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ABSTRACT

We describe a GMM-UBM-based evaluation system for pathologic
voices that uses standard cepstral features. Per speaker one GMM
is created and its components are used to create a so-called GMM
supervector. The supervector of each speaker is labeled with the
intelligibility values obtained by human evaluation and isused to
train an SVR. We studied different GMM supervectors containing
different GMM components. On a database of 85 pathologic speak-
ers, we achieved a correlation between the automatic systemand the
expert listeners ofr = 0.83 when using a 13312-dimensional super-
vector containing the values of the diagonal covariance matrices of
26-dimensional Gaussians.

Index Terms— Gaussian Mixture Models, Support Vector Ma-
chines, Acoustic Analysis, Pathologic Voices

1. INTRODUCTION

For speech therapy, it is very important to evaluate a patient’s voice
by a speech therapist. Objective, automatic measures are very help-
ful for this task. In previous works we showed that the word accuracy
(WA) of an automatic speech recognition system can be employed
as objective intelligibility measure for tracheoesophageal substitute
voices [1]. These are voices where the larynx has been removed
completely and the source of voice is located in the pharyngo-esopha-
geal segment. A correlation of|r| = 0.8 to human evaluations
could be achieved. If the cancer is detected in early and interme-
diate stages, a partial laryngectomy, i.e., a partial removal of the
larynx, is a sufficient means to stop the propagation of the cancer.
The advantage is that in most cases at least one of the vocal folds
or the vestibular folds can be preserved (see Figure 1). Compared
to the total laryngectomy with tracheoesophageal substitute voice,
the voice after partial laryngectomy sounds almost normal but com-
monly hoarse. This work focuses on a database of 85 pathologic
speakers, before and after partial laryngectomy.

In a previous study, the correlation between the WA and the sub-
jective raters was low (|r| = 0.6) [2]. It is assumed that due to the
higher and more uniform voice quality of partially laryngectomized
persons the WA alone is not a sufficient feature to achieve high cor-
relations to the intelligibility scores of the expert listeners on a small
evaluation text of 107 words.
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Fig. 1. Anatomy of an intact larynx

In this work we present an approach which is only based on
the acoustic properties of affected speakers. To our knowledge this
approach has not been used before for speech assessment. We as-
sume that there is a similarity between these automaticallycomputed
acoustic properties and the intelligibility scores from expert listen-
ers. The acoustic features of a speaker are modeled byGaussian
Mixture Models(GMMs). The system uses aUniversal Background
Model(UBM) that is adapted byMaximum A Posteriori(MAP) adap-
tation to speaker-specific spectral features. Based on the speaker-
specific GMM, supervectors are extracted. Supervectors contain cer-
tain components of the GMMs. These supervectors are labeledwith
the experts’ intelligibility score and are used as input vectors for a
Support Vector Regression(SVR). In order to evaluate the acoustics
of a speaker equally, it is important that every patient reads/speaks
the same text or a text, that contains all phonemes of a certain lan-
guage. Assuring this, all speaker GMMs are created with the same
information and should be similar for speakers with similarpathol-
ogy. Patient’s with different states of pathology are supposed to be
represented by different GMMs.

The remainder of the paper is organized as follows. Section 2
introduces the dataset used for training and evaluation. Section 3
gives some details on the subjective evaluation performed by expert



rater MS RO SA SU VD
r 0.82 0.76 0.80 0.86 0.83

Table 1. Correlation between intelligibility scores of one rater and
the mean value of the others

listeners and shows their inter-rater agreements. Section4 describes
the evaluation system and the different employed GMM-basedsu-
pervectors. In Section 5 we present leave-one-speaker-outresults
achieved with these supervectors. The paper concludes witha sum-
mary and proposed future research.

2. DATA

The dataset contains recordings of 85 patients. 75 of them are males
and 10 are females. They suffer from cancer in different regions
of the larynx. 65 of them had already undergone partial laryngec-
tomy, 20 speakers were still awaiting surgery. The former group
was recorded on the average 2.4 months after surgery. The average
age of all speakers was 60.7 years with a standard deviation of 9.7
years. The youngest and the oldest person were 34 and 83 yearsold,
respectively.

Each person read the text “Der Nordwind und die Sonne”, a
phonetically balanced text with 108 words (71 disjunctive)which
is used in German speaking countries in speech therapy. It contains
all phonemes of the German language. The English version is known
as “The North Wind and the Sun” [3]. The speech data were sam-
pled with 16 kHz and an amplitude resolution of 16 bit. They were
recorded in a quiet room in the university clinics in Erlangen and
digitally stored on a server by a client/server-based system [4].

3. SUBJECTIVE EVALUATION

Five experienced phoniatricians and speech scientists evaluated each
speaker’s intelligibility according to a 5-point Likert scale [5] with
the labels “very high”, “high”, “moderate”, “low”, and “none”. For
each patient five different intelligibility labels were collected. Each
rater’s decision was converted to an integer number between1 and 5.
As reference for the automatic evaluation, the mean value ofthe five
ratings was calculated for each patient. The speech data were labeled
with this reference value and used in the automatic system.

Table 1 shows the correlation between the intelligibility score of
one rater and the mean values of the four other experts. The cor-
relations vary from 0.76 to 0.86. This is similar to the agreement
of highly pathologic speakers, i.e., speakers with tracheoesophageal
substitute voices [6]. So the agreement within the five raters can be
regarded as reliable.

4. EVALUATION SYSTEM

In this paper we employ an evaluation system which is based onSup-
port Vector Regression(SVR) andGaussian Mixture Models(GMM).
We first published the system in [7] where it was used to determine
the age of children. For that kind of evaluation, we assumed that
the acoustics are changing during the growth of the vocal tract. We
based our evaluation only on a shift of the mean vectors from the
UBM to the mean vectors of a speaker GMM. In this work, our main
intention was that the acoustics of a pathologic speaker differs to the
acoustics of a normal speaker. Normal speakers have the possibility

to pronounce a vowel or word always in the same way. Pathologic
speakers have difficulties in doing that. So not only the meanvectors
but also the variances seem to be important to perform an evaluation
of pathologic speech. In this section we describe the systemin detail.

First, short-time features in form ofMel-Frequency Cepstrum
Coefficients(MFCCs) andPerceptive Linear Prediction(PLP) are
extracted from the speech signal. GMMs are employed to model
these features for each speaker, i.e., a GMM for each speakeris
adapted from a UBM. Such a system has been used for voice dis-
order assessments in [8, 9]. In our system the GMM is then used
as meta feature vector for an SVR, i.e., GMM-based supervector.
We evaluated different kinds of supervectors. They are described in
Section 4.2.

4.1. Feature Extraction

The first type of features we studied were MFCCs. A Hamming
window with a size of 16 ms and a time shift of 10 ms is applied
to the speech signal. The Mel spectrum with 25 triangle filters is
calculated afterwards. At the end, a 24-dimensional feature vector,
which contains log energy, 11 Mel-frequency cepstral coefficients
and the first-order derivatives of these 12 static features is created
(D = 24).

The second set of features is revised PLP (RPLP) [10], a simpli-
fied and improved variant of PLP [11] employing the Mel filter-bank
instead of the Bark filter-bank. We took the first 13 cepstral coef-
ficients of the PLP model spectrum and their first-order derivatives
which results in a feature dimension ofD = 26.

Since we use the same filter-bank and a simplified version of
PLP, the sole difference between RPLP and MFCC is that RPLP
performs an additional spectral smoothing step by applyinglinear
prediction (LP) on the Mel filter-bank spectrum and obtaining the
cepstral coefficients from the resulting PLP model spectrum[10].

4.2. GMM-based Supervectors

The basic idea behind the GMM supervector approach is to model
the acoustic features of a speaker by a GMM. This is the standard
approach in speaker identification/verification [12]. A GMMλ is
composed ofM unimodal Gaussian densities:

p(c|λ) =
M
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i
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whereωi denotes the weight,Σi the covariance matrix andµi the
mean vector of thei-th Gaussian density.

4.2.1. GMM Training

After extraction of the acoustic features, i.e., MFCCs or PLPs, a
UBM is created with all the available training data, using the EM
algorithm [13]. The UBM is then employed as an initial model for a
MAP adaptation [14]. The MAP adaptation adjusts the UBM to the
speaker-dependent training data in a single iteration stepand com-
bines these new densities with the UBM parameters based on a rel-
evance parameter. The relevance parameter considers the number of
speaker-specific feature vectors. Finally, a GMM is createdfor each
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Fig. 2. Principle of the Support Vector Regression (SVR) system

speaker. We did not observe major differences between full and di-
agonal covariance matrices. Because of that we only presentthe
results achieved with diagonal covariance matrices, and the notation
Σ refers to the values of a diagonal covariance matrix.

4.2.2. Different Realizations of Supervectors

A GMM-based supervector is constructed by a selection of theGMM
components, i.e., weightsωi, mean vectorsµi and diagonal covari-
ance matricesΣi of each Gaussian densityi. In terms of age recog-
nition, as described in [7], the supervector contained onlythe mean
vectors. For the evaluation of pathologic voices, we expected the
other GMM components, e.g. covariance matrices and weights, to
be very important for an automatic intelligibility assessment. Due to
the fact that persons with speech disorders have difficulties in pro-
nouncing certain phones, we expected the variance, which represents
the acoustic variety of a certain phoneme, to be more important for
our task. In order to examine the importance of the differentaspects,
we defined different types of GMM-based supervectors with differ-
ent GMM component combinations:

• ω (dimension:M )

• µ (dimension:D · M )

• Σ (dimension:D · M )

• µ + Σ (dimension:D · M · 2)

• ω + µ (dimension:M + D · M )

• ω + Σ (dimension:M + D · M )

• ω + µ + Σ (dimension:M + D · M · 2)

4.3. Support Vector Regression System

Figure 2 shows the principle of the training and the working se-
quence of the SVR system. For each speaker of the training set,
a GMM λ is created. A GMM-based supervector is created for each
GMM. These supervectors are used as input vectors for the SVR
training. They can be regarded as a mapping from the acoustics of
a speaker (MFCCs or PLPs) to a higher-dimensional feature vector
which represents the speaker himself or his/her characteristics. In
the case of this paper, the property of interest is the intelligibility.
If the intelligibility of a speakerj is to be determined, a speaker

modelλj is derived from the background modelλUBM . Note that
the background model is the same that is used to create the GMMs
of the training speakers. Again, the GMM supervector is created for
speakerj, and an intelligibility prediction is performed by SVR [15].
For our experiments we employed a linear kernel.

5. RESULTS

We evaluated our system on 85 patients with pathologic voices as
described in Section 2. We employed the MFCC and PLP approach
for acoustic feature extraction. The first part of Table 4.3 shows
the results achieved with MFCCs, and the second part contains the
results with PLP features. We based the experiments on the different
supervectors described in Section 4.2. With MFCCs a maximum
correlation to the mean value of the 5 human expert raters ofr =
0.77 was achieved when using a supervector composed of weights,
mean vectors and diagonal covariance matrices of the speaker GMM.
The number of Gaussian densities in this experiment was 128,so the
dimension of the supervector was128 ·(24 ·2+1) = 6272. The best
results with PLP features were achieved when using supervectors
that contain the diagonal covariance matrices of GMMs with 256
Gaussians. The correlation to the human experts wasr = 0.83 in
this case.

Hence, a system based on RPLP features seems to have a clear
advantage compared to an MFCC-based system (correlation of0.83
vs. 0.77). Due to the low number of patients (85 speakers) this
argument can be weakened; the improvements are not significant
(p ≥ 0.1; only five patterns are different).

However, a reason for the better performance of RPLP could
be the “peak-hugging property” of LP in combination with theMel-
cepstrum features: The LP model spectrum is more influenced by
the peaks than by the dips [16]. This leads to a more accurate and
robust modeling of the vocal tract transfer function.

Another fact that should be mentioned is that the covariances of
the Gaussians are very important to assess pathologic voices. The
PLP-based systems achieved the best correlation ofr = 0.83 when
the supervector contained the 256 diagonal entries of the covari-
ance matrices. Comparing this value with the results achieved by
a supervector containing the 256 mean vectors (r = 0.75) the im-
provements are significant at thep ≤ 0.1 significance level. Patients
with pathologic voices often have difficulties in articulating one and
the same phone equally at different times. Phones are modeled by
weighted mixtures of different Gaussians. A different pronunciation
of a specific phone in different realizations leads to Gaussians with
a higher variance. So the shape and size of the variance is very im-
portant for the assessment of pathologic voices.

When comparing the results of the two systems with a supervec-
tor that contains the covariance matrix entries, one can see, that the
PLP-based system outperforms the MFCC-based system. In case of
GMMs with 256 Gaussians, the PLP-based system achieves a corre-
lation coefficient of 0.83 and the MFCC-based system 0.73 respec-
tively. This again is significant at thep ≤ 0.1 significance level.
Patients with a stronger pathology have difficulties in articulating
one and the same phone similar in different realizations. This leads
to a higher variance of the voice. As mentioned above, PLP features
are representing the phones more precisely, i.e., different realiza-
tions are noticeable. So the higher variance of the voice is modeled
directly within the GMMs, which affects the covariance matrices of
the Gaussian densities. A combined supervector of means andco-



# of supervectors
Gaussians ω µ Σ µ + Σ ω + µ ω + Σ ω + µ + Σ

results with MFCC features
128 0.49 0.73 0.73 0.76 0.74 0.74 0.77
256 0.63 0.71 0.73 0.74 0.72 0.74 0.75
512 0.70 0.72 0.73 0.74 0.73 0.76 0.75
1024 0.66 0.71 0.69 0.73 0.72 0.72 0.73

results with PLP features
128 0.47 0.75 0.80 0.79 0.76 0.80 0.79
256 0.63 0.75 0.83 0.80 0.76 0.81 0.80
512 0.57 0.76 0.82 0.79 0.76 0.81 0.79
1024 0.57 0.71 0.72 0.77 0.74 0.72 0.77

Table 2. Pearson Correlations dependent on the supervector and thenumber of Gaussian densities with MFCC and PLP features

variance values does not improve the PLP-based system, so itseems
that the covariance matrix entries of the PLP-based system are an
adequate means to assess the voices of pathologic speakers.

In case of a supervector that contains the values of the diag-
onal covariance matrices of the Gaussian densities, the PLP-based
system outperforms the MFCC-based system. But with a supervec-
tor that contains only the weights of Gaussian densities, the MFCC-
based system shows slightly better correlation coefficients. Regard-
ing GMMs with 512 densities, the differences between the MFCC-
based system and the PLP-based system are significant at thep ≤
0.05 level. We do not have an explanation for this fact yet. Future
work will focus on that.

6. CONCLUSION

In this paper we described a system for the recognition and analy-
sis of pathologic voices based only on the acoustic properties of a
patient’s voice. We evaluated the system on a dataset of 85 patients
with pathologic voices. The system models the acoustic properties
of a person’s speech by a GMM and uses this GMM as a meta fea-
ture in SVR. With this system we achieved a correlation between the
GMM parameters and the intelligibility score of human experts of up
to 0.83. Due to the fact that the system is only based on the acous-
tics of a voice, it is most likely that the system is language indepen-
dent when a test covering most/all phonemes of a certain language
is used. Future work will focus on this task.
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