceodeated
directly within the GMMs, which affects the covariance nizes of

If the intelligibility of a speaker;j is to be determined, a speaker the Gaussian densities. A combined supervector of meansand



# of supervectors
Gaussiansd w | p | B | p+3¥ |wtp |w+E | wt+p+3
results with MFCC features

128 0.49| 0.73| 0.73| 0.76 0.74 0.74 0.77

256 0.63| 0.71| 0.73| 0.74 0.72 0.74 0.75

512 0.70 | 0.72| 0.73| 0.74 0.73 0.76 0.75

1024 0.66 | 0.71| 0.69 | 0.73 0.72 0.72 0.73
results with PLP features

128 0.47 | 0.75| 0.80| 0.79 0.76 0.80 0.79

256 0.63| 0.75| 0.83| 0.80 0.76 0.81 0.80

512 0.57| 0.76 | 0.82| 0.79 0.76 0.81 0.79

1024 0.57| 0.71| 0.72| 0.77 0.74 0.72 0.77

Table 2. Pearson Correlations dependent on the supervector amdithieer of Gaussian densities with MFCC and PLP features

variance values does not improve the PLP-based systemseerits
that the covariance matrix entries of the PLP-based systenara
adequate means to assess the voices of pathologic speakers.

In case of a supervector that contains the values of the diag-
onal covariance matrices of the Gaussian densities, theb@sEd [5]
system outperforms the MFCC-based system. But with a saperv
tor that contains only the weights of Gaussian densitiesMRCC-
based system shows slightly better correlation coeffisieRegard-
ing GMMs with 512 densities, the differences between the @FC
based system and the PLP-based system are significant mt<the
0.05 level. We do not have an explanation for this fact yet. Future
work will focus on that.

[4]

(6]

[7]

6. CONCLUSION
In this paper we described a system for the recognition aatyan (8]
sis of pathologic voices based only on the acoustic pragsedf a
patient’s voice. We evaluated the system on a dataset of i#&np=a
with pathologic voices. The system models the acousticqtimgs [9]
of a person’s speech by a GMM and uses this GMM as a meta fea-
ture in SVR. With this system we achieved a correlation betwae
GMM parameters and the intelligibility score of human expef up

to 0.83. Due to the fact that the system is only based on thesaco
tics of a voice, it is most likely that the system is languaggepen-
dent when a test covering most/all phonemes of a certainubgg

(20]

is used. Future work will focus on this task. [11]
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