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ABSTRACT

We describe a novel evaluation system for the intelligibil-
ity assessment of children with CLP on standardized tests.
The system is solely based on standard cepstral features in
form of MFCCs. No other information like word alignments
is used. So the system can be easily adapted to other lan-
guages. For each child one GMM is created by adaptation
of a UBM to the speaker-specific MFCCs. The components
of this GMM are concatenated in order to create a so-called
GMM supervector. These GMM supervectors are then used
as meta features for an SVR. We evaluated our language-
independent system on two different datasets of children
suffering from CLP. One dataset contains recordings of 35
German children, where the children named different pic-
tograms. The other dataset contains recordings of 14 Ital-
ian speaking children, who repeated standardized sentences.
On both datasets we achieved high correlations: up to 0.81
for the German dataset and 0.83 for the Italian dataset.
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1. INTRODUCTION
Cleft lip and palate (CLP) is the most common malfor-

mation of the head with incomplete closure of the cranial
vocal tract. Speech disorders can still be present after recon-
structive surgical treatment. The characteristics of speech
disorders are mainly a combination of different articulatory
aspects, e.g., nasal air emissions that lead to altered nasality,
a shift in localization of articulation, e.g., using a /d/ built
with the tip of the tongue instead of a /g/ built with the
back of the tongue or vice versa, and a modified articulatory
tension, e.g., weakening of the plosives. They affect not only
the intelligibility but therewith the social competence and
emotional development of a child.
For speech therapy of children with CLP, it is very impor-
tant to evaluate the development of a child’s voice before
and after reconstructive surgery. This is normally achieved
by an intelligibility assessment of a speech therapist famil-
iar with children’s speech. Objective, automatic measures
are very helpful for this task. In [8] a system based on auto-
matic speech recognition (ASR) has been shown to be useful
for this task: We achieved high correlations (0.9) between
the word accuracy (WA) of the system and the intelligibility
scores of human experts. A drawback of this system is it’s
complexity. If one wants to adapt it to another language a
lot of training speech data and the corresponding transliter-
ations are needed.
In this work we present an approach which is solely based on
acoustic features. The idea behind the approach rests upon
the assumption that there is a similarity between automat-
ically computed acoustic properties and the intelligibility
scores from expert listeners. The acoustic space of a child is
modeled by Gaussian Mixture Models (GMMs). Therefore,
a Universal Background Model (UBM) is adapted by Max-
imum A Posteriori (MAP) adaptation to speaker-specific
spectral features. This creates a speaker-specific GMM, that
models the acoustic space of a certain child. In order to
evaluate the acoustics of a child correctly/adequately, it is
important that every child speaks the same text or a text,
that contains all phonemes of a certain language. The idea is
now, that children with the same severeness of CLP and in-



telligibility have similar acoustic spaces, i.e., similar GMMs,
so that GMMs can directly be used to assess the intelligi-
bility. Based on these GMMs, supervectors are extracted.
Supervectors consist of certain components of the GMMs.
These supervectors are labeled with the experts’ intelligibil-
ity score and are used as input vectors for a Support Vector
Regression (SVR). The remainder of the paper is organized
as follows. Section 2 introduces the datasets used for train-
ing and evaluation. In order to show, that the system can
also be used for different languages, we evaluated it on a
dataset of Italian and a dataset of German children. Sec-
tion 3 describes the evaluation system and the different em-
ployed GMM-based supervectors. In Section 4 we present
leave-one-speaker-out results for the two different datasets.
The paper concludes with a summary (Section 5) and pro-
posed future research (Section 6).

2. DATASETS
Two different datasets have been used in this paper. Each

dataset was recorded with a sampling rate of 16 kHz and a
quantization of 16 bit. The recordings were performed with
PEAKS (Program for the Evaluation and Assessment of all
Kinds of Speech) [7].

2.1 German CLP dataset
35 German children with CLP were recorded at the De-

partment of Pedaudiology and Phoniatrics of the University
Hospital in Erlangen. The mean age of the children was
8.5 ± 3.5 years. All children performed the PLAKSS Test
[4], a semi-standardized test which is commonly used by
speech therapists. The test is composed of 99 pictograms.
These have to be named by the children. The test con-
tains all phonemes of the German language and the most
important conjunctions among them at different word po-
sitions (beginning, central or ending). All children were
recorded with the same microphone, a standard headset
microphone (dnt Call 4U Comfort) with external Analog-
to-Digital-Converter (ADC). The mean recording time was
approximately 9minutes.
For each child an 5-scale Likert-based intelligibility assess-
ment as described in [6] was used. The subjective intelligi-
bility assessment was performed by 5 speech therapists, who
are familiar with CLP children.

2.2 Italian CLP dataset
14 Italian children with CLP were recorded at the Max-

illofacial Division of the “Azienda Ospedaliera San Paolo”,
a hospital located in Milan. All children are native Ital-
ian speakers. The mean age of the 14 children was 8 years.
All children repeated a set of sentences that are part of a
standardized test. The test was developed at the San Paolo
hospital and consists of 19 sentences. Each sentence focuses
on a certain phoneme. The phoneme can appear at the
beginning or in the middle of a word. Combinations with
other phonemes or groups of phonemes are also handled in
these sentences. The mean recording time is approximately
3.5minutes.
All children were recorded with the same microphone with
an external ADC. A global intelligibility evaluation by an ex-
pert Italian speech therapist was performed on the dataset.
This evaluation is similar to the evaluation of the German
dataset, but the scale ranged from 0 to 3. A lower value

means thus better speech intelligibility. A higher one indi-
cates a lower speech intelligibility.

3. AUTOMATIC ASSESSMENT SYSTEM
In this paper we employ an evaluation system which is

based on Support Vector Regression (SVR) and Gaussian
Mixture Models (GMM). We first published the system in
[2] where it was used to determine the age of children. For
that kind of evaluation, we assumed that the acoustics are
changing during the growth of the vocal tract. We based
our evaluation only on a shift of the mean vectors from the
UBM to the mean vectors of a speaker GMM. In [1] we
adapted the system to the task of intelligibility assessment of
patient’s with partial laryngectomy. Our main assumption
was that the acoustics of a pathologic speaker differ to the
acoustics of a normal speaker. Normal speakers have the
possibility to pronounce a vowel or word always in the same
way. Pathologic speakers have difficulties in doing so. Thus,
we used not only the mean vectors but also the variances
to perform an evaluation of pathologic speech. We achieved
correlations to human raters of up to 0.83 with this system.

In this section we briefly describe the system. First, short-
time features in form of Mel-Frequency Cepstrum Coeffi-
cients (MFCCs) are extracted from the speech signal. GMMs
are employed to model these features for each child, i.e., a
GMM for each child is adapted from a UBM. This GMM
models the acoustic space of a child. In our system the
GMM is then used as a meta feature vector for an SVR.
Therefore different components of a GMM are concatenated
to a huge vector. This vector is called GMM-based super-
vector. We evaluated different kinds of supervectors.

3.1 Feature Extraction
As features we use the well-known MFCCs. These features

perform a short time analysis of the speech signal. Therefore
a Hamming window with a size of 16ms and a time shift of
10ms is applied to the signal. The Mel spectrum with trian-
gle filters is calculated afterwards. The cepstral coefficients
are computed by an inverse discrete cosine transform of the
logarithmic Mel spectrum. Finally, a 24-dimensional fea-
ture vector is created. It contains the first 12 Mel-frequency
cepstral coefficients and their first-order derivatives.

3.2 GMM-based Supervectors
GMMs model the acoustic features, and with this the

acoustic space, of a specific speaker. A GMM (λ) contains
M unimodal Gaussian densities. Each density represents a
different acoustic area:
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The idea is now to train these speaker-specific GMMS and
use their parameters in a Support Vector Regression (SVR)
[9]. The parameters of the densities i (i = 1, ..., M), i.e.,
weight (wi), mean (µi) and covariance (Σi) are concate-
nated to a vector afterwards.

3.2.1 GMM Training

After feature extraction a UBM is created on a dataset of
healthy speakers. This is achieved by using 5 iterations of
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Figure 1: Principle of the Support Vector Regres-
sion (SVR) system

the EM algorithm [3]. Beginning with this UBM a speaker-
dependent GMM is built by MAP adaptation [5]. The MAP
adaptation takes the UBM as an initial model and adapts
the statistics to the acoustic features of a specific speaker
in a single iteration step. These new densities are combined
with the UBM statistics afterwards. The combination of
new and old statistics is based on a relevance parameter,
which takes the number of speaker-specific feature vectors
into account. Finally, a GMM is created for each speaker.
We did not observe major differences between full and diag-
onal covariance matrices. Because of that we only present
the results achieved with diagonal covariance matrices, and
the notation refers to the values of a diagonal covariance
matrix.

3.2.2 Final Support Vector Regression System

Figure 1 shows the principle of the GMM supervector-
based SVR system. For each child of the training set, a
GMM λ is created. The components of each GMM are con-
catenated to a GMM-based supervector. These supervectors
are used as input vectors for the SVR training. They can be
regarded as a mapping from the acoustics of a speaker, i.e.,
MFCCs, to a higher-dimensional feature vector which rep-
resents the speaker himself or his/her characteristics. In the
case of this paper, the property of interest is the intelligibil-
ity. If the intelligibility of a speaker j has to be determined,
a speaker model λj is derived from the background model
λUBM . Note that the background model is the same that
is used to create the GMMs of the training speakers. A
GMM supervector is created for speaker j, and an intelligi-
bility prediction is performed by SVR. For our experiments
we employed an SVR with a linear kernel.

4. EXPERIMENTS AND RESULTS
We evaluated our system on two different datasets of chil-

dren with CLP. A database of 35 German speaking children,
and a database of 14 Italian speaking children. Due to lack
of training data, we used an UBM trained on healthy Ger-
man children with a similar age distribution. We based the
experiments on different supervectors. In [1] we varied the
composition of the GMM supervectors. Four of them have
been of bigger interest. The experiments in this work are
based on the 4 different types of supervectors: one con-
taining the weights, one containing the mean vectors, one
containing the diagonal covariance matrices and finally a

# of Context 3 Context 3 Context 5
densities 18 Mel filters 25 Mel filters 25 Mel filters

German
32 0.75 0.79 0.71
64 0.72 0.80 0.70
128 0.75 0.80 0.73

Italian
32 0.76 0.64 0.76
64 0.68 0.61 0.71
128 0.53 0.55 0.61

Table 1: Pearson correlations against different
MFCC parameters on the two datasets

combination of all three of them. On the German dataset
we achieved correlation to the mean value of the 5 human
experts of up to r = 0.81. On the Italian dataset a maximum
correlation coefficient of r = 0.83 was achieved.

4.1 Results with different MFCC parameters
We investigated different parameters of the feature ex-

traction process. We varied the number of filters in the
Mel spectrum and the context length for the derivative cal-
culation. The experiments have been performed for both
datasets. We did not find significant difference for the differ-
ent parameters within one dataset. But we found regularity
within these parameters for each of the two datasets: On
the German dataset the best results where achieved, when
the first derivative is calculated with a context of three and
a Mel spectrum with 25 triangular filters. On the Italian
dataset a context of five and a Mel spectrum with 25 tri-
angular filters achieved the best results. These regularities
could arise because of the different languages and the dif-
ferent types of recordings. The German dataset contains
recordings, where children have to name small pictograms.
The Italian dataset contains repeated sentences. A more
general statement needs a deeper investigation with bigger
datasets. In Table 1 a summary for the MFCC parameters
is given. These experiments used a supervector containing
weight, means and diagonal covariance matrices.

4.2 Results on German dataset
The results achieved on the German dataset are shown in

Table 2. The experiments are based on different supervec-
tors. The first column contains supervectors, where only the
weights are incorporated. Here, the best correlation coeffi-
cient of 0.62 was achieved with 256 Gaussians. Supervectors
that contain the mean vectors achieved the best result of
0.79 also with 256 Gaussian densities. A supervector com-
posed of the diagonal covariance entries could not reach this
value. With a growing number of densities the correlation
coefficient is growing, especially when focusing on supervec-
tors that contain weights or mean vectors. More densities
lead to a more precise observation of the acoustic proper-
ties of the children’s speech. Covariance supervectors reach
a stable result of 0.72 or 0.73. Due to the high amount of
available data for each speaker (approx. 9min.) the dataset
is quite balanced and GMMs with a high number of Gaus-
sian mixtures can be trained.
The combination of all three Gaussian components to a
very high-dimensional vector a correlation coefficient of 0.81
could be achieved. 256 Gaussians were used in this case.



# of supervectors
Gaussians w µ Σ w + µ + Σ

32 0.62 0.67 0.72 0.79
64 0.54 0.75 0.72 0.80
128 0.51 0.77 0.73 0.80
256 0.71 0.79 0.73 0.81

Table 2: German dataset: Pearson correlation de-
pendent on the number of Gaussian densities and
the components of the supervector

# of supervectors
Gaussians w µ Σ w + µ + Σ

32 0.42 0.69 0.83 0.76
64 0.35 0.63 0.78 0.71
128 0.42 0.53 0.51 0.61
256 0.36 0.49 0.47 0.42

Table 3: German dataset: Pearson correlation de-
pendent on the number of Gaussian densities and
the components of the supervector

The dimension of the supervector is 12544 in this case. The
differences between the four different kinds of supervectors
are not significant at any comparison.

4.3 Results on Italian dataset
The correlation coefficients achieved on the Italian dataset

are summarized in Table 3. Supervectors containing the
weights achieved only low correlations of up to 0.42 with
32 or 128 Gaussian densities. A significant improvement
(p ≤ 0.1) compared to weight-based supervectors could be
achieved with 768 dimensional (32 Gaussians) mean super-
vectors. The correlation coefficient is 0.69 in this case. Su-
pervectors using diagonal covariance matrices achieved r =
0.83. Due to the low number of speakers, the improvement is
not significant compared to the previous results. A combina-
tion of all three components achieved an inferior correlation
coefficient of 0.76.
It can be observed that a higher amount of Gaussian den-
sities did not lead to higher correlation coefficients. Be-
cause of the low amount of speech data for each speaker
(approx. 3.5min) no better modeling of the acoustic space
was achieved when increasing the number of densities. This
effect is amplified by the low amount of test speakers in the
Italian dataset, i.e., 14 speakers, so that a balanced training
of the SVR could not be ensured.

5. SUMMARY
In this work we presented a system for the analysis and

assessment of voices of children suffering from CLP. The
system is only based on acoustic information, so that it is
mostly likely working for different languages. In order to
show the language independent character of the system, we
evaluated it on two different datasets: 35 German children
and 14 Italian children. The system models the acoustic
space of the children by GMMs. The main assumption is,
that there is a linear relation between these GMMs and the
intelligibility score assigned by human experts. On the Ger-
man dataset we achieved a correlation between these ex-
perts’ score and the GMM of r = 0.81. On the Italian
dataset our highest achieved correlation was r = 0.83.

6. FUTUREWORK
We have shown, that the introduced system can be easily

adapted to different languages. This is a first step towards
a language independent evaluation and assessment system
of CLP children. In future work we would like to focus on
datasets with comparable expert’s scores.
Additionally we would like to focus on a more detailed anal-
ysis of the proposed feature extraction mechanism and the
corresponding parameters.
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