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Abstract

The projection data measured in computed tomography (CT) and, consequently, the slices
reconstructed from these data are noisy. This thesis investigates methods for structure-
preserving noise reduction in reconstructed CT datasets. The goal is to improve the signal-
to-noise ratio without increasing the radiation dose or loss of spatial resolution. Due to the
close relation between noise and radiation dose, this improvement at the same time opens
up a possibility for dose reduction. Two different originalapproaches, which automatically
adapt themselves to the non-stationary and non-isotropic noise in CT, were developed,
implemented and evaluated.

The first part of the thesis concentrates on wavelet based noise reduction methods.
They are based on the idea of using reconstructions from two disjoint subsets of projec-
tions as input to the noise reduction algorithm. Correlationanalysis between the wavelet
coefficients of the input images and noise estimation in the wavelet domain is used for dif-
ferentiating between structures and noise. In the second part, an original approach based
on noise propagation through the reconstruction algorithmis presented. A new method for
estimating the local noise variance and correlation in the image from the noise estimates of
the measured data is proposed. Based on the additional information about the image noise,
an adaptive bilateral filter is introduced.

The proposed methods are all evaluated with respect to the obtained noise reduction
rate, but also in terms of their ability to preserve structures. A contrast dependent resolution
analysis is performed to estimate the dose reduction potential of the different methods. The
achieved noise reduction of about 60% can lead to dose reduction rates between 40% to
80%, depending on the clinical task.



Kurzfassung

Die in der Computertomographie (CT) gemessenen Daten sind verrauscht und somit auch
die daraus rekonstruierten Schichten. In dieser Arbeit werden Methoden zur struktur-
erhaltenden Filterung von rekonstruierten CT Datensätzen untersucht. Das Ziel ist eine
Verbesserung des Signal-zu-Rausch-Verhältnisses ohne Erhöhung der Strahlendosis oder
Verlust an Ortsauflösung. Aufgrund des engen Zusammenhangszwischen Rauschen und
Strahlendosis eröffnet diese Verbesserung auch die Möglichkeit zur Dosisreduktion. Zwei
verschiedene originäre Ansätze, die sich automatisch an das nicht-stationäre und nicht-
isotrope Rauschen in der CT anpassen wurden entwickelt, implementiert und ausgewertet.

Der erste Teil der Arbeit konzentriert sich auf Wavelet basierte Rauschreduktionsver-
fahren. Diese basieren auf der Idee, Rekonstruktionen von zwei disjunkten Teilmengen
an Projektionen als Eingabe für den Algorithmus zu verwenden. Korrelationsanalysen
zwischen den Waveletkoeffizienten der Eingangsbilder und eine Rauschabschätzumg im
Waveletraum werden zur Differenzierung von Struktur und Rauschen verwendent. Im
zweiten Teil der Arbeit wird ein originäres Verfahren vorgeschlagen, das auf Rauschfort-
pflanzung durch den Rekonstruktionsalgorithmus basiert. Eine neue Methode zur Ab-
schätzung der lokalen Varianz und Korrelation des Rauschen im Bild aus der Rausch-
abschätzung der gemessenen Daten wird vorgeschlagen. Basierend auf der zusätlichen
Information über das Bildrauschen wird ein adaptiver bilateraler Filter vorgestellt.

Die vorgeschlagenen Methoden werden alle bezüglich der erreichten Rauschreduktion-
srate, aber auch in Hinblick auf ihre Fähigkeiten Strukturen zu erhalten untersucht. Eine
kontrastabhängige Analyse der Ortsauflösung wird durchgeführt und zur Abschätzung des
Dosisreduktionspotenials der verschiedenen Methoden verwendet. Die erzielte Rauschre-
duktion von etwa 60% kann je nach klinischer Fragestellung zu Dosiseinsparungen zwis-
chen 40% und 80% führen.
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Chapter 1

Introduction

1.1 Motivation

Computed tomography (CT), invented by Godfrey N. Hounsfield in1972, was the first
method that allowed to generate non-overlapping axial slices of the interior of a human’s
body without opening it. Today, CT is associated with high efficiency in radiologic diag-
nostics and has become an indispensable tool in medical examinations. Unfortunately, it is
also said to be a high dose application: although CT made up only about 7% of all radio-
logic examinations in 2005, its contribution to the overallexposure of humans in Germany
to radiation in medical examinations was approximately 56%[Umwe 08]. This explains
the increased interest in the development of new techniquesfor dose reduction in CT that
was strongly noticable during the last few years. The difficulty that arises with the demand
for dose reduction is its direct impact on image quality.

All physical measurements are subject to statistical uncertainty, which, in case of CT,
is primarily due to the variable number of X-ray quanta measured at the detector. The re-
sulting interference, which is known as quantum noise, is the most relevant noise source
in CT. Noise introduced in the measurement of the intensitiespropagates through the re-
construction algorithm to the resulting CT slices. There, noise is recognizable as pixel
noise. The connection between dose and image quality is clearly visible: with a decreasing
radiation dose the noise increases, which makes a reliable diagnosis more difficult or even
impossible. An additional problem is that X-rays passing through the human’s body are
attenuated differently, depending on the density and the amount of the material along the
ray. Therefore, the strength of noise varies between the different measurements, which
leads to inhomogeneous noise in the reconstructed slices. Especially in body regions like
the shoulder or the hip, directed noise appears, pointing out the direction of strongest at-
tenuation, for example, where the rays had to travel throughdensest material, e.g. bones,
or largest tissue quantity.

The investigation of new approaches for dose reduction without loss of image quality
is one of the major topics in CT research, today. If it was possible to reduce the noise in
lower dose images while preserving all clinically relevantstructures, essentially producing
images that correspond to those generated with a higher dose, the problem would be solved.
But how can the noise be minimized without the loss of diagnostically relevant content
of the image? This is a difficult task and many methods for noise reduction lack this
important property. For example, it is widely known that simple lowpass filters can be

1



2 Chapter 1. Introduction

used to eliminate high frequency noise. However, it is also common knowledge that their
application results in blurred edges and the destruction ofsmall structures, meaning lower
spatial resolution. Thus, always a compromise must be foundbetween radiation dose, noise
and spatial resolution.

1.2 Related Work

Different techniques for dose reduction in CT have been proposed in the recent years.
In [McCo 06] X-ray beam filtration, X-ray beam collimation, automatic exposure control,
peak kilovoltage optimization, improved detection systemefficiency and noise reduction
algorithms are listed as examples for technical mechanismsfor dose reduction. Of course,
since the installation of the first CT scanners until now, a lotof effort has been spent in
the development of new scanner hardware to achieve high image quality at lowest possible
radiation dose. The availability of faster computer systems and increased storage capability
are the reason why software based approaches for reducing the radiation dose gained more
and more attention. These software approaches can basically be separated into two groups:
the methods that perform dose optimization during the acquisition of the projection data
and the methods that try to improve the quality of the retrospectively acquired data.

One possibility for optimizing the acquisition is to use automatic exposure controls.
They adjust the tube current continuously during scanning and, thus, achieve a remarkable
dose reduction [Kalr 05, Gres 02, Sues 02]. Currently there are three automated exposure
control techniques available: longitudinal, angular, andcombined modulation [McCo 06].
Longitudinal modulation techniques adapt the tube currentfor different scanning positions,
depending on desired image quality and attenuation of the body region being scanned. For
this adaption, single localizer radiographies are commonly used. With angular modulation,
the overall dose for one rotation is distributed such that those directions with stronger at-
tenuation are acquired at a higher dose than those with lowerattenuation[Kale 99, Gres 00].
This makes the noise variance more homogeneous for the different directions and conse-
quently leads to more homogeneous noise in the images. Especially in the region of the
shoulder or hip, angular modulation is utilized. The major restriction is that X-ray tubes
cannot produce arbitrarily high doses. Consequently, directed noise cannot be completely
avoided. Even in cases where it is possible to adapt the tube current such that noise be-
comes more homogeneous across the different projections, further reduction of the overall
radiation dose leads to decreased image quality due to increased noise.

With the invention of CT the first publications about noise reduction based on sim-
ple lowpass filtering came up [Ruth 76, Chew 78]. The application of linear filters, how-
ever, requires a compromise between noise and resolution. Over the years, many different
approaches for noise suppression in CT have been investigated. For example, iterative
numerical reconstruction techniques that optimize statistical objective functions [Lang 95,
Elba 03]. Iterative reconstruction techniques have the advantage that the noise statistics
in the projections can directly be taken into account duringthe reconstruction process.
The disadvantage, however, is the high computational cost of iterative methods. This
is still the main reason, why they are not yet used in clinicalroutine. Other methods
model the noise properties in the projections and seek for a smoothed estimation of the
noisy data followed by filtered backprojection (FBP) [Fess 97, Li 04, La R 06]. Further-
more, several linear or nonlinear filtering methods for noise reduction in the projection
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data [Hsie 98, Kach 01, Demi 01] have been proposed. In the majority of the projection
based methods, the filters are adapted in order to reduce noise mostly in regions of highest
attenuation. Thus, the main goal of these methods is the reduction of directed noise and
streak artifacts. As a result, especially in the case of nearly constant noise variance over
all of the projections, these filters either do not remove anynoise, or the noise reduction is
accompanied by noticeable loss of image resolution.

The goal of the methods proposed here, is the structure-preserving reduction of pixel
noise in reconstructed CT-images. Most publications, wherestructure-preserving filters are
applied to the reconstructed images [Rust 02, Lu 03], however, do not account for the non-
stationary and anisotropic noise characteristics in CT. Thedifficult noise properties after
reconstruction are the main reason, why the direct application of standard edge-preserving
filtering methods, like nonlinear diffusion filtering [Catt 92] or bilateral filtering [Toma 98],
do not lead to convincing results. Basically, two problems are usually obtained: If the non-
stationarity of noise is not considered, some image regionsare strongly smoothed, while
other regions show nearly no filtering effect. The other problem is that most algorithms
are detecting structures based on gradient computation. Ifno information about the noise
anisotropy is present, noise streaks are sometimes detected to be structure and no smooth-
ing across them is performed. Comparable observations can bemade for other standard
approaches, in particular wavelet-domain denoising techniques, which decompose the in-
put data into its scale-space representation. Most of thesealgorithms are based on the
observation that information and white noise can be separated using an orthogonal basis
in the wavelet domain, as described e.g. in [Hubb 97]. Thresholding methods have been
introduced, which erase insignificant coefficients, but preserve those with larger values.
The difficulty is to find a suitable threshold. Choosing a very high threshold may lead to
visible loss of image structures. On the other hand, a very low threshold may result in
insufficient noise suppression. Various techniques have been developed for improving the
detection and preservation of edges and relevant image content, for example by comparing
the detail coefficients at adjacent scales [Xu 94, Fagh 02]. The additive noise in CT-images,
however, cannot be assumed to be white. Making matters even more complicated, noise is
not stationary, violating, for example, the assumptions in[Pizu 03] for estimating the sta-
tistical distributions of coefficients representing structures or noise. Furthermore, directed
noise grains are usually visible in CT images, what makes the distinction between noise
and structures even more difficult. Motivated by the complicated noise conditions in CT,
methods which adapt themselves to the noise in the images were developed here.

1.3 Contributions

This work investigates methods for structure-preserving noise reduction in reconstructed
CT datasets based on correlation analysis. The goal is to improve the signal-to-noise ratio
without increasing the radiation dose or noticeably affecting the spatial resolution. Due to
the close relation between image noise and radiation dose, this improvement at the same
time opens up a possibility for dose reduction. The contributions of this work can be
summarized as follows: Two different original approaches for noise reduction in CT were
developed, implemented and evaluated.

Wavelet Based Noise Reduction:The first approach is based on the idea of using
reconstructions from two disjoint subsets of projections as input to a wavelet based noise
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reduction algorithm, as we first introduced in [Bors 06]. Thisidea was inspired by the work
of Tischenko et al. [Tisc 05], where two radiography images,taken shortly after each other,
are used for wavelet denoising. The algorithm was refined, such that it can be combined
with different wavelet transformations and a new correlation coefficient based similarity
measurement was introduced in [Bors 08c]. An alternative wavelet based filtering method
was developed, which allows anisotropic filtering [Bors 07a]. In [Bors 08d] we propose
a local, frequency and orientation dependent noise estimation technique for threshold de-
termination in the wavelet domain. The weighting of noisy detail coefficients based on a
combination of correlation analysis and noise estimation and the extension of the algorithm
to 3-D was introduced in [Bors 07b].

Noise Propagation for Noise-Adaptive Bilateral Filtering: The second approach is
based on noise propagation through the reconstruction algorithm. A new approach for
computing pixelwise estimates of the noise variance in the reconstructed image was de-
veloped [Bors 08a]. In contrast to other approaches the correlations introduced to the data
during the reconstruction are modeled by linear system theory and taken into account.
The noise propagation approach was then extended in order toadditionally give informa-
tion about the local noise correlation. In [Bors 08b] we proposed a sine-/cosine-square-
weighting of the noise variances in the projections and separate noise propagation in order
to obtain the horizontal and vertical contribution of the noise variance for every pixel. The
approach was then extended such that for each individual pixel a specific separation into
two orthogonal directions can be computed [Bors 09]. The variance contribution in di-
rection of strongest correlation and orthogonal to that canbe determined for each pixel.
This additional knowledge can be used for improving filtering methods, like bilateral fil-
tering [Toma 98], by adapting it to the non-stationary and non-isotropic noise in CT.

Evaluation: In addition to the development of new noise reduction methods for CT,
this work also presents some new ideas for the evaluation of non-linear filters. Clearly, the
reduction of the noise variance in the image is an important quality criteria, but the influ-
ence on the spatial resolution plays an important role, too.Usually, spatial resolution is
only considered at high contrast objects. If non-linear processing is performed, image res-
olution might change depending on the local contrast-to-noise ratio. Therefore, a contrast
dependent evaluation of the spatial resolution becomes necessary, which was introduced
in [Bors 08c]. Furthermore, we proposed a new figure of merit for the noise-resolution-
tradeoff, we call SNR-gain [Bors 08b]. The evaluation is basedon the comparison to the
linear filtering, which leads to the same average spatial resolution. The new evaluation
method can be used for more realistically judging the potential for dose reduction, depend-
ing on the clinical task.

1.4 Thesis Outline

The thesis is structured as follows: The work starts with twochapters, where some theo-
retical basics are reviewed and summarized.

• Chapter 2: A short introduction to the basic concepts of CT is presented. The recon-
struction methods used throughout the rest of the thesis arereviewed. Furthermore,
two major quality criteria, noise and spatial resolution are introduced.
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• Chapter 3: The wavelet transformation theory is briefly reviewed and the different
wavelet transformation methods used for denoising in the following chapters are
described.

The main part of the thesis describes two different kinds of original noise reduction ap-
proaches for the use in CT. In both cases correlation analysisis used for obtaining informa-
tion about the local noise characteristics in the reconstructed datasets. How this correlation
analysis is performed, however, strongly differs between the two approaches.

The first part (Chapters 4-6) of the thesis describes wavelet based noise reduction meth-
ods that use two reconstructed CT datasets as input. The two input datasets are generated
such that they show the same structure but differ with respect to image noise.

• Chapter 4: Different possibilities for the generation of the two input datasets are
discussed. Two different methods for the detection of significant wavelet coefficients
based on correlation analysis are described and compared incombination with three
different wavelet transformation methods. Image noise andresolution are used for
quantifying the image quality in the processed images.

• Chapter 5: A new approach for local, orientation and frequency dependent noise
estimation in the wavelet domain is proposed. The standard deviation of noise is
estimated from the difference of the two input datasets. An adaptive thresholding in
the wavelet domain is performed based on the local noise estimates. The method is
evaluated with respect to noise, resolution and noise homogeneity and compared to
the approach presented in Chapter 4.

• Chapter 6: The combination of correlation analysis and local noise estimation for dif-
ferentiating between structures and noise in the wavelet domain is described. Noise
reduction algorithm can be applied either to the reconstructed 2-D slices or the 3-D
volumes. The performance of the noise reduction is comparedbetween the applica-
tion in 2-D and 3-D.

The second part of the thesis describes how noise estimates in the projections can be
used for analytic computation of local noise characteristics in reconstructed images and
how these local noise estimates can be used for adapting standard noise reduction methods
to the special image noise in CT.

• Chapter 7: A new method for analytic noise propagation through indirect fan-beam
FBP reconstruction is proposed. Based on estimates of the noise variance in the
projections the local image noise in the reconstructed CT image is computed. The
correlations between neighboring detector channels and projections are estimated
and taken into account for the propagation of the variances.The accuracy of the
noise estimation is evaluated by comparing with Monte Carlo simulations.

• Chapter 8: In addition to the local noise variance the correlation of noise is analyzed.
Instead of computing local covariances, a new figure of meritfor the noise anisotropy
is introduced. The computation of contributions to the noise variance in two orthog-
onal directions is described. The separation into the two directions is performed for
each pixel specifically into the direction of strongest correlation and orthogonal to
that. Exemplary the adaptation of a bilateral filter to the local noise characteristics is
introduced and evaluated.
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The last two chapters present some comparisons between the different approaches pre-
sented and finalize the work.

• Chapter 9: The wavelet based approaches and the noise-adaptive bilateral filtering
are compared to each other. Visual appearance, noise and resolution and computa-
tional requirements are discussed and ideas for future research are presented.

• Chapter 10: A summary of the work and conclusions finalize thethesis.



Chapter 2

Principles of Computed Tomography

The noise reduction methods investigated in this work are specially designed for the use
in CT. Therefore, this section gives an introduction to the basic concepts of computed to-
mography. In contrast to other imaging modalities, like traditional projection radiography,
where the images are a direct result of the measurement, the images in CT first have to be
computed. When we talk about images in the reminder of this thesis, we always mean the
reconstructed 2-D slices or 3-D volumes. The name projection is in the reminder of this
thesis used for denoting the data used for reconstruction. Different reconstruction tech-
niques are available. However, the ones most frequently used in clinical practice are based
on the filtered backprojection. The 2-D and 3-D reconstruction methods used throughout
this thesis are briefly described in the following. Further,the most important quality char-
acteristics, noise and resolution, used for quantitative evaluation are discussed. A general
survey about the basic concepts of CT can be found in [Kale 00, Oppe 06]. For a deeper
theoretical understanding, overviews are given in [Buzu 04,Kak 01] and [Noo 08].

2.1 Development of Computed Tomography

With the invention of CT, a new field in radiologic diagnosis opened up. The new imaging
technique was the first to non-invasively acquire axial slices of the interior of a human’s
body. According to Buzug [Buzu 04], „the rapid development of CT“ from the installation
of the first scanner generation until today „has been, and still is, driven by three essential
goals: Reduction of acquisition time, reduction of X-ray exposure, and, last but not least,
reduction of cost“. In the following some of the most important developments in CT are
summarized. More details about the history of CT can be found in [Buzu 04].

The first medical CT scanners, installed in 1972, were head scanners. They had a single
needle-like X-ray beam and a single detector element that was positioned at the opposite
side of the measuring field. The X-ray tube and detector were simultaneously shifted along
a straight line in order to take projections along equidistantly distributed parallel rays pass-
ing through the object. This acquisition of parallel-beam projections was then repeated for
different projection angles. The big disadvantage of this technique was the long acquisi-
tion time, that could be drastically reduced by the development of row detectors and the
start of fan-beam tomography in 1975. In fan-beam tomography, several detector elements
are placed close to each other in one line such that the whole measurement field can be
X-rayed at once for a certain projection angle.

7
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(a) Siemens Somatom Definition (b) Siemens Somatom Definition with open
gantry.

Figure 2.1: The first dual-source CT scanner - Images providedby Siemens Healthcare.

The invention of the so called slip ring in 1987 was another milestone regarding fast
CT acquisition, because the continuous rotation of the tube and detector became possible.
This ring in the gantry is used for the power supply of the tubeand detector, but also for
data transmission and communication. This development enabled the invention of helical
CT (incorrectly called spiral CT) in 1989. During continuously rotating the tube and the
detector around the patient, the table with the patient is moving through the gantry, leading
to a helical acquisition path. Furthermore, the row detectors were extended to multi-row
detectors and the so called cone-beam tomography or multi-slice CT (MSCT) was born.
Comparable to the motivation for fan-beam CT, the use of a multi-row detector speeds up
the data acquisition and allows to scan whole organs within few or even just one single rota-
tion. Additionally, the reconstruction with isotropic resolution in all three spatial directions
became possible. In 2005 the first dual-source CT scanner (DSCT) was introduced, where
two X-ray tubes and two independent detectors with an offsetof about 90 degrees can work
in parallel. The motivation for DSCT was to speed up the acquisition for cardiac CT, but
it also enabled the establishment of applications like dual-energy in clinical routine. An
image of a modern DSCT scanner is displayed in Fig. 2.1 with closed and opened gantry.

With the development of new and improved scanning hardware,the reconstruction
methods had to be advanced as well. Based on the mathematical theory on the inversion
problem developed by Johann Radon already in 1917, the filtered backprojection (FBP)
reconstruction was the first to allow an efficient and numerically robust implementation.
Most of the methods used in the clinical practice today are still based on the filtered back-
projection. With the introduction of cone-beam CT, methods for exact 3-D reconstruction
came up [Kats 02, Noo 03, Denn 09, Hopp 09]. Nevertheless, approximate methods like
the weighted filtered backprojection (WFBP) [Stie 04], or segmented multiple plane recon-
struction (SMP) [Stie 02] are still the ones used in clinicalroutine for helical cone-beam
CT due to their higher flexibility and lower complexity. Iterative reconstruction methods,
where certain constraints can be used for handling e.g. incomplete or very noisy data,
gained a lot of interest in the last few years [Kunz 07, Sunn 07]. They seem to become
more and more practically relevant since parallel computing became widely available, e.g.,
by using modern graphics processors for general computing.
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Figure 2.2: Geometry and Notation.

2.2 2-D Reconstruction

In order to understand how images of the interior of an objectcan be computed using
measured X-ray projections, it is reasonable to first look at2-D reconstruction methods
from 1-D projections.

2.2.1 Data Acquisition Model

The basic data acquisition parameters are illustrated in Fig. 2.2. The geometry of 3rd
generation CT scanners [Buzu 04] is considered here, which is currently most widely used
in commercial systems. This means that the fan-beam projections are acquired with equi-
angular ray spacing, and that the detector and the X-ray source rotate together around the
object under investigation [Kak 01]. The X-ray source trajectory is thus a circle. The axial
slice to be reconstructed lies in the x-y-plane and is in the following also called image.

It is assumed that the X-ray tube emits monoenergetic photons. The original intensity
I0 of the X-ray beam is proportional to the number of emitted photonsN0, which is viewed
as a known deterministic constant. Each rayL(α, β) that passes through the object is
attenuated. The intensity measured at the detector is

I(α, β) = I0 · e−
∫

L(α,β) µ(x)dx, (2.1)

for a certain tube-angleα and fan-angleβ. The linear attenuation coefficient of the object
at positionx = (x, y)T is denoted asµ(x). The line integral in the exponential function
describes the attenuation alongL(α, β). It is given by:

P (α, β) = − ln

(
I(α, β)

I0

)

=

∫

L(α,β)

µ(x)dx. (2.2)

A fan-beam projection is in the following denoted asP (α, β).



10 Chapter 2. Principles of Computed Tomography

γ=θ-π/2

γ=θ-π/2

x

y

μ(x,y)

P( ,t)θ

( P)( )F θ,ρ

t

ρ

ρ2

ρ1

( )(Fμ cos sinρ γ, ρ γ)

( )(Fμ ρ ,ρ )1 2

Figure 2.3: Illustration of the Fourier-Slice theorem.

Fig. 2.2 shows thatL(α, β) can also be parameterized using parallel-beam coordinates
θ andt. The following relations hold:

θ = α + β, (2.3)

t = R sin β. (2.4)

The process of resorting acquired fan-beam projections according to Equations (2.3) and (2.4)
to a set of parallel-beam projections is called rebinning. Byparallel-beam projections, we
refer to line integrals that are sampled uniformly inθ andt and are denoted asP (θ, t) in
the following.

The linear operatorR that maps the functionµ(x) to its equidistantly distributed parallel-
beam projectionsP (θ, t) is called Radon transformation:

P (θ, t) = (Rµ)(γ, t), (2.5)

whereγ = θ − π/2. Goal of all reconstruction methods is to invert the Radon transfor-
mation, and thus to compute the unknown position dependent attenuation coefficientsµ(x)
from the given projections. The Fourier-Slice theorem is the theoretical basis for the filtered
backprojection algorithm. It describes the connection between the Radon transformation
and the two dimensional Fourier transformation of a function:

(FP )(θ, t) = (F(Rµ))(γ, ρ) = (Fµ)(ρ cos γ, ρ sin γ). (2.6)

It states that the one-dimensional Fourier transformationof a parallel-beam projection at
angleθ is equivalent to the two-dimensional Fourier transformation of the function along
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the radial line at angleγ. A formal proof of the Fourier-Slice theorem can be found
in [Buzu 04, Kak 01, Noo 08]. A schematic description is presented in Fig. 2.3. The recon-
struction of CT images based on the direct application of the Fourier-Slice theorem is possi-
ble, but requires an interpolation to Cartesian coordinatesin the Fourier domain in practical
applications. In order to avoid this resampling in the Fourier domain, the filtered backpro-
jection reconstruction (FBP) was developed. FBP can be directly derived from the Fourier-
Slice theorem by inserting the coordinate transformation [Buzu 04, Kak 01, Noo 08]. The
filtered backprojection reconstructs the valueµ(x) according to:

µ(x) =

∫ π

0

∫ ∞

−∞
P (θ, t)kr(t− (x sin θ − y cos θ))dtdθ, (2.7)

where the inner integral describes a convolution (filtering) along the parallel-beam pro-
jection with the ramp filterkr(t) and the outer integral the backprojection of the filtered
projections into the image plane.

2.2.2 Indirect Fan-Beam Filtered Backprojection

With the introduction of fan-beam tomography, reconstruction methods like the filtered
backprojection had to be adapted to the new acquisition. TheFBP reconstruction can be
adjusted to directly handle the fan-beam data. Based on the insertion of equations (2.3)
and (2.4) to the filtered backprojection equation (2.7), it can be derived that the projections
need to be pre-weighted, the reconstruction kernel must be adapted and during backprojec-
tion a distance weighting is necessary for each pixel to be reconstructed [Buzu 04]. Alter-
natively, the fan-beam data can first be resorted to parallel-beam data using equations (2.3)
and (2.4), followed by standard FBP reconstruction. The second approach is also called in-
direct fan-beam FBP or rebinning FBP. Reordering to parallel-beam projections is favored
by many CT manufacturers for reasons of computational efficiency and ease in handling
special scanning features such as the quarter-detector offset or redundant data.

The indirect fan-beam FBP reconstruction algorithm is now reviewed. The description
is focused on discrete data. The fan-beam projections are assumed to be acquired over
360 degrees with a uniform sampling angle∆α. The number of projections is even and
denoted asN2πf , so that∆α = 2π/N2πf , and the first projection is at positionα = 0.
Each projection includesNf rays with the fixed ray sampling distance being written as∆β.
Thus, the following sampling conditions are assumed:

αk = (k−1)∆α, k = 1, . . . ,N2πf , βl = (l−1−(Nf−1)/2+d)∆β, l = 1 . . . ,Nf ,
(2.8)

whered = 0.25 if a quarter-detector offset is applied andd = 0 otherwise. The discrete
fan-beam measurements obtained at these sample locations areP fan

k,l = P (αk, βl).

Rebinning

The first step in the reconstruction pipeline is the resampling of the fan-beam measurements
to parallel-beam data. This resampling is performed in three consecutive steps: azimuthal,
complementary and radial rebinning [Buzu 04]. A schematic description can be seen in
Fig. 2.4 and Fig. 2.5, with and without quarter-detector offset.
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Figure 2.4: Rebinning with quarter-detector offset.

The azimuthal rebinning acts onα at fixedβ to estimate hybrid projection data corre-
sponding to samples ofP hyb(θ, β) = P (θ − β, β). The estimation is performed at

θm = (m−1)∆θ, m = 1, . . . ,N2πp, βl = (l−1−(Nf−1)/2+d)∆β, l = 1 . . . ,Nf ,
(2.9)

where∆θ = ∆α, and the intermediate values are denoted asP hyb
m,l ≃ P hyb(θm, βl). The

relation betweenP fan
k,l andP hyb

m,l is

P hyb
m,l =

N2πf∑

k=1

hazi(α̃m,l − αk)P
fan
k,l , (2.10)

wherehazi is a given, short-length interpolation kernel, and

α̃m,l = θm − βl . (2.11)

In this relation, the values ofP fan
k,l corresponding tok < 1 or k > N2πf are obtained using

a 2π-periodical extension of the measurements. The second resampling step reorganizes
the hybrid projection data onto 180 degrees using the concept of complementary rays ex-
pressed by the relationP hyb(θ + π,−β) = P hyb(θ, β). This step requires distinguishing
two cases:d = 0.25 (see Fig. 2.4) andd = 0(see Fig. 2.5). In the first case, the rays at posi-
tion θm+π are interleaved with the rays at positionθm to obtain projections with increased
resolution. In the second case, two values are available foreach ray and these values are
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Figure 2.5: Rebinning without quarter-detector offset.

simply averaged together to get improved estimates ofP hyb(θ, β). In both cases, we obtain
estimates ofP com(θ, β) at

θi = (i−1)∆θ, i = 1, . . . ,Nπp, βj = (j−(Nc−1)/2)∆β′, j = 1 . . . ,Nc , (2.12)

whereNπp = N2πf/2. Ford = 0.25, the sampling distance results in∆β′ = ∆β/2 and the
number of channelsNc = 2Nf ; otherwise, the sampling distance∆β′ = ∆β and number
of channelsNc = Nf remains unchanged. The data at the end of this second step is written
asP com

i,j . Ford = 0.25, the complementary rebinning relation is

P com
i,2j = P hyb

i,j , and P com
i,2j−1 = P hyb

i+Nπp,Nf+1−j, (2.13)

whereas, ford = 0,

P com
i,j =

1

2

(

P hyb
i,j + P hyb

i+Nπp,Nf+1−j

)

. (2.14)
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The final resampling step acts onβ at fixedθ to estimate values corresponding to sam-
ples ofP par(θ, t) = P com(θ − β, arcsin(t/R)). The estimation is performed at

θi = (i− 1)∆θ, i = 1, . . . ,Nπp, tn = (n− 1− (Np − 1)/2)∆t, n = 1 . . . ,Np,
(2.15)

whereNp = Nc and ∆t = R∆β′, and the resulting values are denoted asP par
i,n ≃

P com(θi, arcsin(tn/R)). The relation betweenP par
i,n andP com

i,j is

P par
i,n =

Nc∑

j=1

hrad(β̃n − βj)P
com
i,j , (2.16)

where
β̃n = arcsin (tn/R) . (2.17)

In this relation, functionhrad is a given, short-length radial interpolation kernel.

Convolution

The next step in the reconstruction pipeline is the convolution of the parallel-beam projec-
tion data,P par

i,n , with an apodized version of the ramp filter, denotedk(t). This convolution
is applied at fixed view index and gives

P fil
i,n = ∆t

Np∑

s=1

k(tn − ts)P
par
i,s . (2.18)

The precise definition of the filtering kernel is

k(t) =

∫ ∞

−∞
q(ρ) |ρ| ei2πρtdρ, (2.19)

whereq(ρ) is the apodization window. In clinical practice a variety ofapodization win-
dows are available, with each selection yielding a specific compromise between noise and
resolution. On the one hand, smooth kernels, commonly applied for soft-tissue imaging,
suppress high frequency noise, but entail a low image resolution. On the other hand, sharp
kernels yield higher resolution but to the cost of giving thereconstructed images a more
noisy appearance [Buzu 04].

Backprojection

The final step in the reconstruction pipeline is the backprojection. The filtered parallel-
beam projection data are backprojected to obtain an estimate of the attenuation coefficient
at positionx:

µ(x) ≃ ∆θ

Nπp∑

i=1

P fil
i (x), (2.20)

whereP fil
i (x) is obtained fromP fil

i,n by interpolation. Specifically, the interpolation is com-
puted as

P fil
i (x) =

Np∑

n=1

hbpj(x sin θi − y cos θi − tn)P
fil
i,n, (2.21)

wherehbpj is a given, short-length interpolation kernel.
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Hounsfield-Scaling

The reconstructed attenuation coefficients are usually normalized to Hounsfield Units (HU)
according to:

f(x) =
µ(x)− µw

µw
1000HU, (2.22)

with µw defining the attenuation coefficient of water.

Interpolation kernels

One-dimensional interpolation was involved three times inthe reconstruction pipeline,
twice for the rebinning step and once for the backprojection. As noted, different inter-
polation kernels can be used each time, if desired. The simplest and most frequently made
choice is the linear interpolation kernel:

h(x) =

{

1− |x|
∆x

if |x| < ∆x

0 else
, (2.23)

where∆x is the sampling distance. If linear interpolation is used, the sums in Eq. (2.10),
Eq. (2.16), and Eq. (2.20) simplify to two weighted summands.

2.3 3-D Reconstruction

With the introduction of helical CT and multi-row detectors the reconstruction of isotropic
3-D volumes became possible.

2.3.1 Scanning Geometry

Two different scan modes are distinguished: sequential andhelical scans. In sequential
mode, the source and a multi-row detector rotate on a circular path around the object being
scanned. This procedure can be repeated for certain table positions, meaning for different
z-positions, as illustrated in Fig. 2.6(a). In helical mode, the tube and detector are again
rotating around the patient, which is at the same time continuously moved through the scan
plane. Therefore, the source moves on a helical path around the object being scanned, as
illustrated in Fig. 2.6(b).

The projections now consist of several detector rows, each with a certain number of
detector channels, and consequently two-dimensional projections are acquired for different
source-detector positions.

2.3.2 Weighted Filtered Backprojection

As an example of a state-of-the-art 3-D reconstruction technique, the basic principles of the
weighted filtered backprojection reconstruction (WFBP) [Stie 04] are shortly summarized.
The WFBP is an approximate reconstruction method for helical cone-beam CT, which is
closely related to the indirect fan-beam FBP method described in the previous section.
Basically four main steps are necessary:
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Figure 2.6: 3D-Acquisition: Sequential (a) and helical (b)scans.

• The cone-beam projections are row-wise rebinned to parallel projections. This can
be performed in the same manner, as explained in Section 2.2.2.

• The parallel projections are then convolved with the reconstruction kernelk(t), as
described in Section 2.2.2. This is again performed for eachrow separately.

• In a third step the filtered projections are weighted according to the distance of the
row to the center row. Weighting down outer detector rows reduces artifacts after
reconstruction. Stierstorfer et al. [Stie 04] proposed a window function with a cosine-
square-apodization.

• The last step is the normalized backprojection of the filtered and weighted projec-
tions. It can also be expressed as the summation over partialbackprojections. This
partitioning is performed, because a voxel might receive contributions from projec-
tions at one or more focus positions, depending on the position of the voxel and the
table speed that is used for moving the patient through the CT.

2.4 Noise in CT

Before considering methods for noise reduction in CT data, it is important to get an
overview of the origins and properties of noise in the projections and the reconstructed
data.

2.4.1 Noise of Signals and Projections

The signalU measured at the detector is subject to statistical uncertainty. It can be de-
composed into its noise-free expectation valueE(U) and an error termNU , which is zero-
mean [Vest 98]:

U = E(U) +NU , with E(NU) = 0, and σU =
√

E(N2
U). (2.24)

The error term consists of two components, quantum noiseNq and electronics noiseNe:

NU = Nq +Ne. (2.25)
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Both sources are independent (E(NqNe) = 0) and zero-mean (E(Nq) = E(Ne) = 0), and,
thus, the variances can be added

σ2
U = σ2

q + σ2
e , (2.26)

with σ2
q = E(N2

q ) andσ2
e = E(N2

e ). The signal is generated by the absorption ofn quanta
at the detector [Vest 98]:

E(U) = cE(n), and consequently Nq = c(n− E(n)). (2.27)

The expected number of quanta is in the following denoted asn∗ = E(n). The physical
process of generating and absorbing quanta consists of manyindependent small random
processes and underlies Poisson statistics, which can be described by the probability dis-
tribution [Buzu 04]:

P(N = n) =
(n∗)n

n!
e(−n

∗). (2.28)

The variance of a Poisson random variable is equivalent to its mean. Thus, quantum noise
of the signal can be expressed as:

σ2
q = c2n∗ = c2E(n). (2.29)

The intensity is proportional to the measured signal [Buzu 04] and can thus be written as:

I = c̃U = c̃E(n) + c̃NU . (2.30)

The noise-free expected intensity isc̃E(n) andNI = c̃NU is the error, with

σ2
I = c̃2σ2

U = c̃2(c̃2σ2
q + σ2

e). (2.31)

Given the noise of the intensity, the noise in the projectioncan be estimated:

σ2
P = Var{ln(I0)− ln(I)} ≈ Var{ln(I)} , (2.32)

becauseI0 can be considered to be known with negligible error [Kak 01].The logarithm
can be written as

ln(I) = ln(E(I)± σI) = ln

(

E(I)
(

1± σI
E(I)

))

= ln(E(I)) + ln

(

1± σI
E(I)

)

.(2.33)

Based on the linear term of the series expansion [Buzu 04]

ln(1± x) = −
∞∑

i=1

(±1)ixi

i
, for − 1 < x < 1 (2.34)

the variance of noise in the projection can be estimated for largeE(n) according to:

σ2
P ≈ σI

E(I) =
c2E(n) + σ2

e

c2E(n)2 =
1

E(n) +
σ2
e

c2E(n)2 . (2.35)

This relation clearly shows that with decreasing number of X-ray quanta measured at the
detector, noise in the projection increases. The system specific parametersc andσ2

e can
be determined by measuring signal strength and noise at various fluxes. Especially, if
the system is equipped with a bowtie-filter, each detector channel has an individual set of
parameters.
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2.4.2 Noise after Reconstruction

The reconstruction of the location dependent attenuation values is performed on noisy pro-
jection data. Accordingly, noise in the projections also propagates through the reconstruc-
tion algorithm to the final slices. The problem is that all theintermediate steps, like inter-
polations or filtering with the convolution kernel, introduce correlations to the noisy data.
This makes the analytical description of noise in the reconstructed data more difficult. A
detailed discussion of the propagation of noise through theindirect fan-beam FBP recon-
struction, as described above, is given in Chapter 7. Here, inthis section, only a very
simplified description of noise in the reconstructed data ispresented. All correlations are
neglected and a FBP reconstruction from parallel-beam projections is considered.

The relationship between the discrete parallel-beam projection valuesP par
i,n and the at-

tenuation coefficientsµ(x) is given by:

µ(x) =
π∆t

Nπp

Nπp∑

i=1

Np∑

n=1

k(x cos θm − y sin θm − tn)P
par
i,n . (2.36)

This results in a variance of the reconstructed attenuationcoefficients of

σ2
µ(x) =

(
π∆t

Nπp

)2 Nπp∑

i=1

Np∑

n=1

k2(x cos θi − y sin θi − tn)σ
2
P (θi, tn), (2.37)

provided that there are no correlations between different projections. The noise variance
in the reconstruction can be interpreted as a filtered backprojection of the noise variances
of the parallel projections, but with the squared weights. Especially for the center of a
homogeneous circular disk and under the assumption that quantum noise is the dominant
source of noise (σ2

q ≫ σ2
e ) it can be derived that [Buzu 04]

σ2
µ(0, 0) =

π2∆t

Nπpnc

∫ 1
2∆t

− 1
2∆t

|K(ρ)|2 dρ, (2.38)

whereK(ρ) is the frequency representation of the filter functionk(t). Eq. (2.38) shows
that the noise in the reconstructed image depends on the filter function used for the filtered
backprojection algorithm. The variance of the central pixel is proportional to the area
under the squared magnitude of the filter function in frequency space. The average number
of X-ray quanta of the central rays reaching the detector is denoted asnc.

The most important properties of noise in the reconstructeddatasets can already be
explained based on this simplified consideration. Noise in CTreconstructions is object
dependent, non-stationary and correlated. In Fig. 2.7 a noisy reconstructed CT slice, the
corresponding projections and the standard deviation of noise in the projections are shown
as an example. As Eq. (2.37) clearly shows, the noise variance in the image directly de-
pends on noise in the projections. Noise in the projections is influenced by the absorption
of X-rays traveling through the object. Consequently, different projections might differ
with respect to their noise variance. This explains why noise depends on the object being
scanned. Further, it explains, why noise differs for different positionsx in the reconstructed
image. Depending on the position the weighting of projections that contribute to the sum is
varied. Thus, noise in the reconstructed image becomes non-stationary. The third property
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Figure 2.7: Illustration of noise in projections and reconstructed image. X-rays traveling
through the object along the red line were strongly attenuated. The corresponding line
integral measured at the detector for this ray is highlighted by a red arrow in the fan-beam
projections and the corresponding standard deviation of noise in the fan-beam projections.

can also be explained based on Eq. (2.37). The backprojection process means that the noise
variance of one projectionσ2

P (θ, t) influences pixels that are placed along the lineL(θ, t).
Altogether the variance at a certain position is gained fromthe sum of contributions of pro-
jections from different directions. If one of these contributing directions has a very high
variance, compared to other directions, then two pixels along the lineL(θ, t) are stronger
correlated than pixels along another direction. This is thereason for the anisotropic noise
grains visible in most CT reconstructions. Especially, for body regions, where rays have to
travel through much denser or much more material for certaindirections, directed noise is
visible.

2.5 Spatial Resolution in CT

The discussion in the last section clearly showed that noisein CT can be influenced for
example by the convolution kernel used for the filtered backprojection. When dealing
with medical images, not only noise is important for judgingimage quality, but also the
spatial resolution plays and important role. Spatial resolution tells how many line pairs per
centimeter (lp/cm) can be distinguished in the reconstructed image. It thus indicates how
close two neighboring lines can get to each other before theycan no longer be distinguished
due to the vanishing modulation of the image values, i. e., the variation of the gray values
between the lines [Buzu 04]. One of the most frequently used tools for describing the
resolution capability of imaging systems is the modulationtransfer function (MTF). In this
section, different possibilities for measuring resolution in reconstructed and processed CT
datasets based on the MTF are discussed. Furthermore, the main influencing parameters to
azimuthal and radial resolution and the coherence with sampling of the projection data are
briefly summarized.
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Figure 2.8: Azimuthal and radial resolution in the reconstructed image (left). Illustration
of sampling points of parallel-beam projections in Fourierdomain (right).

2.5.1 Azimuthal and Radial Resolution

Generally, when talking about spatial resolution in CT, azimuthal and radial resolution are
distinguished [Kak 01]. Azimuthal resolution describes the resolution along a circular path
with fixed distance to the iso-center. It is mainly influencedby the number of projections
and the distance to the iso-center. Radial resolution describes the resolution along a straight
line through the iso-center. It is mainly influenced by the number of detector channels
and the convolution kernel. The difference between azimuthal and radial resolution is
visualized in Fig. 2.8.

The maximum possible resolution, is limited by the samplingof the projection data.
Based on Shannon’s sampling theorem [Buzu 04, Kak 01], the highest spatial frequency
that can be measured for each projection is limited by

W = 1/2∆t, (2.39)

if ∆t is the sampling distance within a parallel-beam projection. The number of detector
channels and the number of projections are usually chosen such that azimuthal and radial
resolution are about the same. In Fig. 2.8 it can be seen how the sampling points of parallel-
beam projections are located in the frequency domain. The assumption that azimuthal and
radial resolution are about the same is fulfilled if

u =
2W

Np

=
1

∆tNp

and ν = W∆θ =
π

2∆tNπp

(2.40)

are the same. This is fulfilled ifNπp

Np
≈ π

2
[Kak 01].

2.5.2 Measuring Resolution in Images

Resolution in the reconstructed CT image is not the same for allpositions and might also
vary for different directions. This makes the investigation of resolution in CT very com-
plicated. Thus, resolution is usually only considered for the iso-center, or a position very
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Figure 2.9: Illustration of MTF computation at the edge of a circular object.

close to the iso-center. The expression MTF in the context ofspatial resolution in recon-
structed CT images is rather misleading. It does not describea linear shift-invariant system
in the system theoretical sense, but is more to be seen as a local MTF, e. g. in the iso-center.

Different techniques for measuring resolution in CT images exist. The most famous
is the so called wire method [Cunn 92]. A thin metal wire, placed close to the iso-center,
is acquired. Due to the high density a high contrast between the wire and the background
in the image is obtained. The point-spread-function (PSF) and consequently the MTF
can thus directly be computed from the neighborhood around the center of the wire. The
different radial directions are commonly averaged. If the reconstructed images with the
wire are very noisy, several noise realizations are averaged in order to increase the SNR
and get reliable MTF measurements. The problem in this work is that resolution should
be determined in images where adaptive filters were applied for noise suppression. The
detection and consequently the preservation of edges depends on the contrast-to-noise ratio
(CNR) in the image, as the different experiments in the reminder of this thesis will show.
The wire method, which is just considering high-contrast resolution, is no longer practical,
if the MTF should be determined for different CNR levels.

Another possibility for measuring the resolution in reconstructed data is, the so called
edge technique [Judy 76, Cunn 92]. The line-spread-function(LSF) is determined along a
straight edge in the image, which has a slight slope of about four degrees with respect to
thex or y-axis. The slight slope makes it possible to compute an oversampled edge profile
along the edge. This slight slope of the edge is in fact necessary for the MTF computation.
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Otherwise, if the edge is perfectly aligned with the pixel grid, an arbitrary MTF might
result, depending on the sampling of the edge with discrete pixels. The derivative of the
edge profile gives the PSF. Its Fourier transformation finally leads to the average MTF
along this line. The advantage of the edge technique is that the contrast at the edge can be
varied easily, enabling a contrast dependent MTF evaluation. The critical point of this edge
technique is, that the edge has a certain orientation. Consequently, resolution is evaluated
for that orientation only and does not represent the averageresolution of all directions.
This might be a desired feature for some investigations, e. g. if the resolution should be
evaluated for different directions separately. In many cases, however, the average MTF of
all directions is more of interest.

Instead of computing an averaged edge profile along a straight edge, it is also possible
to use e. g. a circular object [Li 07]. Basically, the MTF computation is the same as for
the edge technique, except for the computation of the edge profile. The different steps
needed for the computation of the average local MTF along theedge of a circular object
are summarized in Fig. 2.9. The edge profile in this case is achieved by averaging the
radial lines going through the center of a circle. More practically speaking, pixels within a
certain distance range to the center of the circle are averaged, which is also called binning.
Averaging all pixel values within the same bin leads to an averaged edge profile along the
border of the circle. The critical part of this method can be seen in choosing the size of the
circular object. The smaller the object the more local the image resolution is determined. If
the object is too small, however, the pixel grid might be limiting the precision of the MTF
computation. An additional aspect that needs to be considered is the contrast of the object
compared to the noise level. If a larger object, covering a larger number of image pixels,
is used, the averaging over the different directions inherently reduces the noise level in the
edge profile. This might result in a smaller number of images that need to be averaged in
order to get reliable MTF measurements in cases of lower contrast-to-noise ratio.



Chapter 3

Wavelets in Image Denoising

The theoretical basis for the first part of noise reduction methods, described in this thesis,
is the discrete wavelet transformation (DWT). The wavelet transformation (WT) provides a
tool for local frequency analysis, which is the strength compared to other frequency repre-
sentations such as the Fourier transformation. In this chapter the main concepts of wavelets
and wavelet transformations are reviewed, which are neededfor a thorough understanding
of the wavelet-based denoising algorithms. More details about wavelet theory can be found
in numerous books like [Daub 92, Mall 99, Meye 93] or [Stra 96].

3.1 Introduction to the Wavelet Representation

The Fourier transformation (FT) can be used to determine thefrequency content of a signal
and is one of the most important tools in signal analysis. Oneof its disadvantages is the
fact that it only provides a frequency resolution, but no spatial or time resolution. Although
all frequenciesρ present in a signal can be identified with the Fourier transformation, no
information about the position or timet of their presence can be given. Consequently, the
Fourier transformation is only suitable for global, but notfor local signal analysis.

One possibility to overcome this problem is to divide the signal into several parts, so-
called windows or frames, which can then be analyzed separately. This approach leads to
theWindowed Fourier Transform(WFT), also referred to asShort-Time Fourier Transform
(STFT), which is defined as

STFT (τ, ρ) =

∫

f(t)ω∗(t− τ)e−2πiρtdt, (3.1)

whereω∗(t) defines the complex conjugate of the window functionω(t). The window
functionω(t) is shifted through the signalf(t) and suppresses the signal outside the defined
region of interest. This allows the computation of a local spectrum. The problem is that,
due to Heisenberg’s uncertainty principle, it is not possible to reach a high resolution in
time and frequency simultaneously. Regarding the choice of the window functionω(t) this
results in the following tradeoff [Niem 83]: the window width should be small enough to
get a good time resolution and large enough to get a good frequency resolution. Another
drawback of the STFT is that, once the window size has been chosen, it remains fixed for
all frequencies. A more flexible signal analysis is possiblewith variably sized windows as
used for the wavelet transformation (WT). Long time intervals are used in regions where

23
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precise low-frequency information is wanted, and shorter intervals in regions where higher
frequencies are of interest. This difference between the time-frequency resolution in the
STFT and the wavelet transformation is illustrated in Figure 3.1.

ρ

τ

(a) STFT

ρ

τ

(b) WT

Figure 3.1: Comparison of the time-frequency resolution between short-time Fourier trans-
formation (STFT) and wavelet transformation (WT).

3.1.1 Wavelets

Wavelets are generated from a single basis functionψ(t) called mother wavelet by means
of scaling and translation:

ψs,τ (t) =
1√
s
ψ

(
t− τ

s

)

, (3.2)

with

s, τ ∈ R, s > 0.

The scaling factors is used for expansion and compression of the wavelet. The parame-
ter τ is responsible for the translation. For energy normalization the factor 1√

s
is needed.

The Fourier transformationΨ(ρ) of the waveletψ(t) must satisfy the admissibility condi-
tion [Niem 83]

cψ =

∫ ∞

−∞

|Ψ(ρ)|2
|ρ| <∞. (3.3)

This can only be fulfilled if

Ψ(0) = 0, (3.4)

which means that wavelets must have a band-pass like spectrum [Vale 04]. From equa-
tion 3.4 it follows that the mean of the wavelet in the spatialor time domain must be zero,
which requires

∫ ∞

−∞
ψ(t)dt = 0. (3.5)

Therefore, it must be oscillatory, which explains the name wavelet.
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3.1.2 Continuous and Dyadic Wavelet Transformation

With this definition of wavelets a local signal analysis becomes possible. The continuous
wavelet transformation is defined as:

WT (s, τ) =

∫ ∞

−∞
f(t)ψ∗

s,τ (t)dt, (3.6)

whereψ∗(t) is the complex conjugate ofψ(t). The coefficientsWT (s, τ) specify the
similarity of the waveletψs,τ to the function around the positionτ .

The frequency information is included in the scales. A low scales describes a com-
pressed wavelet that can only detect rapidly changing details and, therefore, corresponds to
high frequencies; analogously, a high scale corresponds tolow frequencies. This is the rea-
son why the wavelet transformation is referred to as a time-scale and not a time-frequency
representation.

The original continuous function can be reconstructed fromits wavelet coefficients by

f(t) =
1

cψ

∫ ∞

−∞

∫ ∞

−∞
WT (s, τ)ψs,τ (t)

dsdτ

s2
. (3.7)

The constantcψ results from the admissibility equation 3.3. The CWT is shift invariant and
highly redundant [Mall 99].

3.2 Discrete Wavelet Transformation

Usually, the discrete wavelet transformation (DWT) is associated with the signal expansion
into a (bi-)orthogonal wavelet basis. In contrast to the highly redundant CWT there is no
redundancy included in the DWT representation of a signal. The scalessj are usually
chosen as powers of two and the time sampling is proportionalto the scaling

sj = 2−j and τk = k · sj = k · 2−j, j, k ∈ Z (3.8)

leading to a dyadic sampling1, which has also been used for illustrating the time-frequency
resolution of the wavelet transformation in figure Fig. 3.1.Wavelet transformations, which
use this kind of sampling are also called dyadic wavelet transformations. The DWT uses
the dyadic sampling. However, it cannot be interpreted as a sampled version of the CWT.
The choice of the wavelets that can be used for DWT is far more restrictive. In order to
be able to represent a finite-energy signalf(t) ∈ L2(R) by a non-redundant set of wavelet
coefficients, according to

f(t) =
∞∑

j=−∞

∞∑

k=−∞
dj,kψj,k(t), (3.9)

the wavelets {

ψj,k(t) =
1

√

|sj|
ψ

(
t− τk
sj

)

dt

}

(j,k∈Z)

, (3.10)

1Sometimes, the definitionsj = 2j is used in literature.
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Figure 3.2: Two-stage DWT analysis and synthesis filter bank.The wavelet coefficients
after two decomposition levels of a one-dimensional DWT are highlighted in blue color.

must build a basis ofL2(R). Then, the wavelet coefficientsdj,k are given by the inner
products of the signalf(t) with the dual basis̃ψj,k(t):

dj,k =

∫ ∞

−∞
f(t)ψ̃∗

j,k(t)dt. (3.11)

3.3 Multiresolution Analysis

The theoretical framework for constructing (bi-)orthogonal wavelet bases and for the fast
computation of the wavelet transformation is the multiresolution analysis [Mall 89]. Due
to the band-pass-like spectrum of the wavelets, it can be derived that a series of dilated
dyadic wavelets shifted through the signal results in a band-pass filter bank. With the
constraint off(t) being band limited, its whole spectrum might be covered by infinitely
many scaled versions of the wavelet. Mallat introduced the so-called scaling function
φJ,k(t), which covers the lowpass parts covered by infinitely many dilated wavelets up
to a givenJ . The signalf(t) can then be split into a low frequency approximation partc
and its high frequency detailsd according to:

f(t) =
∑

k

cJ,kφJ,k(t) =
∑

k

cJ−1,kφJ−1,k(t) +
∑

k

dJ−1,kψJ−1,k(t). (3.12)

On the basis of the two-scale relation

φ(t) =
√
2
∑

k

gkφ(2t− k) (3.13)

and analogous for the wavelets

ψ(t) =
√
2
∑

k

hkφ(2t− k) (3.14)

which states that a scaling or wavelet function at a given scale can be expressed in terms of
translated scaling functions at the next smaller scale. It can be derived that the coefficients
ci,k anddi,k can be computed by filtering with the analysis high-passh and low-pass filter
g followed by downsampling, according to:

cj,k =

∫

f(t)φj,k(t)dt =
∑

n

gn−2kcj+1,n (3.15)
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and

dj,k =

∫

f(t)ψj,k(t)dt =
∑

n

hn−2kcj+1,n. (3.16)

The reconstruction can be expressed as

cj+1,k =
∑

n

g̃k−2ncj,n +
∑

n

h̃k−2ndj,n, (3.17)

which can be interpreted as up-sampling of the detaildj,k and approximation coefficients
cj,k, filtering with the synthesis high-passh̃ and low-pass̃g filter and summation of the two
parts. An example of a two-stage analysis and synthesis filter bank is shown in Fig. 3.2. As
can be seen from Eq. (3.15), Eq. (3.16) and Eq. (3.17) the wavelet and scaling functions are
not needed for the computation of the discrete wavelet decomposition or reconstruction.
Instead the analysis and synthesis filters need to be designed carefully. For perfect recon-
struction of the signal the following two conditions must hold for the z-transformations of
the filters:

H̃(z)H(z) + G̃(z)G(z) = 0 (no aliassing), (3.18)

H̃(z)H(−z) + G̃(z)G(−z) = 2z−q (no distortion), (3.19)

whereq ∈ Z defines the system delay [Stra 96].
The above described fast algorithm is in literature usuallyreferred to as discrete wavelet

transformation (DWT). Throughout the rest of this thesis we adopt this notation. For a data
array withN samples the DWT has a computational and storage complexity ofO(N),
which is even faster than the fast Fourier Transformation (FFT), which has a complexity of
O(N logN). In practical applications the approximation coefficientsat the highest scale
s = 2−J are approximated by the input data samples. If the sampling intervals are suffi-
ciently small the approximation error of directly using theinput samples as approximation
coefficients is negligibly small [Wick 94].

3.4 Wavelet based Noise Reduction in Images

The introduction to the wavelet representation presented so far concentrated on one-dimen-
sional signals. The main focus of this thesis is the noise suppression in images. Therefore,
this section summarizes the main principles of the three different wavelet-transformation
schemes and wavelets that are used within this thesis for noise reduction purposes.

3.4.1 Wavelet Transformations in Higher Dimensions

In addition to the separable extension of the DWT, two redundant wavelet transforma-
tions are discussed: the stationary wavelet transformation (SWT) and the algorithm á trous
(ATR). In this section, the main differences between the different approaches are explained
and schematic descriptions of the algorithms are presented. For the theoretical derivations
the books [Mall 99, Stra 96] give detailed information.
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Figure 3.4: Two levels of a 2-D-DWT applied to a CT image.

DWT in Higher Dimensions

When dealing with images, the two-dimensional wavelet transformation is required. The
one-dimensional transformation can be applied to the rows and columns of an imageA
successively, which is referred to as separable transformation [Mall 89]. The original input
image is also denoted asA0, the approximation at the highest scale or at decomposition
level l = 0. Each step of the wavelet transformation decomposes the approximation image
at levell into four two-dimensional blocks of coefficients: the lowpass filtered approxima-
tion imageAl+1, and three detail imagesWV

A,l+1, W
H
A,l+1 andWD

A,l+1 which include high
frequency structures in the horizontal (H), vertical (V) and diagonal (D) directions. In
Fig. 3.3 a schematic description of the separable two-dimensional DWT is presented. Like
the 1-D case, the 2-D multiresolution wavelet decomposition can be computed iteratively
from the approximation coefficients of the previous decomposition level. An example of a
2-D-DWT performed on a CT-image is shown in Fig. 3.4. The separable DWT can easily
be extended to also work for more than two dimensions.

SWT - Stationary Wavelet Transformation

The computational efficiency and the constant storage complexity are key advantages of
DWT. Nevertheless, the non-decimating wavelet transformation, also known as stationary
wavelet transformation (SWT), has certain advantages over DWT concerning noise reduc-
tion [Coif 95, Naso 95]. Mainly, SWT works in the same way as DWT with the difference
that no downsampling step is performed. In contrast to DWT, the frequency resolution is
now gained by upsampling the wavelet filtersg̃ and h̃ after each iteration. The analysis
filter bank of the 2-D-SWT is presented in Fig. 3.5. The number of wavelet coefficients in
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all blocks (Al, WV
A,l, W

H
A,l andWD

A,l) are the same as number of pixels in the original im-
age, independent from the decomposition levell. This leads to an overall increased storage
complexity of SWT compared to DWT. At decomposition levell a redundancy factor of
2l is included for each dimension. The reconstruction from this redundant representation
is not unique. If coefficients are modified, as it is done in cases of noise reduction, an
additional smoothing can be achieved by combining all possible reconstructions from non-
redundant subsets. More precisely, at levell for each dimension the average of2l inverse
2-D-DWTs is computed.

ATR - Algorithm à Trous

A third alternative two-dimensional wavelet transformation considered in this thesis is the
à-trous (ATR) algorithm as described in [Mall 92]. The analysis and synthesis filter banks
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are shown in Fig. 3.6. The main difference in comparison to DWTand SWT is that only
two instead of three detail images are computed at each decomposition level. The ap-
proximation coefficientsAl at decomposition levell are again computed by filtering the
approximation coefficients of the previous decomposition levell−1 with the lowpass filter
in both directions. The detail coefficients are filtered withthe one-dimensional highpass
only in one direction respectively, resulting in two detailimagesWH

A,l andWV
A,l. In contrast

to DWT and SWT, no lowpass filtering orthogonal to the highpass filtering direction is
performed. Diagonal detail coefficients are not needed for perfect reconstruction because
no downsampling step is performed. For the reconstruction,however, an additional low-
pass filtering witĥglorthogonal to the highpass filtering direction is necessaryfor the detail
coefficients, in order to compensate for the missing diagonal detail coefficients [Mall 92].

3.4.2 Choice of Wavelet

Many different wavelets and wavelet families can be found inliterature. In the following,
a short overview of some of the most important wavelets is given, which are used within
this thesis. The wavelet functions of the Haar, Db2 and CDF9/7are shown in Fig. 3.7.

(a) Haar wavelet (b) Db2 wavelet

(c) CDF9/7 analysis wavelet (d) CDF9/7 synthesis wavelet

Figure 3.7: Wavelet functions of Haar, Db2 and CDF9/7, which are used for noise suppres-
sion within this thesis.

Haar Wavelet

The Haar wavelet was already introduced in 1909 by Alfred Haar, who was interested in
the construction of basis functions for theL2(R). As illustrated in Fig. 3.7(a), the Haar
wavelet is discontinuous and resembles a step function. This orthogonal and symmetric
wavelet is the simplest member of wavelet families such as Daubechies or Biorthogonal
Spline wavelets. The analysis high-pass and low-pass filters are defined as:

H(z) =
√
2

(
1

2
− 1

2
z−1

)

(3.20)
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and

G(z) =
√
2

(
1

2
+

1

2
z−1

)

. (3.21)

√
2 is needed as a normalization factor for compensating the loss of half of the components

while downsampling [Stra 96]. Because of orthogonality, which is given if

∫

ψj,k(t)ψj′,k′(t)dt =

{

1 if j = j′ andk = k′

0 else
, (3.22)

the dual filters for synthesis can be computed according to:

G̃(z) = H(−z) (3.23)

and
H̃(z) = −G(−z). (3.24)

Daubechies Wavelets

Daubechies wavelets were the first wavelets after the Haar wavelet that were found to build
an orthonormal basis inL2(R). Daubechies wavelets are compactly supported and regular.
The maximum number of vanishing moments of the wavelet function N is indicated by
its name DbN. The length of the filter is2N . In Fig. 3.7(b) the wavelet functionDb2 is
visualized. This example displays another property of Daubechies wavelets. They are not
necessarily symmetric. The filter coefficients of Daubechies 2 (Db2) wavelet are given by
[Getr 05]:

H(z) = h1z + h0 + h−1z
−1 + h−2z

−2 (3.25)

and
G(z) = h−2z − h−1 + h0z

−1 − h1z
−2 (3.26)

with

h−2 =
1 +

√
3

4
√
2
, h−1 =

3 +
√
3

4
√
2
, h0 =

3−
√
3

4
√
2
, h1 =

1−
√
3

4
√
2
.

The corresponding synthesis filter can again be computed according to equation 3.23 and
3.24.

Bi-orthogonal Spline Wavelets

Spline Wavelets provide a smooth, regular and symmetric basis and have a close form rep-
resentation. It is well known that symmetry and exact reconstruction are incompatible,
except for the Haar wavelet, if orthogonal wavelets are used. Therefore more flexible bi-
orthogonal wavelets have been introduced. Instead of one wavelet and one scaling function,
as in the orthogonal case, additionally a dual waveletψ̃j,k(t) and scalingφ̃j,k(t) function
are defined. One (̃ψj,k(t)) is used in the analysis step and the other (ψj,k(t)) for the syn-
thesis. How to construct bi-orthogonal spline wavelets is briefly summarized in [Getr 05].

SplineN.Ñ wavelets, withm =
⌊
1
2
(N + Ñ)− 1

⌋

can be generated as following:

H(z) =
√

(2)z⌈Ñ/2⌉
(
1 + z−1

2

) m∑

n=0

(
m+ n
n

)

(−4)−n
(
z − 2 + z−1

)n
, (3.27)
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H̃(z) =
√

(2)z⌊N/2⌋
(
1 + z−1

2

)N

, (3.28)

G(z) = zH(−z), and G̃(z) = z−1H̃(−z). (3.29)

The filter coefficients for the Spline4.4 also known as Cohen-Daubechies-Fauraue(CDF9/7)
wavelet are given by:

H(z) = h4(z
4 + z−4) + h3(z

3 + z−3) + h2(z
2 + z−2) + h1(z + z−1) + h0 (3.30)

and
G(z) = g3(z

3 + z−3) + g2(z
2 + z−2) + g1(z + z−1) + g0 (3.31)

with

h4 = 0.037828455507 g3 = 0.064538882646
h3 = −0.023849465019 g2 = −0.040689417620
h2 = −0.110624404418 g1 = −0.418092273333
h1 = 0.377402855613 g0 = 0.788485616614
h0 = 0.852698679009

.

The wavelet functions for analysis and synthesis are displayed in Fig. 3.7(c) and Fig. 3.7(d).
Different wavelets and wavelet transformations used in thefollowing for noise reduc-

tion in CT datasets were briefly reviewed in this chapter. Now we are ready to have a closer
look on wavelet based noise reduction algorithms for the usein CT.



Chapter 4

Adaptive Wavelet based Noise Reduction
Using Multiple CT Reconstructions

Recently, Tischenko et al. [Tisc 05] proposed a structure-saving noise reduction method us-
ing the correlations between two images for threshold determination in the wavelet domain.
Their approach was motivated by the observation that, in contrast to the actual signal, noise
is almost uncorrelated over time. Two projection radiography images, which are acquired
directly one after the other, show the same information but noise between the images is
uncorrelated assuming, of course, that the patient does notmove. This concept of image
denoising serves as a basis for the suppression of pixel noise in computed tomography im-
ages, described in this chapter, which has partially been published in [Bors 06, Bors 08c].

The main contributions in this chapter are: The generation of spatially identical input
images, where noise between the two images is uncorrelated,is addressed for the case of
CT. Two different similarity measurements for differentiating between structure and noise
in the wavelet representation of the input images are investigated. Moreover, the use of
different wavelet transformations with different properties for the noise reduction based on
two input images are compared. The nonreducing ‘a-trous algorithm (ATR), the dyadic
wavelet transformation (DWT) and the stationary wavelet transformation (SWT) are com-
pared in combination with both similarity measurements. The different approaches are
evaluated with respect to reduction of pixel noise and preservation of structures. Experi-
ments based on phantoms and on clinically-acquired data were performed. Within a human
observer study the low-contrast-detectability in noisy and denoised images was compared.
Finally, the proposed method is compared to a projection-based noise reduction method
that is used in clinical practice.

4.1 Methodology Overview

Figure 4.1 illustrates the different steps of the noise reduction method. Instead of recon-
structing just one image from the complete set of projections P, two imagesA andB,
which only differ with respect to image noise, are generated. This can be achieved by sep-
arate reconstructions from disjoint subsets of projections. ImageA is reconstructed from
the set of projectionsP1 (e.g. from the set of projections acquired at the first detector of a
DSCT) andB is reconstructed fromP2 (e.g. the set of projections acquired at the second

33
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Figure 4.1: Block diagram of the noise reduction method
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detector of a DSCT). The two images include the same structureinformation, but noise
between the two images is assumed to be uncorrelated.

Both images are then decomposed into multiple frequency bands by a 2-D discrete
dyadic wavelet transformation. This allows a local frequency analysis. The detail coef-
ficients of the wavelet representations include higher frequency structure of the images
together with noise in the respective frequency bands. For the reduction of high frequency
noise as it is present in CT images, only decomposition levelscovering the most domi-
nant frequency bands of the noise spectrum are of interest. It is, thus, not necessary to
compute the wavelet decomposition down to the coarsest scale. The number of decom-
position levels that cover the noise spectrum depends on thereconstruction field of view
(FOV). The smaller the FOV the smaller the pixel size and consequently the higher the
frequencies at the first decomposition level. Due to the logarithmic scale of the wavelet
transformation, halving the FOV, e.g., means that one more decomposition level is needed.
The experiments showed, that in most cases few decomposition levels, e.g. 3 or 4, are
sufficient because they cover approximately 90 percent of the frequencies of an image, if
dyadic wavelet decompositions are used.

For each decomposition level a similarity image is computedbased on correlation anal-
ysis between the wavelet coefficients ofA andB. The goal is to distinguish between high
frequency detail coefficients, which represent structure information and those which rep-
resent noise. High frequency structure that is present in both images should remain un-
changed, while coefficients representing noise should be suppressed. A frequency depen-
dent local similarity measurement can be obtained by comparing the wavelet coefficients of
the input images. Two different approaches will be described. The similarity measurement
can be based either on pixel regions taken from the lowpass filtered approximation images,
or on the high frequency detail coefficients of the wavelet representation of the images.

Level dependent weighting images are then computed by applying a predefined weight-
ing function to the computed similarity values. Ideally, the resulting masks include the
value1 in regions where structure has been detected and values smaller than1 elsewhere.
Next, the wavelet coefficients that correspond to the reconstruction from the complete set
of projections are weighted according to the computed weighting image. If a linear re-
construction method is used, the averaged wavelet coefficients of the input images (detail-
and approximation-coefficients) are equivalent to the wavelet coefficients of the image re-
constructed from the complete set of projections. Otherwise, the wavelet coefficients of
the image reconstructed from all projections is used for weighting. In both cases only
one inverse wavelet transformation is necessary in order toget a noise suppressed output
imageR. This output image corresponds to the reconstruction from the complete set of
projections but with improved signal-to-noise ratio (SNR).

4.2 Multiple CT-Reconstructions

The input images are generated by separate reconstructionsfrom disjoint subsets of pro-
jectionsP1 ⊂ P andP2 ⊂ P, with P1 ∩ P2 = ∅, |P1| = |P2| andP = P1 ∪ P2, where
|P| defines the number of samples inP and is assumed to be even. The two input datasets
A andB are computed according to

A = R⋆ {P1} and B = R⋆ {P2} , (4.1)
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whereR⋆ defines the reconstruction operator, like in our case a filtered backprojection
based reconstruction method. Generally, other reconstruction techniques can be used,
however, the investigation of the influence of the reconstruction technique to the denois-
ing method is beyond the scope of this work. Different reconstruction methods may also
lead to special requirements for the valid sets of projectionsP1 andP2. However, the
restrictions based on Shannon’s sampling theorem are validfor all kinds of reconstructions
(see [Natt 86]). In the following we assume that the samplingtheorem is fulfilled for both
single sets of projections.

Both separately reconstructed images can be written as a superposition of an ideal
noise-free signalS and zero-mean additive noiseN :

A = S +NA and B = S +NB, (4.2)

with NA 6= NB, and the subscripts describing the different images. The ideal signal, re-
spectively the statistical expectationE , is the same for both input imagesS = E(A) =
E(B) and hence also for the averageM = 1

2
(A+B), which corresponds to the reconstruc-

tion from the complete set of projections if a linear reconstruction method is used. The
noise in both images is non-stationary, and consequently the standard deviation of noise
depends on the local positionx = (x, y)T , but the standard deviationsσNA

(x) andσNB
(x)

at a given pixel position are approximately the same becausein average the same number
of contributing quanta can be assumed. Noise between the projectionsP1 andP2 is uncor-
related and accordingly noise between the separately reconstructed images is uncorrelated,
too, leading to the following covariance:

Cov(NA, NB) =
∑

x∈Ω
NA(x)NB(x) = 0, (4.3)

with x defining a pixel position andΩ denoting the whole image domain.
Generally, the above scheme can also be extended to work withmore than two sets

of projections. The reason for restricting all the following discussions on just two input
images can be found in the close relation between the standard deviation of noiseσ and
radiation dose [Kale 00]:

σ ∝ 1√
dose

, (4.4)

which holds as long as quantum statistics are the most dominant source of noise and other
effects, like electronic noise, are negligible. If the set of projections should be split up into
q equally sized parts the effective dose for each separately reconstructed image is divided
by a factor ofq. Thus, the standard deviation of noise increases by a factorof

√
q in

every single image. The detectability of edges based on correlation analysis depends on
the contrast-to-noise level, as the experiments show. Therefore, it is reasonable to keep the
number of separate reconstructions as small as possible if also low contrasts are of interest,
leading toq = 2.

Dual-Source CT The simplest possibility for acquiringP1 andP2 is to use a dual-
source CT-scanner where two X-ray tubes and two detectors work in parallel [Brud 06], as
illustrated in Fig. 4.2(a). If for both tube-detector-systems, also called A- and B-system,
the same scan and reconstruction parameters are used, two spatially identical images can
be reconstructed directly. The imageA is reconstructed from the projectionsP1 acquired
at the first detector and the imageB from the projectionsP2 of the second detector. Instead
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Figure 4.2: Left: Schematic description of a DSCT-scanner. Middle: Illustration of
padding of projections acquired at smaller second detector(colored in blue) in DSCT sys-
tem with data from the larger detector (colored in red). Right: The percentage of correlated
rays used for the reconstruction within a FOV of 35 cm of the B-image, where the mea-
surement FOV is only 26 cm and the data at the outer borders is padded form the other
tube-detector-system.

of simply averaging both images, they can be used as input to the noise reduction algorithm
in order to further suppress noise.

In real DSCT systems the detector of the B-system might be smaller than the detector
of the A-system. Therefore, the projections acquired at theB-system are extended at the
outer border with data from the A-system, as explained in detail in [Brud 06]. The exten-
sions of the projections is illustrated in Fig. 4.2(b). Withthis technique two images can
be reconstructed at the full measurement FOV of the larger detector. Inside the FOV that
is covered by both detectors independent acquisitions fromthe two detectors exist. Con-
sequently, noise within these regions can be assumed to be uncorrelated between the two
images. Outside this region only parts of the projections derive from independent mea-
surements due to the padding of the projections. Therefore,noise in this outer region is
no longer perfectly uncorrelated. How many independent measurements are used for the
reconstruction of a certain point depends on the distance ofthis point to the fully covered
FOV. The percentage of padded data is shown in Fig. 4.2(c) as an example.

Single-Source CTIf no DSCT scanner is available, different approaches for gener-
ating two disjoint subsets are possible. For example,P1 andP2 can be acquired within
two successive scans of the same body region using the same scanning parameters. This
requires that the patient does not move between the two scans.

In order to avoid scanning the same object twice, another possibility is proposed for
generatingA andB from one single scan. Let us first consider parallel geometryand
assume that noise between neighboring parallel projections is uncorrelated, which means
that cross-talk at the detector is negligibly small. Then, two complete images can be re-
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constructed, each using only every other projection. Specifically, theA image is computed
from the even and theB image from the odd numbered projections:

P1 = {Pi | i mod 2 = 0} , (4.5)

P2 = {Pi | i mod 2 = 1} , (4.6)

where the total number of projections is assumed to be even. Aparallel projection acquired
at the rotation angleθi is denoted asPi. Under the constraint of uncorrelated parallel pro-
jections, noise betweenA andB is again uncorrelated as stated in equation (4.3). If a linear
reconstruction method, like the filtered backprojection isused, the average of the two input
images again corresponds to the reconstruction from the complete set of projections. Thus,
averaging the two separately reconstructed images corresponds to the reconstruction using
the complete set of projections. It has the same image resolution and the same amount
of pixel noise. However, halving the number of projections might influence aliasing arti-
facts and resolution inA andB. With decreasing number of projections the artifact radius,
within which a reconstruction free of artifacts is possible, decreases [Oppe 06]. Further-
more, azimuthal resolution is reduced away from the iso-center [Kak 01]. Usually, for
CT-scanners commonly available, the number of projections is set to a fixed number that
ensures a reconstruction free of artifacts within a certainFOV at a certain maximum res-
olution. Thus, for the application of this splitting technique, care must be taken that the
number of projections for separate reconstructions is still high enough for the desired FOV
in order to avoid lower correlations due to reduced resolution or artifacts inA andB. Al-
ternatively, the scan protocol can be adapted to acquire thedoubled number of projections
per rotation.

A comparable splitting technique can also be applied when working with fan-beam
data. Basically, two different methods for splitting of projections are possible: the fan-
beam projections can be split up before or after rebinning toparallel-beam projections.
If the fan-beam projections are first rebinned to parallel-beam projections and then split
up into two disjoint subsets, the problem arises that noise between the two reconstructed
imagesA andB is no longer uncorrelated, because all projections were used for the re-
binning step. Therefore, it is more reasonable to split up the fan-beam projections before
rebinning. The radial rebinning, however, is a non-linear operation. As a consequence
the mean imageM = 1

2
(A + B) is no longer the reconstruction from the complete set of

projections. This effect is nearly not noticeable close to the iso-center, but with increasing
distance to the iso-center resolution is slightly reduced.In order to make sure, that the final
resultR corresponds to the image reconstructed from the complete set of projections with
increased SNR, the wavelet coefficients of the image reconstructed from the complete set
of projections should be weighted.

4.3 Correlation Analysis in the Wavelet Domain

The separately reconstructed imagesA andB are decomposed into multiple frequency
bands by a discrete wavelet transformation. Here, three different wavelet transformations:
‘a-trous wavelet transformation (ATR), discrete time wavelet transformation (DWT), and
shift invariant wavelet transformation (SWT) are compared with respect to their noise re-
duction properties in CT based on correlation analysis.
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Detail coefficients gained from the multiresolution wavelet decomposition of the input
images include structure information together with noise.The goal of the correlation anal-
ysis is to estimate the probability of a detail coefficient corresponding to structure. This
estimate is based on the measurement of the local frequency-dependent similarity of the
input images.

Two different methods for similarity computation will be discussed. First, a correlation
coefficient based measurement, comparing pixel regions from the approximation images,
will be introduced. Secondly, a similarity measurement, directly based on the detail coef-
ficients, is presented. The core idea behind both methods is similar: For all detail images
of the wavelet decomposition, including horizontal, vertical (and diagonal) details, a cor-
responding similarity imageCl between the corresponding wavelet decompositions of the
two input imagesA andB is computed for each levell up to the maximum decomposition
level lmax. The higher the local similarity, the higher the probability that the coefficients at
the corresponding positions include structural information that should be preserved. Ac-
cording to the defined weighting function, the detail coefficients are weighted with respect
to their corresponding values in the similarity image. Detail coefficients representing high
frequency structure information should be preserved, while noisy coefficients should be
suppressed.

4.3.1 Correlation Coefficients

One popular method for measuring the similarity of noisy data is the computation of the
empirical correlation coefficient, also known asPearson’s correlation. It is independent
from both origin and scale and its value lies in the interval[−1; 1], where 1 means per-
fect correlation, 0 no correlation and−1 perfect anticorrelation [Bron 00]. This correlation
coefficient can be used in computing the local similarity between two images, by taking
blocks of pixels in a defined neighborhood around each pixel in the two images and com-
puting their empirical correlation coefficient.

This concept can be extended by comparing images of wavelet coefficients. In order to
estimate the probability for each detail coefficient of the wavelet decomposition to include
structural information, the computation of a similarity image at each decomposition level
is proposed. The similarity image is of the same size as the detail images at that decom-
position level, meaning that for each detail coefficient a corresponding similarity value is
calculated.

An important point is the selection of the pixel regions usedfor the local correlation
analysis. A very close connection between the detail coefficients and the similarity values
can be obtained if the approximation coefficients of the previous decomposition levell− 1
are used for correlation analysis at levell, where the original image is the approximation
image at levell = 0. For the similarity valueCl(x) the weighted correlation coefficient
is computed between the approximation coefficientsAl−1 andBl−1 within the local neigh-
borhoodΩx around the current positionx according to:

Cl(x) =
Covx(Al−1, Bl−1)

√

Varx(Al−1)Varx(Bl−1)
, (4.7)
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with weighted covariance

Covx(A,B) =
1

η̄x

∑

x̃∈Ωx

(
A(x̃)− Āx

) (
B(x̃)− B̄

)
η(x̃,x), (4.8)

and weighted variance

Varx(A) =
1

η̄x

∑

x̃∈Ωx

(
A(x̃)− Āx

)2
η(x̃,x), (4.9)

whereη(x̃,x) is a weighting function. Different possible weighting functions are presented
later. The mean value ofA within the neighborhoodΩx is defined as:

Āx =
1

|Ωx|
∑

x̃∈Ωx

A(x̃), (4.10)

where|Ωx| denotes the number of pixels inΩx. For normalization the mean value ofη in
Ωx is needed:

η̄x =
1

|Ωx|
∑

x̃∈Ωx

η(x̃,x). (4.11)

The functionη(x̃,x) is, on the one hand, used for defining the local neighborhoodΩx

within the image domainΩ around the pixelx that contributes to the local correlation
analysis:

Ωx = {x̃ |x̃ ∈ Ω ∧ η(x̃,x) > ǫ} , (4.12)

whereǫ ≥ 0 is a small number. On the other hand, different locally dependent weights
can be used, such that some pixels are considered more than others, e. g. the intensities at
positionsx̃ very close tox can be weighted stronger than those farther away.

With this definition it is possible to directly use those approximation coefficients for the
correlation analysis, which mainly influenced the detail coefficient at positionx at levell
through the computation of the wavelet transformation. Themultiresolution wavelet de-
composition is computed iteratively. Thus, the detail coefficients at levell are the result
of the convolution of the approximation image at levell − 1 with the respective analysis
lowpassgl and highpasshl filters. During the computation of the inverse wavelet transfor-
mation, the approximation image at levell−1 is reconstructed by summing up the approx-
imation and detail coefficients at levell filtered with the synthesis filters̃gl and h̃l. The
wavelets used here, all lead to spatially limited filters. Consequently, a detail coefficient
at a certain position is influenced by a certain number of pixels from the approximation
image and has influence to a defined region of pixels in the approximation image due to
the reconstruction. These relations are considered for thedefinition ofη. For this purpose
the functionξ is defined first:

ξ(x) = |g̃l(x)h̃l(y) ∗ gl(x)hl(y)|+ |h̃l(x)g̃l(y) ∗ hl(x)gl(y)|+ |g̃l(x)g̃l(y) ∗ gl(x)gl(y)|,
(4.13)

which is then shifted such that is symmetric to the origin. The functionη can then be
defined such that exactly those coefficients of the approximation image of the levell−1 that
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(a) Haar,l = 1 (b) Haar,l = 2 (c) CDF9/7,l = 1 (d) CDF9/7,l = 2

Figure 4.3: Similarity measurement based on correlation coefficients using the Haar and
CDF9/7 wavelet for the first two decomposition levels of DWT.

have influenced a certain detail coefficient and that are influenced by that detail coefficient
through the inverse transformation are considered for the correlation analysis:

ηrec(x̃,x) =

{

1 if ξ(x− x̃) > 0

0 otherwise
(4.14)

With this definition ofη the region around the positionx takes into account all the pixels
from the approximation image that are directly connected tothe certain pixel atx through
the wavelet analysis and syntheses steps. All coefficients within the so defined region are
equally weighted for the correlation analysis. The maximumnumber of coefficients within
this region amounts to(2n)2, wheren is the length of the wavelet filters, ifǫ = 0. Without
loss of generality the filters here are assumed to be of equal and even length.
Another possibility is to use the weights ofξ for computing a weighted correlation coeffi-
cient with

ηfil(x̃,x) = ξ(x− x̃). (4.15)

This weighting directly takes into account the weights of the analysis and synthesis filters.
Usually, the wavelet filters are close to 0 at the outer borders. These coefficients have a
lower impact on the correlation value ifηfil is used.
The weighting function on the other hand can also be a Gaussian function that decays with
increasing Euclidean distance ofx andx̃:

ηgau(x̃,x) =
1

σg
√
2π
e
− ‖x−x̃‖22

2σ2
g . (4.16)

If ηgau is used,ǫ > 0 should be used in order to restrict the region for correlation analysis
to a certain well defined neighborhood, because the Gaussianfunction only asymptotically
goes to 0 with increasing distance ofx andx̃.

4.3.2 Gradient Approximation

The core idea of a gradient-based similarity measurement isto exploit the fact that the
horizontal and vertical detail coefficientsWV

l andWH
l can be interpreted as approxima-

tions of the partial derivatives of the approximation imageat level l − 1. In the case of
the Haar wavelet, for example, the application of the highpass filter is equivalent to the
computation of finite differences. Coefficients inWV

l show high values at positions where
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(a) Haar,l = 1 (b) Haar,l = 2 (c) CDF9/7,l = 1 (d) CDF9/7,l = 2

Figure 4.4: Similarity measurement based on approximated gradients using the Haar and
CDF9/7 wavelet for the first two decomposition levels of DWT.

high frequencies in thex-direction are present, while coefficients inWH
l have high values

where high frequencies in they-direction can be found. The detail coefficients in horizon-
tal and vertical direction of both decompositions are considered as approximations of the
gradient vectors. The similarity can then be measured by computing the angle between the
corresponding approximated gradient vectors. The goal is to obtain a similarity value in
the range[−1; 1], similar to the correlation computations of eq. 4.7. Therefore, the cosine
of the angle is computed:

Cl(x) =
WV
A,l(x)W

V
B,l(x) +WH

A,l(x)W
H
B,l(x)

√
(
WV
A,l(x)

)2
+
(
WH
A,l(x)

)2
√
(
WV
B,l(x)

)2
+
(
WH
B,l(x)

)2
, (4.17)

where the index A refers to the first and B to the second input image.
This kind of similarity measurement has also been used by Tischenko [Tisc 05] in com-

bination with the ‘a-trous wavelet decomposition. As already explained in Section 3.4.1,
only horizontal and vertical detail coefficients are computed in the case of the ‘a-trous
algorithm. However, the additional lowpass filtering orthogonal to the highpass filtering
direction in the case of DWT and SWT is advantageous with respect to edge detection.
The only problem is that the gradient approximation, as introduced so far, in the case of
DWT and SWT, can sometimes lead to visible artifacts. Fig. 4.5(a) and the difference im-
ages in Fig. 4.5(b) show four example regions where this problem can be seen using the
Haar wavelet.

Noticeably, artifacts predominantly emerge where diagonal structures appear in the im-
age, and their shape, in general further justifies the assumption that diagonal coefficients
are falsely weighted down. The different sizes of the artifacts are due to errors at different
decomposition levels. Suppression of correlated diagonalstructures at a coarser level in-
fluences a larger region in the reconstructed image. The reason for these types of artifacts
is that diagonal patterns exist, which lead to vanishing detail coefficients in horizontal and
vertical direction. If the L2-norm of one of the approximated gradient vectors is too small
or even zero, no reliable information about the existence ofcorrelated diagonal structures
can be obtained from Equation (4.17).

The simplest solution for eliminating such artifacts is to weight only the detail co-
efficientsWV

l andWH
l based on the similarity measurementCl and leave the diagonal

coefficientsWD
l unchanged. As expected, this avoids artifacts in the resulting images,

but, unfortunately, noise included in the diagonal coefficients is not removed, leading to a
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(a) artifacts (b) difference, artifacts (c) no artifacts (d) difference, no arti-
facts

Figure 4.5: Artifacts due to weighting down correlated diagonal coefficients with the gra-
dient approximation method - (a) four detailed regions showing artifacts, (b) difference
between noise suppressed and original image regions showing artifacts, (c) same image
regions without visible artifacts, (d) differences without visible artifact after appropriate
weighting of diagonal detail coefficients.

lower signal-to-noise ratio in the denoised images. Equation (4.17) shows that the similar-
ity value is computed only fromWV

l andWH
l . The diagonal coefficients do not influence

Cl. In order to avoid artifacts while still reducing noise in the diagonal coefficients, the
detail coefficientsWV

l andWH
l are weighted depending on the similarity measurement

computed from Equation (4.17). The diagonal detail coefficients are then treated sepa-
rately. The new weighting function for the diagonal coefficients is based on the following
correlation analysis betweenWD

A,l andWD
B,l:

CHH
l (x) =

2WD
A,l(x)W

D
B,l(x)

(
WD
A,l(x)

)2
+
(
WD
B,l(x)

)2 . (4.18)

Using this extension for a separate weighting of diagonal coefficients, denoising results
without visible artifacts are obtained(see Figure 4.5(d)).

Note that, equations (4.7, 4.17, 4.18) are only defined for non-zero denominators. How-
ever, in all three cases it can be assumed that no relevant high frequency details are present
if the denominator is 0 and, therefore, the similarity valueis set to 0.

4.3.3 Weighting of Coefficients

The result of the correlation analysis is a set of similarityimagesCl with values in the
range[−1; 1]. The closer the values are to 1, the higher the probability that structure is
present. Consequently, the detail coefficient at the corresponding position should remain.
The lower the similarity value, the higher the probability that the corresponding detail
coefficient includes only noise and, therefore, should be suppressed. We now have to define
a weighting functionw(Cl(x)), that maps the values in the similarity images to weights
in the range[0; 1]. If a linear reconstruction method is used, the weights are pointwise
multiplied to the averaged detail coefficients of the two input images:

WR,l(x) =
1

2
(WA,l(x) +WB,l(x)) · w(Cl(x)), ∀l ∈ [1, lmax], (4.19)
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obtaining the detail coefficientsWR,l of the output imageR. The approximation images of
the two input images are only averaged:

Rlmax(x) =
1

2
(Almax(x) + Blmax(x)) . (4.20)

Otherwise, instead of averaging the wavelet coefficients ofA andB, the wavelet coeffi-
cients of the image reconstructed from the complete set of projections are used.

The simplest possible method for a weighting function is to use a thresholding ap-
proach. If the similarity valueCl at a certain position is above a defined value the weight is
1 and the detail coefficient is kept unchanged, otherwise it is set to zero. Generally, the use
of continuous weighting functions, where no hard decision about keeping or discarding
coefficients is required, leads to better results. In principle one can use any continuous,
monotonically decreasing function with range[0; 1], such that 1 maps to similarity values
close to 1. We use the weighting function

w(Cl(x)) =

(
1

2
(Cl(x) + 1)

)p

∈ [0, 1] , (4.21)

which has a simple geometric interpretation. In the case of the gradient approximation
method, the similarity values correspond to the cosine of the angle between the gradient
vectors. In the case of the correlation coefficients, the similarity value can be interpreted
as the cosine of the angle between then-dimensional vectors of pixel values taken from
pixel regions ofAl andBl (both zero-mean normalized within the pixel region). Here,n
is the number of pixels inΩx. Eq. (4.21), therefore, leads to a simple cosine weighting,
shifted and scaled to the interval[0; 1], where the powerp ∈ R controls the amount of
noise suppression. With increasingp values the function goes to 0 more rapidly, but still
leads to weights close to 1 for similarity values close to 1.

All different steps of the noise reduction method, as shown in Fig. 4.1, are now de-
scribed: the generation of the input imagesA andB, different possibilities for wavelet de-
composition were pointed out, a new similarity measure between the wavelet coefficients
of the input images based on correlation analysis, an artifact-free extension to gradient-
based approximations of correlation analysis, and a technique for weighting the averaged
details. The final step is to reconstruct the noise suppressed result imageR by an inverse
wavelet transformation from the averaged and weighted wavelet coefficients.

4.4 Experimental Evaluation

For the evaluation of the described methods, experiments both on phantom and clinically-
acquired data were performed.

4.4.1 Noise and Resolution

In order to evaluate the performance of the noise reduction methods, mainly two aspects
are of interest: the amount of noise reduction and, even moreimportantly, the preservation
of anatomical structures.
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(a) no noise,10HU (b) noisy,10HU (c) no noise,100HU (d) noisy,100HU

Figure 4.6: Reconstructed simulated phantom images using S80 kernel.
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Figure 4.7: MTFs of different reconstruction kernels.

Phantom

For the experiments reconstructions from a simulated cylindrical water phantom (r =
15 cm), with an embedded, quartered cylinder (r = 6 cm) were used. The contrast of the
embedded object in comparison to water varied between 10 and100 HU. The dose of radia-
tion (100mAs/1160 projections) was kept constant for all simulations, leading to a nearly
constant pixel noise in the homogeneous area of the water cylinder. All simulations were
performed with theDRASIMsoftware package provided by Siemens Healthcare [Stie 02].
The advantage of simulations is that in addition to noisy projections (with Poisson distribu-
ted noise according to quantum statistics), ideal, noise-free data can also be produced and
we have ground truth data. All slices were of size512×512 and were reconstructed within
a field of view of20 cm using: a) a sharp Shepp-Logan (S80) filtering kernel, leading to a
pixel noise of approximately7.6HU in the homogeneous image region in the reconstruc-
tion from the complete set of projections; and b) a smoother body kernel (B40), leading to a
pixel noise of approximately5.2HU. For noise-resolution measurements some additional
typical body kernels were utilized. The MTFs of all used kernels are shown in Fig. 4.7.
The standard deviation of noise in the separately reconstructed images is about

√
2 times

higher (see Eq. (4.4)). Two examples (10 and 100 HU) are shownin Fig. 4.6. For both
contrast levels, one of the noisy input images and the corresponding noise-free images are
shown.
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MTF Computation

First, the capability of the noise reduction algorithm to detect edges of a given contrast
in the presence of noise was investigated. The local modulation transfer function (MTF),
measured at an edge, for detecting changes due to the weighting of wavelet coefficients
during noise suppression. As described in Section 2.5.2, itis possible to determine the
MTF directly from the edge in an image. For this purpose, a fixed region of20×125 pixels
around an edge (with a slope of approx. 4 degrees) was selected. Reliable measurements
of the MTF from this edge technique can only be achieved if thecontrast of the edge is
much higher than the pixel noise in the images [Cunn 92]. Ideally, one should measure
MTF on noise-free images. However, measuring the quality ofedge preservation based on
the contrast of the edge in the presence of noise is of interest here.

The impact of the weighting in the wavelet domain during noise suppression to the ideal
signal should be measured. For that purpose, in addition to the noisy input images, which
are a superposition of ideal signal and noise, an ideal image, free of noise, is simulated
and reconstructed. The noise-free image is also decomposedinto its wavelet coefficients.
The weighting image is generated from the similarity computations from the wavelet coef-
ficients of the noisy input images, as explained in the previous section. In order to measure
the impact of the weighting to the ideal signal, the detail coefficients of the noise-free im-
age were point-wise multiplied with the computed weights. The image gained from the
inverse wavelet transformation of the weighted coefficients of the noise-free image shows
the influence of the noise suppression method on structures directly. Edges, which were
detected as correlated structures, are preserved. If an edge was not detected correctly, the
edge gets blurred, which influences the MTF.

Evaluation of Edge-Preservation

In the first test, the influence of the noise suppression method to the MTF was evaluated
with regard to the contrast of the edge. Phantom images were used, as described above,
reconstructed with the S80 kernel, with varying contrasts at the edge (10, 20, 40, 60, 80 and
100HU). The noise suppression method was performed for the first three decomposition
levels using a CDF9/7 wavelet. In all cases a continuous weighting function was utilized,
as presented in Eq. (4.21). The MTF was computed for the modified noise-free images and
compared to the MTF of the ideal image, without modifications, reconstructed from the
complete set of projections. The results of this test are illustrated in Fig. 4.8, allowing a
comparison of the different wavelet transformation methods and theCorr andGrad ap-
proaches for similarity computation. Ideally, the noise reduction methods do not influence
the MTF in any respect. Specifically, the edge is not blurred.If the corresponding MTF
falls below the original ideal curve, this indicates that the edge is smoothed. Alternatively,
the MTF raises if some frequencies are amplified. As seen in Fig. 4.8 theCorr method
leads to better edge detection in comparison to theGrad approach for all cases.

This can be explained by the better statistical properties of the similarity evaluation
based on correlation coefficients between pixel regions. More values are included in the
correlation computations and, therefore, the results are more reliable. As expected, the
approximated gradients are more sensitive to noise. For allmethods it can be seen that
decreasing edge contrast results in decreasing MTF. This clearly shows that decreasing
CNR lowers the probability that the edge can be perfectly detected. However, one can see
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(a) Corr - ATR
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(b) Grad - ATR
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(c) Corr - DWT
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(d) Grad - DWT
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(e) Corr - SWT
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Figure 4.8: MTF for varying contrast at the edge using the CDF9/7 wavelet. Comparison of
correlation coefficient approach (Corr) and gradient approximation (Grad) in combination
with different wavelet transformations.
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that with increasing contrast, the MTF gets closer to the ideal MTF. In the case of theCorr
method the difference to the ideal MTF, even for a contrast of60 HU, is very small. The
Grad approach, in contrast, does not reach the ideal MTF even for an edge contrast of 100
HU. One can also observe that the performances for the three different wavelet computation
methods are quite similar. The two nonreducing transformations give slightly better results
in case of theCorr method, at least for higher contrasts. In combination with the Grad
method, ATR and SWT slightly outperform DWT. The redundant information included
in nonreducing wavelet transformations, such as ATR and SWT,leads to an additional
smoothing. The similarity is evaluated for all coefficients. The reconstruction from the
weighted redundant data, therefore, leads to smoothed results. On the other hand, the
additional lowpass filtering orthogonal to the highpass filtering direction, in the case of
DWT and SWT, improves the edge detection results. Altogether,this explains why SWT,
which combines both positive aspects, gives best results.

An even better comparison of the results can be obtained regarding theρ50 values. This
is the resolution for which the MTF reaches a value of0.5. In Fig. 4.9,ρ50 is plotted against
the contrast of the edge for the different methods. This time, three different wavelets (Haar,
Db2 and CDF9/7) are compared. Two different convolution kernels (S80 and B40) were
used for image reconstruction (see MTFs in Fig. 4.7). Using asmoothing kernel changes
the image resolution, as well as the noise characteristics.From Fig. 4.9 it can be seen that
the resolution in the original image using the B40 kernel is lower than for the S80 kernel. In
addition to that, the noise level is also lower (see next paragraph on noise evaluation) using
the B40 kernel. Due to the better signal-to-noise-level in the input images the edges can be
better preserved when using B40. All other effects are similar for both cases. First of all, it
can be seen that the clear differences between theCorr andGrad methods decrease when
using the Db2 and the Haar wavelet. The results of theGrad approach get better with
decreasing length of the wavelet filters. More specifically,the better the highpass filter
of the wavelet is in spatially localizing edges, the better the results of theGrad method.
For the Haar wavelet, we can see thatρ50 even exceeds theρ50 value of the ideal image.
This can be attributed to the discontinuity of the wavelet, which can lead to rising higher
frequencies during noise suppression.

Evaluation of Noise Reduction

The same phantom images were used for evaluating the noise reduction rate. The use of
simulations has the advantage that an ideal, noise-free image is available. Therefore, noise
in the images can be clearly separated from the information by computing the differences
from the ideal image. The effect of the noise reduction algorithm can be evaluated by
comparing the standard deviation of noise in the noise-suppressed images to that in the
average of the input images. Two different regions, each100 × 100 pixels, were used and
the standard deviation of the pixel values in the differenceimages were evaluated. The first
region was taken from a homogeneous area. Here, the achievable noise reduction rate of the
different approaches can be measured. The second region waschosen at an edge because
the performance near the edges differs for the various approaches. Sometimes a lower
noise reduction rate is achieved near higher contrast edges. Therefore, it is interesting to
compare the noise reduction rates close to edges for different contrasts. Furthermore, the
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(b) Haar - B40
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(c) Db2 - S80
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(d) Db2 - B40
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(e) CDF9/7 - S80
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(f) CDF9/7 - B40

Figure 4.9: Theρ50 values in dependence on contrast at the edge for different methods and
wavelets.
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Table 4.1: Percentage noise reduction in a homogeneous image region.
Grad Corr

S80 ATR DWT SWT ATR DWT SWT

Haar 26.9 22.9 26.0 42.1 39.2 40.7
Db2 27.4 22.9 26.3 46.2 44.9 45.7
CDF9/7 27.6 23.2 26.5 48.2 47.9 48.1

B40 ATR DWT SWT ATR DWT SWT

Haar 26.6 22.0 25.4 38.9 36.3 38.3
Db2 26.1 22.5 25.9 43.5 42.2 43.2
CDF9/7 27.0 22.7 26.2 45.5 44.9 45.4

noise reduction rates were evaluated for the two different reconstruction kernels (S80 and
B40).

In the homogeneous image region, no noticeable changes are observed when the con-
trast of the objects is changed. Therefore, the measurements in cases of 100, 60 and 20
HU are averaged. Tab. 4.1 presents the noise reduction rates(percentage values) measured
in the homogeneous image region. The first clear observationis that the noise suppression
for the Corr method is much higher than that for theGrad method. The computation of
correlation coefficients between pixel regions taken from the approximation images leads
to smoother similarity measurements. This is also noticeable regarding the weighting ma-
trices in Fig. 4.4 in comparison to Fig. 4.3.

An interesting observation is that, for theGrad method, the noise reduction rates do
not vary for the different wavelets. In contrast to that, when using theCorr approach,
slightly increased noise suppression can be achieved for longer reaching wavelets. By in-
creasing the length of the wavelet filters, larger pixel regions are used for the similarity
computations. This avoids the case where noisy homogeneouspixel regions are acciden-
tally detected as correlated. In contrast, the fact that theapproximated gradient vectors
in noisy homogeneous pixel regions can sometimes point to the same direction cannot be
reduced by using longer reaching wavelets. The comparison of the three wavelet transfor-
mation methods shows that DWT again has the lowest noise suppression capability, while
SWT and ATR perform comparably. This shows that nonreducing wavelet transformations
are better for noise suppression due to their inherent redundancy. All these observations
can be made for both convolution kernels. The difference is,that in the images with lower
noise level, due to the reconstruction with a smoothing kernel like the B40, the noise re-
duction rate is approximately 3 percent points in the case oftheCorr method and less than
1 percent point in the case of theGrad method below the noise reduction rate in the more
noisy images reconstructed with the S80.

Table 4.2 lists the noise reduction rates achieved in the edge region, again using the two
different convolution kernels. Here, the results are compared for three different contrasts
at the edge. Most of the observations for the homogeneous image region are also valid
for the edge region. TheCorr approach clearly outperforms theGrad method. The DWT
shows the lowest noise suppression, whereas ATR and SWT are comparable. In the case
of the Grad method, it can be observed that there is nearly no differences between the
different wavelets. Generally, with decreasing contrast at the edge, more noise in the local
neighborhood of the edge can be removed. The reason for this is that the lower the contrast,
the lower the influence of the edge to the correlation analysis. However, one difference
between the two similarity computation methods becomes clear: For theGrad approach
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Table 4.2: Percentage noise reduction rates in an edge region.
Grad Corr

S80 ATR DWT SWT ATR DWT SWT

Haar 25.4 21.2 24.1 38.4 35.3 37.0
100HU Db2 25.2 21.6 24.1 40.0 39.0 39.6

CDF9/7 25.9 21.5 24.5 36.0 35.6 36.0
Haar 26.5 22.1 25.2 40.1 37.9 38.9

60HU Db2 26.6 21.6 24.8 42.1 41.1 41.8
CDF9/7 27.0 21.7 25.4 39.0 38.0 38.9
Haar 26.6 21.7 25.1 40.7 38.1 39.4

20HU Db2 26.6 22.1 25.4 43.8 42.3 43.3
CDF9/7 27.1 22.4 25.4 43.2 42.5 43.1

B40 ATR DWT SWT ATR DWT SWT

Haar 22.9 19.8 22.4 33.0 31.1 32.6
100HU Db2 21.8 19.3 22.0 34.8 34.1 34.7

CDF9/7 22.3 19.2 22.2 29.4 28.8 29.7
Haar 25.3 21.2 24.0 35.8 33.6 35.0

60HU Db2 24.4 19.6 23.1 37.7 36.5 37.4
CDF9/7 25.3 19.9 23.7 32.7 31.7 32.6
Haar 25.1 20.3 24.0 36.0 34.1 35.4

20HU Db2 24.8 20.3 24.2 39.0 37.1 38.8
CDF9/7 25.7 21.0 24.4 36.9 35.7 36.9

the increment in noise suppression with decreasing contrast at the edge is quite similar for
all wavelets. This does not hold for theCorr approach. With increasing spatial extension
of the wavelet filters, the difference between the noise reduction rate at 100 HU increases
in comparison to 20 HU increases. This means that for higher contrast, more noise close
to edges remains in the image if longer reaching filters are utilized. The reason for this is
that the size of the pixel regions used for the correlation computations are adapted to the
filter lengths of the wavelets. This is needed in order to ensure that all coefficients, which
include information of an edge, are included in the similarity computations, as already
mentioned during the discussion of Fig. 4.3. The effect is that edges with contrast highly
above the noise level dominate the correlation computation, as long as they occur within
the pixel region. As a result, nearly no noise is removed within a band around the edge.
The width of the stripe obviously depends on the spatial extension of the wavelet filters.

Noise-Resolution-Tradeoff

Within the last two sections a very detailed, contrast dependent evaluation of noise and
resolution was presented. For easier comparison of the different denoising approaches,
noise-resolution-tradeoff curves are plotted in Fig. 4.10(a). The phantom described in Sec-
tion 4.4.1 with an edge-contrast of 100 HU, reconstructed with the S80 kernel, was used
for the experiment. Theρ50 values are plotted against the standard deviation of noise,mea-
sured within a homogeneous image region. TheCorr andGrad method in combination
with DWT, SWT and ATR are compared, all using the Db2 wavelet and3 decomposition
levels. The powerp within the weighting function (Eq. (4.21)) was used for varying the
amount of noise suppression. The 10 points within each curvecorrespond to the powers
p ∈ {5.0, 4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0, 0.5} from left to right. In summary the follow-
ing observations can be made:

• SWT and DWT show better edge-preservation than ATR at the samenoise reduction
rate in combination with theGrad method.
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Figure 4.10: Left: Noise-Resolution-Tradeoff: Comparison of high-contrast resolution and
standard deviation of noise in homogeneous image region fordifferent denoising methods
using Db2 wavelet. The powerp within the weighting function (4.21) is used for varying
the amount of noise suppression. Right: Noise-Resolution-Tradeoff: ρ50 polotted against
CNR for different reconstruction kernels. Denoising configuration: 3 level SWT with
CDF9/7 wavelet andCorr method.

• TheCorr method clearly outperforms theGrad method in all cases.

• There is nearly no difference between the different wavelet transformations if the
Corr approach is used.

In a second test, the influence of the reconstruction kernel to the noise-resolution-
tradeoff was evaluated. Different reconstruction kernelscan be selected in CT, always
leading to a noise-resolution-tradeoff. Smoothing reconstruction kernels imply lower noise
power, but also lower image resolution. As already seen during the discussion of noise
and resolution in the last two sections the reconstruction kernel also influences the results
of the denoising method. Therefore, the noise-resolution-tradeoff is compared for differ-
ent reconstruction kernels (see Fig. 4.7) with and without the application of the proposed
denoising method. We used again the phantom images described in Section 4.4.1 with
varying contrastsc, reconstructed with B10, B20, B30 and B40 kernel. The contrast-to-
noise ratio (CNR = c/σ) and resolution (ρ50) of the original and denoised images were
then compared. A 3 level SWT with CDF9/7 wavelet and theCorr method was used for
the comparison shown in Fig. 4.10(b). The dashed lines correspond to the original and the
solid lines to the denoised images. Each line consists of sixpoints corresponding to the
contrasts (10, 20, 40, 60, 80 and100HU) divided by the respective standard deviation of
noiseσ measured in a homogeneous image region. Ideally the denoising procedure would
only increase the CNR without lowering resolution. This would mean that the solid lines
are just shifted to the right in comparison tho the corresponding dashed lines. The observed
behavior, however, is more complex and corroborates the results presented in the previous
sections:

• The sharper the kernel (high resolution, low CNR), the higherthe improvement in
CNR that can be achieved by applying the proposed method.
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(a) no noise (b) noisy (c) denoised

Figure 4.11: Low-contrast-phantom (LCP) used for human observer study: (a) ideal noise-
free, (b) one noisy example and (c) corresponding denoised image using 3 levels of SWT,
CDF9/7 wavelet and theCorr method. Display options:c = 5,w = 12.

• The smoother the kernel (low resolution, high CNR), the better the edge-detection
and thus the preservation of resolution in the denoised image.

The new insight gained from this analysis is that better results can be achieved with respect
to image resolution and CNR using a sharper reconstruction kernel in combination with
the proposed method than using a smoother reconstruction kernel. For example, higher
resolution and higher CNR is obtained for the same input data if the sharper B30 kernel is
used in combination with the proposed filter than using the smoother B10 kernel without
denoising.

4.4.2 Low-Contrast-Detectability

In addition to the quantitative evaluation of noise and resolution a human observer study
was performed. This allows to test, how the low-contrast-detectability is influenced by the
application of the proposed method.

Data and Experiment

For the experiments reconstructions from a simulated cylindrical water phantom (r =
14.5 cm), with four blocks of embedded cylindrical objects with different contrasts (10,
5, 3, 1HU) and different sizes (15, 12, 9, 7, 5, 4, 3, 2 mm diameter) were used. A recon-
structed slice from this phantom is shown in Fig. 4.11(a). 10noisy realizations of this
phantom were simulated and reconstructed, all at the same dose level (30mAs), leading to
an average pixel noise in the homogeneous water region ofσ = 4.3HU. One noisy exam-
ple slice is shown in Fig. 4.11(b). In addition to this, 20 noisy phantoms were simulated,
where some (95 in sum) of the embedded objects were missing. The same scanning and re-
construction parameters were used for all 30 datasets. For all 30 images the corresponding
denoised images (with approx.44% noise reduction, leading toσ = 2.4HU in average)
were computed. 3 decomposition levels of SWT in combination with CDF9/7 wavelet to-
gether with theCorr method were used. As an example, in Fig. 4.11(c) the denoisedimage
of Fig. 4.11(b) can be seen.
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(a) 10 HU (b) 5 HU

(c) 3 HU (d) 1 HU

Figure 4.12: Comparison of true-positive rates for different objects of noisy (original) and
denoised LCP.

For easier accomplishment and evaluation of the experimenta proprietary evaluation
tool for low-contrast-detectability was developed. This tool shows the images from a list
in randomized order to the human observer. The observer thenhas to select which objects
he can detect by mouse click. All 47 observers (most of them PhD students in the field of
medical image processing) evaluated 40 images, 10 originalnoisy images where all objects
were present, the 10 corresponding denoised, 10 noisy images where some objects were
missing, and again the 10 corresponding denoised.

Results and Discussion

In a first step the average true-positive rate (TPR) achieved for the different objects was
evaluated. The performance of detecting objects of different size and contrast was com-
pared between the noisy and denoised images. The average TPRwas computed for all 32
objects from all noisy images and all observers and comparedto the average from all de-
noised images and all observers. In Fig. 4.12 the TPR is plotted for all objects of different
contrasts and sizes. The closer the TPR is to 1 the better the object was correctly judged to
be visible in average. The clear result is that all objects were judged to be as well or even
better visible in the denoised images in comparison to the noisy originals. The correspond-
ing false-positive rates (FPR) are all below 0.03 and in average below 0.005 for both noisy
and denoised images. In Fig. 4.12(a) the TPR for the10HU objects can be seen, where no
clear difference between the noisy and denoised objects is visible. In case of the5HU and
3HU objects (see Fig. 4.12(b) and 4.12(c)) a clear difference can be seen. If objects with a
TPR above 0.5 are said to be detectable, two more objects (5HU, 3 mm and3HU, 5 mm)
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Figure 4.13: ROC curves resulting from human observer study. Comparison between noisy
(original) and denoised results.

are detectable in the denoised images than in the noisy ones.The TPR of the3HU, 4 mm
object is also very close to 0.5. The1HU objects are nearly never detected in the noisy
images, but in the denoised at least the 15 and12 mm objects are detected correctly in
more than 20% of the cases.

In a second step, receiver operating characteristic (ROC) curves for the noisy and
denoised cases based on a thresholding approach were computed, as described in detail
in [Fawc 06]. Firstly, the average detection rate (number ofpositive votes that object is
visible / number of overall votes for this object) was computed for each single image and
object from all observers. Then, a sliding threshold was applied for the noisy and denoised
cases separately. All objects with a detection rate above a certain threshold were set to be
detected and then the corresponding FPR and TPR was calculated, leading to the curves
shown in Fig. 4.13. In addition to the curves the area under the curve (AUC) was computed
for the noisy and denoised case. The AUC improved from 0.8326in case of the noisy to
0.8637 in case of the denoised samples.

4.4.3 Comparison with Adaptive Filtering of Projections

Data and Description

Fig. 4.14 shows a comparison of the proposed method to a projection based adaptive fil-
tering, which is used in clinical practice [Brud 01]. The 2-D-projections are filtered with
a linear filter of fixed spatial extension. Then, a weighted sum of the filtered and original
noisy projections is computed based on the attenuation at a respective position. The higher
the attenuation, the higher the noise power and, therefore,the stronger the smoothing be-
ing performed. This method, like most other noise reductionmethods based on filtering
the projections, has the goal to reach nearly constant noisevariance over all projections in
order to reduce directed noise.

For the comparison reconstructions from two simulated elliptical phantoms were used,
one homogeneous water phantom (r = 10 cm) and one eccentric water phantom (a =
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(a) original:σ = 11.1HU (b) proposed method:
σ = 6.0HU

(c) adaptive filtering of projec-
tions:σ = 6.0HU

(d) original:σ = 19.0HU (e) proposed method:
σ = 10.2HU

(f) adaptive filtering of projec-
tions:σ = 10.2HU
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Figure 4.14: Comparison of proposed method to adaptive filtering of projections. The re-
construction without noise suppression are displayed in (a) and (d). The proposed wavelet
based noise reduction method was applied in (b) and (e) and the adaptive filtering of the
projections is shown in (c) and (f). Image resolution of the filtered images is compared at
the same noise reduction rates. In (g) and (h) the corresponding vertical lineplots through
the center of the two phantoms are compared between the noise-free, adaptive-filtered and
wavelet denoised images. Display options:c = 200 andw = 1000.
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15 cm andb = 7.5 cm). In the center of both phantoms a line-pattern with6 lp/cm is
embedded at a contrast of1000HU. In the eccentric phantom two additional cylindrical
objects (r = 2 cm) are embedded. All reconstructions to a pixel grid of512 × 512 with
FOV of 25 cm were performed using the B40 kernel. In Fig. 4.14(a) and Fig. 4.14(d) the
original noisy phantoms reconstructed from the complete set of projections are shown. The
standard deviation of noise was measured in homogeneous regions in north, south, west
and east direction around the center resulting in an averagenoise ofσ = 11.1HU in the
homogeneous, andσ = 19.0HU in the eccentric water phantom. Both denoising methods
were applied to achieve the same average noise reduction rate, leading toσ = 6.0HU in
the homogeneous andσ = 10.2HU in the eccentric case, and resolution is compared. For
the proposed method, 3 levels of SWT together with the CDF9/7 wavelet and theCorr
method was used.

Results and Discussion

Fig. 4.14(f) shows that directed noise pointing out the direction of highest attenuation is
reduced. A remarkable noise suppression can be achieved by adaptively filtering the pro-
jections. However, it can also be seen by visual inspection that structures orthogonal to the
direction of highest attenuation lose spatial resolution.In comparison to this the wavelet
based filtering method preserves structures much better. Noblurring effects are visible.
This can be seen well in the detailed vertical lineplots through the line-pattern, shown in
Fig. 4.14(g). Although the same average noise reduction rate is obtained, the noise streaks
are not completely removed using the wavelet approach. Thisis the strength of the adaptive
filtering method. In contrast to this, the adaptive filteringmethod does not perform well if
rotationally symmetric objects are present. The goal of theadaptive filtering of the projec-
tions is to achieve nearly constant noise variance over all projections. If the noise variance
is already very similar in all projections, the adaptive filtering does nothing at all, or loses
resolution in all directions. This can be seen well in Fig. 4.14(c). Here, the wavelet based
method, as shown in Fig. 4.14(b), can again achieve a high noise reduction rate without loss
of resolution. The detailed vertical lineplots are again shown in Fig. 4.14(h). Nevertheless,
it should be emphasized that the noise suppression based on projection is a pre-processing
step, i. e. prior to reconstruction, while the proposed method is a post-processing step, thus
making the combination of the two methods possible.

4.4.4 Clinically Acquired Data

Data and Experiment

In order to test the noise reduction method with respect to its practical usability, the ap-
plication of the algorithm on clinically acquired data is indispensable. Noise reduction
methods are particularly critical in their application to low contrast images. Thus, images
predominantly including soft tissue are well suited for performance assessment. Theoreti-
cally, as already discussed, the higher the contrast of edges, the higher the probability that
the edge can be detected and preserved. If the application ofthe method with specific pa-
rameter settings leads to good results in slices with soft tissue, the use for higher contrast
regions will not be critical. Therefore, a thoraco-abdomenscan (see examples in Fig. 4.16),
acquired with a Siemens Sensation CT-scanner, was used for the clinical evaluation. The
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reconstruction of slices at a FOV of38 cm with a thickness of3 mm was performed with
a B40 kernel, which is one of the standard kernels for this bodyregion.

For the clinical experiment, 12 noise-suppressed images were computed from the same
input images with different configurations. Three different wavelet transformation meth-
ods (ATR, DWT and SWT) in combination with two different wavelets (Haar and CDF9/7)
were utilized. Furthermore, these configurations togetherwith the Corr andGrad meth-
ods for similarity computation were compared. The resulting noise-reduced images and
the average of the input images, which corresponds to the reconstruction from all pro-
jections, were compared by a radiologist. All images correspond to the same dose level.
For simple comparison, a proprietary evaluation tool was developed. A randomized list
of comparisons between image pairs can be performed with this tool. Within each com-
parison, an image pair is shown to the radiologist. The initial position of the two images
is also randomized. However, the positions of the two imagescan be easily switched by
the radiologist, in order to facilitate the detection of even very small differences between
the images. The radiologist decides if there is one preferred image (clear winner) or both
images are judged of equal quality with respect to the following evaluation criteria.

Three different quality criteria were evaluated separately in three consecutive tests:

• detectability of anatomical structures,

• noise in homogeneous image regions,

• noise in edge regions.

In each test, all possible image pairs were compared to each other. Altogether,3×78 com-
parisons were performed. The outcome of these tests is shownin Fig. 4.15. The dark bars
show the number of clear winners, normalized to the number ofperformed comparisons for
one image. The corresponding light bars are the results of a score system. Three points are
gained by a winning image and one point if two images are judged to be of equal quality.
This value is again normalized, this time to the number of maximally reachable points, if
the image won all comparisons.

Results and Discussion

In the first test (Fig. 4.15(a)), the detectability of anatomical structures was examined. Only
in one case the anatomical structures were judged to be better detected in the original image
than in the noise suppressed image. In all other direct comparisons of noise reduced images
to the average of input images (here denoted as original), the processed images were chosen
to be favorable. This shows that the anatomical structures are well preserved by the noise
suppression method. The separation of information and noise is further improved because
of the better signal-to-noise ratio. The comparison between the different configurations
shows that theCorr method gives better edge detection results than theGrad approach.
There is no clearly preferred wavelet basis or wavelet transformation.

In the second test (Fig. 4.15(b)), the treatment of noise in homogeneous image regions
was analyzed. Here again, theCorr method gives much better visual results in all cases.
There is nearly no difference between the Haar and the CDF9/7 wavelet.

In the final test (Fig. 4.15(c)), the noise in regions around edges was compared. This
test reflects the results of the quantitative evaluation with phantom data. It shows that nearly
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(a) Detectability of anatomical structures

(b) Noise in homogeneous image region

(c) Noise in edge region

Figure 4.15: Results of the clinical evaluation - (a) Detectability of anatomical structures;
(b) noise in homogeneous regions and (c) noise in edge regions were compared for different
configurations.
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(a) original (b) denoised (c) difference

(d) original (e) denoised (f) difference

Figure 4.16: Noise suppression in clinical images from the abdomen (a)-(c) and thorax (d)-
(f). Configuration: SWT, Haar wavelet,lmax = 3, p = 1, Corr method. Display options:
c = 50, w = 400 for CT-images andc = 0,w = 50 for difference images.

no noise is removed in regions of edges if long reaching wavelets are used in combination
with theCorr method. The results of the Haar wavelet are still judged better for theCorr
method in comparison to theGrad approach.

TheCorr method is clearly preferred considering the results of all three tests together.
However, longer reaching wavelets lead to lower noise reduction around higher contrast
edges. Therefore, a tradeoff between smoothness and spatial locality of the wavelet must
be resolved.

4.4.5 Example Images

Two examples of noise suppression on clinically acquired data are shown in Fig. 4.16.
Zoomed-in images from the abdomen (4.16(a)-4.16(c)) and thorax (4.16(d)-4.16(f)) are
displayed. For denoising, 3 levels of a Haar wavelet decomposition (SWT) in combination
with theCorr method were used. The original images, which correspond to the reconstruc-
tion from the complete set of projections, are compared to the noise suppressed images.
Additionally, the differences between the original and denoised images are shown. Notice-
ably, noise in homogeneous image regions is removed, while structures are well preserved.

In Fig. 4.17 two examples of a thorax-abdomen phantom acquired at a Siemens Def-
inition dual-source CT (DSCT) scanner are shown. We used the same scan protocol
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(a) 100mAs, σ = 18.3HU (b) 100mAs denoised, σ =
10.4HU

(c) 500mAs, σ = 8.9HU

(d) 100mAs, σ = 17.0HU (e) 100mAs denoised, σ =
9.8HU

(f) 500mAs, σ = 8.3HU

Figure 4.17: Application of proposed method to dual-sourceCT data: abdomen (a)-(c) and
thorax (d)-(f). Configuration: SWT, Db2 wavelet,lmax = 3, p = 1, Corr method. Display
options:c = 50, w = 300.
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(100mAs, 120 kV, slice-thickness= 1.2mm) and reconstruction parameters (FOV= 35 cm,
kernel = B30) for both source-detector systems. The image reconstructed from projections
acquired at the first detector is denoted asA and the image from the second detector is
denoted asB. The FOV (26 cm) of the second detector is smaller than that of the first
detector. Therefore, the projections of the B-system are extended at the outer borders with
data from the A-system, as explained in detail in [Brud 06]. With this technique two images
can be reconstructed at the full FOV. Inside the26 cm-FOV independent acquisitions from
the two detectors are available. Consequently, noise withinthese regions can be assumed
to be uncorrelated between the two images. Outside the FOV of26 cm only parts of the
projections derive from independent measurements due to the padding. Therefore, noise
in this outer region is no longer perfectly uncorrelated. Evaluating the correlation during
the Corr method or comparing the angle between the approximated gradient vectors in
the Grad method still works in this outer region. However, only a lower noise reduction
can be achieved because of the increasing correlation betweenA andB with increasing
distance from the26 cm radius. In Fig. 4.17(a) and Fig. 4.17(d) the average images of
A andB are shown for two examples. TheA andB images are then used as input to
the proposed noise reduction method (3 levels SWT with Db2 wavelet andCorr method).
The corresponding denoised results are shown in Fig. 4.17(b) and Fig. 4.17(e). For better
comparison high-dose scans (500mAs) are shown in Fig. 4.17(c) and Fig. 4.17(f). Within
the overlapping FOV, where data from both detectors has beenacquired, a noise reduction
rate of approximately 43% was achieved. Due to the sinogram extension of the B-system
with data from A, noise outside the FOV of26 cm is no longer perfectly uncorrelated.
Therefore, only a lower noise reduction of approximately 25% can be achieved in regions
outside the overlapping FOV.

4.5 Conclusions

In this chapter a robust and efficacious wavelet domain denoising technique for the suppres-
sion of pixel noise in CT-images was introduced. The separatereconstruction from disjoint
subsets of projections allows the generation of images which only differ with respect to
image noise but include the same information. A correlationanalysis based on the detail
coefficients of théa-trous wavelet decomposition of the input images, as recently proposed
by Tischenko, allows the separation of structures and noise, without assuming or estimating
the underlying noise distribution. An extension of Tischenko’s approach for the applicabil-
ity with DWT and SWT was described. The quantitative and qualitative evaluation showed
that comparable edge preservation, with only slightly lower noise reduction, can also be
achieved with DWT at lower computational costs. Best results with respect to noise and
resolution evaluation can be obtained using the non-redundant SWT. More importantly, a
second similarity measurement was introduced which makes use of correlation coefficients.
Weighting of wavelet coefficients according to the correlation coefficient based similarity
measurement shows improved results with respect to edge preservation and noise sup-
pression for all wavelet transformations. In addition to the contrast dependent noise and
resolution evaluation, human observer tests were performed for evaluating the low contrast
detectability. The performed human-observer study showedthat the detectability of small
low-contrast objects could be improved by applying the proposed method. In comparison
to a commonly applied projection based algorithm, the proposed method achieved higher
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resolution at the same noise suppression. The evaluation onclinically-acquired CT data
proves the practical usability of the methods.
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Chapter 5

Noise Estimation in the Wavelet Domain
for Anisotropic Noise Reduction

The approaches proposed in the last chapter automatically adapt themselves to the local
noise in the image because of the local correlation analysisbetween two separately re-
constructed images. Especially in homogeneous image regions high noise reduction rates
of about 45% can be achieved. It is a problem that noise very close to edges sometimes
visibly remains. Further, if images with strongly directednoise due to high absorption
along certain directions are processed, a compromise between noise reduction and edge-
preservation must be found. No anisotropic noise reductioncan be performed, where noise
along edges is removed without smoothing across the edges. The reason for this can be
found in weighting all three blocks of detail coefficients based on the same weighting im-
age. In this section another wavelet based noise reduction approach is presented, which has
partially been published in [Bors 08d]. The method is based onwavelet thresholding, as it
has first been proposed by Donoho and Johnstone [Dono 94]. Theidea of wavelet thresh-
olding is to erase insignificant detail coefficients below a defined threshold and preserve
those with larger values. The noise suppressed image is obtained by an inverse wavelet
transformation from the modified coefficients. The difficulty is to find a proper thresh-
old, especially for noise of spatially varying power and directed noise, which is commonly
present in CT-images. Choosing a very high threshold may lead to visible loss of image
structures, but the effect of noise suppression may be insufficient, if the chosen threshold
was too low. Therefore, a reliable estimation of noise for threshold determination is one of
the main issues.

The main contributions presented in this chapter can be summarized as follows: The
method is again based on two separately reconstructed CT datasets. This time the two
datasets are used for local noise estimation. The coherences of the noise variance between
different linear combinations of separately reconstructed images is described. Based on
the difference between the two input datasets the variance of noise in the input images and
in the mean image can be estimated. Due to the linearity of thewavelet transformation,
the same theory can be applied: The noise variance of the wavelet coefficients can be esti-
mated from the difference of the wavelet coefficients of the input images. Noise adaptive
thresholds are computed for detecting insufficient detail coefficients and suppressing them
by hard thresholding.

65
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5.1 Methodology Overview

An overview of the proposed noise reduction method is shown in Fig. 5.1. First, two im-
agesA andB are generated, which only differ with respect to image noise. The generation
of two input images, which only differ with respect to noise,has already been described
in Section 4.2. Each of the images is then decomposed by a two dimensional wavelet
transformation. The redundancy included in the stationarywavelet transformation (SWT)
is advantageous for reducing noise [Coif 95]. Also the investigation in Chapter 4 showed
best noise reduction in CT in combination with SWT. Therefore,the discussion in this
section is restricted to SWT. The computation of the differences between the detail coef-
ficients of the two input imagesA andB shows just the noise in the respective frequency
band and orientation. These noise images can be used for the estimation of the position
and orientation dependent noise variances inA andB. From these estimates, a threshold-
ing mask is computed and applied to the wavelet coefficients of the image reconstructed
from the complete set of projections. In case of a linear CT-reconstruction method the
thresholds are directly applied to the averaged detail coefficients of the input images. The
computation of the inverse wavelet transformation using the modified coefficients results in
a noise-suppressed image. This again corresponds to the reconstruction from the complete
set of projections but with improved signal-to-noise ratio.

5.2 Noise Estimation for Adaptive Thresholding

In this section the theoretical background for the noise estimation is described. First, the
variance of noise in a linear combination of the input imagesis investigated. The coher-
ence between noise in the difference image and the mean imagebuilds the basis for noise
estimation in the wavelet domain. The second part introduces how the noise estimation can
be used for computing local, frequency and orientation dependent thresholds and how to
apply those to the detail coefficients of the wavelet representation of the input images.

5.2.1 Noise Estimation from Difference Image

Two imagesA andB are reconstructed from disjoint subsets of projections. Inthe fol-
lowing, we assume that the sampling theorem is fulfilled for both subsets of projections.
Noise between the projections can be assumed to be uncorrelated, if crosstalk at the detec-
tor is negligibly small. Consequently,A andB only differ with respect to image noise, but
include the same ideal noise-free signal:

A = S +NA , B = S +NB , (5.1)

whereS = E(A) = E(B) represents the ideal noise-free image (the statistical expectation
E) andNA 6= NB zero-mean noise (E(NA) = E(NB) = 0) included in imageA andB,
respectively. Noise in both images is non-stationary, and consequently the noise variance
depends on the local positionx = (x, y)T . The variances at a given pixel position are
approximately the same in both images:

σ2
A(x) ≈ σ2

B(x), (5.2)
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Figure 5.1: Block diagram of the noise reduction method.
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(a) AverageM (b) DifferenceD

(c) ThresholdτH
1

(d) ThresholdτV
1

(e) ThresholdτD
1

(f)

Figure 5.2: Example of orientation and position dependent threshold at the first decompo-
sition level for thoracic image with strongly directed noise. The average of input images is
shown in (a) and their difference in (b). The threshold images in horizontal (c), vertical (d)
and diagonal (e) directions were computed withk = 1.0 ands = 4. The color-mapping is
shown in (f).

because on average the same number of contributing quanta can be assumed. Noise be-
tween the projectionsP1 andP2 is uncorrelated and accordingly noise between the sepa-
rately reconstructed images is uncorrelated, too, leadingto the following covariance:

Cov(NA, NB) = 0. (5.3)

The linear combinationL of A andB is defined as:

L = g1A+ g2B, (5.4)

with weightsg1, g2 ∈ R. For the variance of a linear combination of random variables the
following holds [Bron 00]:

σ2
L = g21σ

2
A + g22σ

2
B + 2g1g2Cov(A,B). (5.5)

It can be shown that

Cov(A,B) = E((A− E(A))(B − E(B))) (5.6)

= E((A− S)(B − S))

= E(NA ·NB)

= Cov(NA, NB)− E(NA)E(NB)

= 0.

Using Eq. (5.2) and Eq. (5.6), Eq. (5.5) results in:

σL =
√

g21 + g22 σA. (5.7)
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First of all, Eq. (5.7) shows why the noise level inA andB is increased by a factor of√
2 in comparison to the reconstruction from the complete set ofprojections or the average

of the two input imagesM = 1
2
(A + B). Furthermore, it can be used for estimating

noise inA andB and consequently inM from the difference of the input images. By the
computation of the difference image

D = A−B = NA −NB , (5.8)

a noise-image free of structures is obtained. Based on Eq. (5.7), the standard deviationsσA
andσB of noise can be approximated from the standard deviation in the difference image
σD by:

σA = σB =
σD√
2
. (5.9)

Thus, the standard deviation of noise in the average imageM results in:

σM =
σA√
2
=
σD
2
. (5.10)

5.2.2 Adaptive Thresholding

In order to compute a level and orientation dependent threshold for denoising in the wavelet
domain, noise in the different frequency bands and orientations should be estimated sepa-
rately. Due to the known linearity of the wavelet transformation, the differences between
the detail coefficients can also be directly used for noise estimation. At each decomposition
level l the difference images

DH
l (x) = WH

A,l(x)−WH
B,l(x) , (5.11)

DV
l (x) = WV

A,l(x)−WV
B,l(x) , (5.12)

DD
l (x) = WD

A,l(x)−WD
B,l(x) (5.13)

between the detail coefficients are computed, where the subscriptsA andB correspond to
the respective image andH, V andD again denote the horizontal, vertical and diagonal
directions. These difference images are then used for the estimation of noise in the respec-
tive frequency band and orientation. In CT-images, the noisepower is spatially varying.
Therefore, noise estimation should be position dependent.The standard deviation of noise
is evaluated in quadratic local neighborhoods of given sizein the difference images. Av-
eraging over local neighborhoods always implies an ergodicity assumption, which is not
fulfilled in case of CT, but is necessary for getting more reliable noise estimates from the
difference images. We estimate the standard deviationσdl at decomposition levell in the
directiond ∈ {H,V,D} according to:

σdl (x) =

√

1

|Ωx|
∑

x̃∈Ωx

(Dd
l (x))

2. (5.14)

The local square pixel regionΩx centered around the current positionx = (x, y)T is de-
fined as:

Ωx =

{

x̃
∣
∣ |x− x̃| ≤ s ∧ |y − ỹ| ≤ s

}

, (5.15)



70 Chapter 5. Noise Estimation in the Wavelet Domain for Anisotropic Noise Reduction

where the constants defines the size of the quadratic pixel region. The number of pixels
used for the local noise estimation is denoted as|Ωx|. Analogously, the noise estimates
for the vertical and diagonal directions are computed. Fromthe three standard deviation
imagesσH

l , σV
l andσD

l , for all decomposition levels, orientation and position dependent
thresholds are determined according to:

τHl (x) = k
σH
l (x)

2
(5.16)

τVl (x) = k
σV
l (x)

2

τDl (x) = k
σD
l (x)

2

The constantk controls the amount of noise suppression. With increasingk the thresholds
are increased. Consequently, more coefficients are set to zero and more noise is removed.
In Fig. 5.2(c)-5.2(e) the thresholds computed withs = 4 for the first decomposition level
in the horizontal, vertical and diagonal directions are shown for a thorax-slice (see average
of input images in Fig. 5.2(a) with strongly directed noise (see difference of input images
in Fig. 5.2(b)).

The computed thresholds from Eq. (5.16) are then applied to the averaged wavelet co-
efficients of the input images:

WH
M,l(x) =

1

2
(WH

A,l(x) +WH
B,l(x)), (5.17)

WV
M,l(x) =

1

2
(WV

A,l(x) +WV
B,l(x)),

WD
M,l(x) =

1

2
(WD

A,l(x) +WD
B,l(x)).

We perform ahard thresholding, meaning that all averaged coefficients with an absolute
value below the threshold are set to zero and values above arekept unchanged. The high
frequency detail coefficients of the result image are computed as:

W d
R,l(x) =

{

W d
M,l(x), if

∣
∣W d

M,l(x)
∣
∣ ≥ τ dl (x),

0, else
(5.18)

for all directionsd ∈ {H,V,D} and decomposition levelsl = 1 . . . lmax. The approxima-
tion coefficientsAlmax andBlmax of A andB at the maximum decomposition levellmax are
simply averaged:

Rlmax(x) =
1

2
(Almax(x) + Blmax(x)). (5.19)

The final noise suppressed image is computed by an inverse wavelet transformation from
the averaged and weighted wavelet coefficients of the input images.

5.3 Experimental Evaluation

The evaluation section consists of two parts. In the first part, the noise estimation method
based on the difference between two separately reconstructed CT images is evaluated. The
second part concentrates on the performance evaluation of the proposed wavelet based
noise reduction method.
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(a) Thorax (b) DifferenceA−B

(c) Estimateds = 21 (d) Monte Carlo

Figure 5.3: Thorax phantom used for evaluation of noise estimation accuracy, recon-
structed with Sim50 (30 cm FOV, display: w=50,c=400), together with analytical noise
estimates and estimates from 10000 noisy realizations (Noise Display: w=25,c=50).

5.3.1 Accuracy of Noise Estimates

The estimation of the local standard deviation of noise in reconstructed CT images might
also be of interest for other post-processing applicationsbesides the here proposed adaptive
filtering method. Therefore, in this section the noise estimation based on the difference be-
tween two separately reconstructed CT images is evaluated. For this purpose, two standard
phantoms were simulated and reconstructed:

• The FORBILD thorax phantom, in the following denoted as thorax phantom, is
shown in Fig. 5.3(a), reconstructed at a FOV of 41 cm, of slicepositioned atz =
0 cm.

• The FORBILD head phantom with ears is shown in Fig. 5.4(a), reconstructed at a
FOV of 25 cm, of slice positioned atz = 0 cm.

For both phantoms, noise-free fan-beam projections were simulated using 1160 projec-
tion, 672 detector channels and quarter detector offset. The following physical parame-
ters were selected for the simulation: focus width0.7 mm, anode angle−82◦, delta beta
360/4640 mm, sub delta beta 25, 80 kV. For the experiments three reconstruction kernels,
a smooth (Sim10), a medium sharp (Sim30) and sharp (Sim50) one, were used. For the
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(a) Head (b) DifferenceA−B

(c) Estimateds = 10 (d) Monte Carlo

Figure 5.4: Head phantom used for evaluation of noise estimation accuracy, reconstructed
with Sim50 (25 cm FOV, display: w=50,c=900), together with analytical noise estimates
and estimates from 10000 noisy realizations (Noise display: w=50,c=150).
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noise estimation based on the proposed method, two noise realizations were generated.
Poisson-distributed noise was added to the projections, inboth cases using half of the over-
all dose. The reconstructions from the two noise realizations were then used for the com-
putation of the difference image that served as a basis for the noise estimation within local
neighborhoods of different sizes (s = 4, 6, 8, 10). The standard deviation image computed
according to the proposed method is denoted asσa(x). In order to generate a gold standard
of the standard deviation image, Monte-Carlo simulation with NMC = 10000 CT images
was performed. For each image Poisson-distributed noise was added to the projections,
this time using the overall dose. Pixel-wise noise computation from theNMC reconstructed
images givesσb(x) the gold standard to compare with.

Examples for the computed standard deviation images and theMonte-Carlo results are
presented in Fig. 5.3 and Fig. 5.4. For a better comparison ofthe noise estimates, horizontal
and vertical lineplots through the standard deviation images of the gold standard and the
computed estimates with different sizes of pixel regionss are presented in Fig. 5.5. From
the lineplots it can already be seen that for large FOVs, where the sampling theorem is no
longer fulfilled, the sampling-artifacts influence the noise estimation results. Aliasing arti-
facts or sampling-artifacts appear in both separately reconstructed images and are usually
not uncorrelated, leading to high values in the difference images. If artifacts are dominant
compared to the noise level in the image, the standard deviation of noise might be strongly
over-estimated. This is clearly noticeable in the lineplots presented in Fig. 5.5 at the outer
borders of the large FOV used in case of the thorax phantom. Inthe following, the quan-
titative evaluation is restricted to the inner FOV (here: 20cm), where sampling-artifacts
are not noticeable. This part of the image domain is in the following denoted asΩi and
Ni = |Ωi| denotes the number of image pixels inside ofΩi. The pixelwise relative error is
defined as:

r∆(x) =
σa(x)− σb(x)

σb(x)
. (5.20)

The noise propagation method is precise if the relative pixelwise errors are small insideΩi.
Therefore, the average relative error

r̄∆ =
1

Ni

∑

x∈Ωi

r∆(x), (5.21)

and its variance

σ2
r∆

=
1

Ni − 1

∑

x∈Ωi

(r∆(x)− r̄∆)
2, (5.22)

over the different image pixels is computed. The average error, normalized on a per-pixel
basis is defined as:

s∆ =

√

1

Ni

∑

x∈Ωi

(r∆(x))2 =

√

(r̄∆)2 +
Ni − 1

Ni

σ2
r∆
. (5.23)

Tab. 5.1 summarizes the results achieved for the two phantoms. The average pixel noise
valuesσ̄b in HU are listed for the two phantoms and three reconstruction kernels. The
quantitative evaluation shows that pixelwise relative L2-norm errors between 11.6% and
20.7% are achieved with the proposed method for the two phantoms under investigation.
A noise estimation based on just two measurements, thus onlyallows a rough estimation
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(a) Thorax - horizontal - Sim10
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(b) Thorax - vertical - Sim10
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(c) Thorax - horizontal - Sim50
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(d) Thorax - vertical - Sim50
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Monte Carlo
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s = 6
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s = 10

(e) Head - horizontal - Sim10
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(f) Head - vertical - Sim10
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(g) Head - horizontal - Sim50
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(h) Head - vertical - Sim50

Figure 5.5: Horizontal and vertical cuts through standard deviation images for thorax phan-
tom and head phantom - comparison of Monte-Carlo results to noise estimation results
within different sizes of neighborhoods for two different reconstruction kernels.
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Table 5.1: Evaluation of the error of the noise estimation method within a 20 cm FOV.
Errors are quoted in percent (%).

Thorax - Sim10 s = 4 s = 6 s = 8 s = 10
σ̄b 19.4 19.4 19.4 19.4
r∆ -5.1±17.4 -4.5±13.9 -4.2±12.0 -4.0±10.9
s∆ 18.1 14.6 12.7 11.6
Thorax - Sim30 s = 4 s = 6 s = 8 s = 10
σ̄b 31.6 31.6 31.6 31.6
r∆ -7.9±16.0 -7.3±13.0 -7.0±11.5 -6.8±10.7
s∆ 17.8 14.9 13.5 12.7
Thorax - Sim50 s = 4 s = 6 s = 8 s = 10
σ̄b 64.8 64.8 64.8 64.8
r∆ -9.9±12.6 -9.6±11.2 -9.4±11.2 -9.4±10.5
s∆ 18.6 16.0 14.8 14.1

Head - Sim10 s = 4 s = 6 s = 8 s = 10
σ̄b 18.8 18.8 18.8 18.8
r∆ -9.3±18.4 -8.5±13.9 -8.2±11.5 -8.0±9.9
s∆ 20.7 16.3 14.1 12.8
Head - Sim30 s = 4 s = 6 s = 8 s = 10
σ̄b 31.0 31.0 31.0 31.0
r∆ -11.2±15.2 -10.7±12.1 -10.5±10.5 -10.4±9.7
s∆ 18.9 16.1 14.9 14.2
Head - Sim50 s = 4 s = 6 s = 8 s = 10
σ̄b 74.7 74.7 74.7 74.7
r∆ -11.1±14.0 -10.8±11.9 -10.7±10.8 -10.6±10.0
s∆ 17.9 16.6 15.2 14.6

of the pixelwise standard deviation of noise. In order to make the noise estimates more
reliable, the standard deviation is computed in local neighborhoods of certain sizess. With
increasing size of the pixel regions used for evaluating thelocal standard deviation in the
difference image, the results get smoother, but also less local, as expected. For the relative
error, it can be seen that only a slight improvement is noticeable with increasing size of the
pixel regionss. It is of course important to notice that with this averagingover a certain
neighborhood, ergodicity is assumed. Ergodicity implies that averaging over a certain spa-
tial region has the same effect as averaging over a certain number of realizations. Even if
noise in the reconstructed CT image varies slowly over the different pixel regions, noise in
the reconstructed CT images is not uncorrelated, which makesthe noise estimation based
on the evaluation within local neighborhoods less reliable. The effect of averaging over the
neigborhood is also influenced by the size of the noise grainsin comparison to the size of
the pixel region. The more uncorrelated values can be averaged, the more reliable gets the
noise estimate. Generally, one would expect that with smoother reconstruction kernels the
number of correlated values within a fixed sized pixel regionincrease and thus the noise
estimate gets worse. The comparison between the different reconstruction kernels shows
that this effect is only noticable for smaller pixel regions. Fors = 4 the noise estimates im-
prove the sharper the reconstruction kernel is. On the otherhand with increasing sharpness
of the reconstruction kernel noise changes faster between different pixels. Therefore, the
non-local noise estimation due to averaging over a pixel region has a more severe influence,
when sharp reconstruction kernels are used. If the L2-norm errors are compared between
the differen reconstruction kernels, usings = 10, the noise estimates get less reliable on
a per-pixel basis if sharper kernels are used. Further, withdecreasing FOV the number of
correlated pixels within a fixed size region increase, also making the noise estimates less
reliable. This effect is noticeable comparing the results of the thorax phantom and head
phantom. The head phantom was reconstructed at a smaller FOV, resulting in a smaller
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pixel size. Consequently, more pixels withnin a certain fixedsized pixel region are corre-
lated in case of the head phantom compared to the thorax phantom. The noise estimates
achieved for the head phantom at the same size of pixel regionand the same reconstruction
kernel are thus less reliable.

The noise estimation based on the difference between two separately reconstructed
noise realizations is not very reliable and is sometimes affected by reconstruction artifacts.
However, the big advantage of the proposed method is that it is fast, easy to implement
and that it can also be extended to be used for estimating noise in the wavelet domain
of the images. The evaluation in the next section will show that it is much better to use
the proposed rough noise estimation for the computation of local, frequency and orienta-
tion dependent thresholds than using standard wavelet filtering approaches, where global
frequency dependent thresholds are estimated.

5.3.2 Noise and Resolution

The second part of the evaluation section considers the proposed wavelet based noise re-
duction method. In evaluating the performance of the noise reduction method, mainly
two aspects are of interest: the amount of noise reduction and, even more importantly, the
preservation of anatomical structures. Therefore, the influence of the noise suppression
method to the standard deviation of noise and image resolution was investigated.

For the experiments reconstructions from a simulated elliptical water phantom (dx =
20 cm, dy = 10 cm), with an embedded, quartered cylinder (r = 6 cm) with a contrast of
100HU were used. The projections P1 and P2 were simulated independently, correspond-
ing to two consecutive scans or the acquisition with a dual-source-scanner. The advantage
of simulations is that in addition to noisy projections (with Poisson distributed noise ac-
cording to quantum statistics), ideal, noise-free data canalso be produced. All slices are of
size512×512 and were reconstructed using the indirect filtered backprojection reconstruc-
tion described in Section 2.2.2 within a field of view of20 cm using a sharp Shepp-Logan
filtering kernel. This results in an average pixel noise of approximately22.4HU in the
homogeneous image region in the reconstruction from the complete set of projections. The
standard deviation of noise in the separately reconstructed images is about

√
2 times higher.

All images were denoised with the proposed thresholding method up to the fourth de-
composition level of a Haar-SWT. The size of the pixel region defined in Eq. (5.15) was
set fixed tos = 4. Different values ofk ∈ {1, 1.5, 2, 2.5, 3} were used for regulating the
amount of noise suppression. The proposed method was compared to a standard wavelet
thresholding approach implemented in the Matlab Wavelet Toolbox[Wave 06]. For de-
noising in Matlab, we used aBalance Sparsity-Normhard thresholding method with a
non-white-noise model and again four levels of a Haar-SWT. Further, the proposed thresh-
olding approach was compared to the edge-preserving noise reduction method presented
in the last chapter Chapter 4, where the weights at each decomposition level were gained
from a correlation analysis between the approximation images of the previous decomposi-
tion level. Again four decomposition levels of a Haar-SWT were used the correlations were
computed within neighborhoods of5 × 5 pixels around the corresponding position. The
amount of noise suppression was controlled by the power within the weighting function
Eq. (4.21), denoted by parameterp ∈ {1, 1.5, 2, 2.5, 3}. In the following we use the ab-
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(a) Original noisy phantom
(k = 0)

(b) ANESWTwith k = 1.0 (c) ANESWTwith k = 1.5

(d) ANESWTwith k = 2.0 (e) ANESWTwith k = 2.5 (f) ANESWTwith k = 3.0

Figure 5.6: Phantom used for noise and resolution evaluation. (a) Original noisy phantom,
where regions used for noise evaluation are marked. (b)-(f)Denoised images achieved with
proposed method (ANESWT) with different values of parameterk controlling the amount
of noise suppression. Center and window settings used for displaying CT-images: c=50,
w=200.

(a) STSWT (b) CASWTwith p = 1.0 (c) CASWTwith p = 2.0 (d) CASWTwith p = 3.0

Figure 5.7: Denoising results achieved with standard wavelet thresholding (STSWT) (a)
and correlation analysis based wavelet denoising (CASWT) (b)-(d) for different values of
parameterp controlling the amount of noise suppression. Center and window settings used
for displaying CT-images: c=50, w=200.
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(a) Standard deviation of noise
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(b) Mean noise and standard deviation between re-
gions

Figure 5.8: Noise evaluation forANESWTin different pixel regions marked in Fig. 5.6(a).
(a) Comparison of standard deviation of noise in different pixel regions for different values
of k. (b) Mean standard deviation of noise of all pixel regions together with standard
deviation between different pixel regions for different values ofk.

breviationSTSWTfor the standard thresholding,CASWTfor the correlation analysis based
denoising method, andANESWTfor the proposed adaptive noise estimation based method.

In Fig. 5.6 the used noisy phantom together with the denoisedimages achieved with
ANESWTfor different values ofk is shown. Due to the eccentricity of the used phantom,
directed noise is clearly visible, pointing out in the direction of highest attenuation. This
can be seen in the original noisy image in Fig. 5.6(a). For better comparison, the denois-
ing results achieved withSTSWTandCASWTfor different values ofp are presented in
Fig. 5.7. In order to compare the noise homogeneity before and after denoising, the stan-
dard deviations of noise were evaluated in 24 homogeneous image regions of40×40 pixels
as marked in Fig. 5.6(a). The standard deviations of noise inthe different pixel regions are
plotted in Fig. 5.8(a) for the original and the denoised images usingANESWT. The pixel
regions are numbered incrementally according to their standard deviation of noise in the
original image. It can be seen that with increasingk stronger noise suppression is achieved,
as expected. Furthermore, it can be seen that, with increasing k, noise between the differ-
ent evaluation regions becomes more homogeneous. This is even clearer in Fig. 5.8(b),
where the average standard deviations of noise from all evaluation regions are plotted for
the different values ofk (k = 0 denotes the original image), together with the standard
deviations between the 24 evaluation regions. As Fig. 5.8(b) shows, with increasingk not
only the average noise in the image is reduced, but also the standard deviation between the
pixel regions is decreased.

Fig. 5.9(c) shows the noise evaluation forSTSWT. In all pixel regions the standard de-
viation of noise was decreased. However, it can be seen that the algorithm does not adapt
to the noise level in the image. Regions with a higher noise level are not stronger de-
noised. Fig. 5.9(a) shows the noise evaluation forCASWT. The average standard deviation
of noise together with the standard deviation between the different pixel regions is shown
in Fig. 5.9(b). With increasing parameterp a stronger noise suppression is achieved. The
direct comparison of the standard deviations of noise in thedifferent pixel regions between
ANESWTandCASWTshows that a comparable noise suppression in pixel regions 1-12
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(a) Standard deviation of noise -CASWT
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(b) Mean noise and standard deviation between re-
gions -CASWT
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(c) Standard deviation of noise -STSWT

Figure 5.9: Noise evaluation forCASWT(a) and (b) andSTSWT(c). The same pixel
regions were used, as marked in Fig. 5.6(a). (a) Comparison ofstandard deviation of noise
in different pixel regions for different values ofp. (b) Mean standard deviation of noise
of all pixel regions together with standard deviation between different pixel regions for
different values ofp. (c) Standard deviation of noise in different pixel regions.
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(a) MTF measured at vertical edge
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(b) MTF measured at horizontal edge

Figure 5.10: Evaluation of image resolution forANESWT. MTFs of vertical (c) and hori-
zontal (d) edge are compared for different values ofk.
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(a) MTF measured at vertical edge
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(b) MTF measured at horizontal edge

Figure 5.11: Evaluation of image resolution forCASWT. MTFs of vertical (c) and horizon-
tal (d) edge are compared for different values ofp.

is e.g. achieved fork = 2.0 andp = 2.0. In contrast to that, the average noise sup-
pression in pixel regions 13-24 achieved withk = 2.0 approximately corresponds to that
achieved withp = 2.5. ANESWTreduces more noise in regions with strong directed noise.
Consequently, a lower standard deviation between the different pixel regions is achieved.

For evaluating image resolution the local modulation transfer function (MTF) was again
evaluated at an edge. In order to achieve reliable measurements, the MTF was again eval-
uated in the modified noise-free images. The computed thresholds at each decomposition
level are applied to the wavelet coefficients of the ideal noise-free image followed by an
inverse wavelet transformation. This has the effect of making the influence of the weight-
ing to the real signal directly visible. The local MTF can then be computed at the edge
in the processed noise-free image. In Fig. 5.10 MTFs computed from the horizontal and
vertical edge can be seen. In Fig. 5.10(a) it can be seen that the vertical edge was very well
preserved. Image resolution at the vertical edge could evenbe improved. The increment
in resolution, when using the Haar wavelet, has already beendiscussed in the last chapter
in Section 4.4. In contrast to the high resolution at the vertical edge, a slight blurring is
noticeable at the horizontal edge, as can be seen Fig. 5.10(b). In Fig. 5.11 the resolution
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evaluations performed forCASWTare shown. Here, it can be observed that there is nearly
no difference with respect to edge-preservation for the horizontal and vertical edge.

5.3.3 Example Images

In Fig. 5.12(d) and Fig. 5.12(f), zoomed-in noise-suppressed results from the proposed
method applied to a thoracic image (see Fig. 5.2(a)) are shown for two different settings
of k. The two input datasetsA andB were generated by separate reconstructions from
even and odd numbered projections. The difference images (Fig. 5.12(e), 5.12(g)) between
the denoised and average of input images (Fig. 5.12(a)) are also displayed. The images
are compared to the denoising result achieved with theSWT De-noising 2-Dtool from the
Matlab wavelet toolbox [Wave 06] (see Fig. 5.12(b) and 5.12(c)). All computations were
performed using a Haar wavelet decomposition up to the fourth decomposition level. For
denoising in Matlab, we used aBalance Sparsity-Normhard thresholding method with a
non-white-noise model.

The difference image in Fig. 5.12(c) shows that standard wavelet thresolding methods
reduce noise in the images, but also blur edges. The reason for this is that no reliable
noise estimation is possible if just one CT-image is available. In contrast, the proposed
method adapts itself to the spatially varying noise power inthe different frequency bands
and orientations and, therefore, performs much better especially in images with directed
noise.

5.4 Conclusions

In this chapter an anisotropic wavelet domain denoising technique for the suppression of
pixel noise in CT-images was proposed. The separate reconstructions from disjoint sub-
sets of projections allows the generation of images which only differ with respect to image
noise but include the same ideal noise-free signal. A new approach for estimating noise in
the different frequency bands and orientations of the wavelet transformation, based on the
difference between the wavelet coefficients of the two separate reconstructions, was pro-
posed. With this technique, position and orientation adaptive thresholds can be computed
at each decomposition level for noise reduction.

The experiments show that standard denoising techniques like STSWTlead to uncon-
vincing results if they are applied to CT images. The reason for this can be found in the
difficult noise properties in CT. The noise distribution after reconstruction is not known,
noise is non-stationary and directed noise may be present. This makes the distinction be-
tween real structures and noise more complicated. The presented examples, whereSTSWT
was applied to CT slices with directed noise, clearly showed that in regions of higher noise
level noise still remains in the image, while other regions already get blurred.

The CASWT, another wavelet based method for noise suppression on CT data, pre-
sented in Chapter 4, showed that an adaptation to the noise level is performed. The method
adapts itself to the noise level of the input data by computing the local correlations be-
tween the wavelet representations of two separately reconstructed CT images. At each
decomposition level, one weighting image is computed. Thisis applied equally to the dif-
ferent directions. Therefore, this method does not allow anisotropic denoising. In images
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(a) Original (b) Matlab, denoised (c) Matlab, difference

(d) Denoised,k = 1.0 (e) Difference,k = 1.0

(f) Denoised,k = 1.5 (g) Difference,k = 1.5

Figure 5.12: Denoising result of the proposed method (d),(f) in comparison to standard
wavelet thresholding method from the Matlab wavelet toolbox (b) in pixel region taken
from a thorax-slice with strongly directed noise (a). The corresponding difference images
to the original (a) are displayed in (c),(e) and (g). Center and window settings used for
displaying CT-images: c=50, w=400. Center and window settings used for displaying
difference images: center=0, window=30.
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with strong directed noise, a higher noise suppression always influences the resolution in
horizontal and vertical direction in the same way.

The proposed thresholding method adapts itself to the localand orientation dependent
noise power in CT. In contrast toCASWT, the proposedANESWTperforms an anisotropic
noise reduction. Noise is estimated separately within the different frequency bands and
orientations of the wavelet decomposition. The thresholdsused for denoising are chosen
in adaptation to the local noise estimates. Consequently, locally varying and also directed
noise can be removed efficiently. The evaluation of noise in different pixel regions showed
that stronger denoising is performed where stronger directed noise is present. This has
the effect that not only the overall noise power is reduced, but also the standard deviation
between the different evaluation regions is decreased. Thus, the homogeneity of noise
within the image is improved. The anisotropic behavior of the proposed method can also be
observed in the evaluation of resolution. WithANESWT, stronger smoothing is performed
orthogonal to the direction of the directed noise. This is the reason why with increasing
k stronger blurring is visible at the horizontal than at the vertical edge. In comparison to
CASWTthe blurring at the horizontal edge is slightly increased. However, the vertical edge
is nearly perfectly preserved, also at high noise reductionrates. The anisotropic behavior
is beneficial, especially in cases where directed noise due to high attenuation along certain
directions is present.

The experiments performed on clinical data showed that directed noise could be re-
moved without noticeable loss of resolution with the new denoising approach. Especially,
the difference images between the original and denoised images show that nearly no struc-
ture was removed. Further, it can be seen that noise along edges could also be removed.
The comparison toSTSWTapplied to clinical data again showed that no reliable estimation
of locally-varying and directed noise can be achieved if just one input image is available.
In the example shown, noise was strongly over-estimated resulting in noticeable blurring
at the edges.

The proposed method is computationally efficient. The cost for reconstructing the two
datasetsA andB separately corresponds a reconstruction from the completeset of projec-
tions. Two reconstructions each with only half the number ofprojections are needed, if
only the even or odd numbered projections are used respectively. Otherwise, if the object
is scanned twice or a dual-source-scanner is used two complete reconstructions are needed.
The denoising process can be computed efficiently. There aretwo wavelet decompositions
and one inverse wavelet transformation to be computed. The complexity of the SWT is
linear with the number of pixels. All computations needed for weighting the coefficients
are performed within local neighborhoods. Thus, the methodis well suited for parallel
computation.
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Chapter 6

Multiple CT-Reconstructions for 3-D
Anisotropic Wavelet Denoising

Two different approaches for noise reduction in the waveletdomain based on two input
datasets have been proposed in the last two chapters. It has been shown that the two input
datasets and respectively their wavelet representations can be utilized for local correlation
analysis and noise estimation. This chapter presents an approach that combines the both
previous methods and has partially been published in [Bors 07b].

The main contributions in this chapter can be summarized as follows: A correlation
analysis between the approximation coefficients of the two input datasets, combined with
an orientation and position dependent noise estimation is used for differentiating between
structure and noise. Furthermore, the extension of the method to 3-D is investigated, which
additionally leads to a more reliable correlation analysisand noise estimation.

6.1 Methodology Overview

An overview of the methodology can be found in Fig. 6.1. Firsttwo volumesA andB
are reconstructed from disjoint subsets of projections. The generation of two datasets,
which only differ with respect to noise, but include the sameideal noise-free signal, has
already been described in Section 4.2. Also the noise properties in CT and in separately
reconstructed datasets has been discussed in detail in Section 5.2. These properties are
considered during the denoising process proposed here, which can be applied either to the
2-D slices or the 3-D volumes. Both datasets are decomposed bya 2-D or 3-D discrete
dyadic wavelet transformation. After this linear transformation, for example of the input
datasetA = A0, four two-dimensional or eight three-dimensional blocks of coefficients
are available at each decomposition levell: the lowpass filtered approximationAl and
the highpass filtered detailsW d

l , whered describes the direction in space. For the 2-D
case, e.g.,d can be the horizontal, vertical or diagonal direction. The detail coefficients
include high frequency structures together with noise in the respective frequency bands
and orientations. In the following the wavelet representations of the two input datasets
are used for differentiating between detail coefficients that belong to structure and noise,
and to compute weighting coefficients accordingly. These weights consist of two parts: a
correlation coefficient based weight and a significance-weight, which are both described
more in detail in the following section. The computed weights are then applied to the
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Figure 6.1: Block diagram of the noise reduction method.
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wavelet coefficients of the reconstruction from the complete set of projections. In case of
a linear reconstruction method, this corresponds to the averaged wavelet coefficients of the
input datasets. It is, thus, ensured that the entire acquired data is used for the final resultR,
which is computed by an inverse wavelet transformation fromthe modified coefficients.

6.2 3-D Wavelet Transformation

The computation of higher-dimensional wavelet transformations is a straight forward ex-
tension of the one-dimensional case. As explained in Section 3.4.1 the one dimensional
transformation is successively applied in all dimensions,what is called separable wavelet
transformation. The separable extension can be applied to the DWT as well as to the SWT.
Working with volumes, however, makes the whole processing more complicated due to the
increased memory consumption. If CT volumes with nearly isotropic resolution in all three
spatial dimensions are generated, several hundreds of two-dimensional slices are usually
computed. In most cases, the two complete separately reconstructed volumes do not fit
completely into the main memory. Therefore, the complete stack of images is split into
smaller blocks that are large enough for the computation of the wavelet transformation up
to the maximum decomposition level but fit into the main memory. Another considera-
tion that is also closely related to the memory problem is therestriction of the 3-D case to
DWT. Although, it has been shown before that the redundant SWT has some advantages
with respect to denoising purposes compared to the DWT, the storage complexity is very
high for the 3-D-SWT. All eight blocks of 3-D detail coefficients that are computed at each
decomposition level have the same size as the original volume to be decomposed. If, e. g.,
lmax levels of a SWT are computed in 3-D, the number of wavelet coefficients are factor
8lmax + 1 larger than the number of samples in the original volume. This is not practicable
for the large volumes considered in case of CT. In the following of this chapter the wavelet
decomposition is, therefore, restricted to the DWT.

6.3 Anisotropic Denoising Using Correlation Analysis

The detail coefficients of the two input datasets contain structure and noise in the respective
frequency bands and orientations. The goal is to detect coefficients that represent structure
and keep them. Other noisy coefficients should be suppressed. The distinction between
structures and noise is here, based on a local correlation analysis and noise estimation.

6.3.1 Correlation Analysis

At each decomposition level, a local correlation analysis between the approximation coef-
ficients ofA andB is performed. This leads to one block of correlation coefficients having
the same size as the detail coefficients at the respective decomposition levell.

A very close connection between the detail coefficients and the correlation analysis can
be obtained if the approximation coefficients of the previous decomposition levell − 1
are used for correlation analysis at levell. The detail coefficients at levell are computed
from the approximation coefficients at levell − 1 and these values are also used for cor-
relation analysis at the respective position. For the correlation based weightGcor

l (x), the
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empirical correlation coefficientCl(x) is computed according to Eq. (4.7). Approximation
coefficientsAl−1 andBl−1 within a local neighborhoodΩx around the corresponding po-
sition in the approximation are used. The correlation valueis then mapped to the interval
[0, 1]. Altogether, the correlation base weight at the positionx is computed according to
Eq. (4.19):

Gcorr
l (x) =

1

2
(Cl(x) + 1)p ∈ [0, 1]. (6.1)

6.3.2 Noise Estimation

Additionally, for each orientation a local noise estimation is computed in order to assess
the significance of each detail coefficient versus the noise level.

The differenceD = A−B = NA−NB between the two input datasets shows just noise.
Due to the linearity of the wavelet transformation the difference of the wavelet coefficients
can be used for estimating the local and orientation dependent standard deviation of noise
in the different frequency bands of the wavelet decomposition, as described in Chapter 5.
The differences between the detail coefficients are computed for all decomposition levels
l = 1, . . . , lmax and all orientationsd:

W d
D,l(x) = W d

A,l(x)−W d
B,l(x). (6.2)

From these differences the corresponding standard deviationsσd
l (x) are locally computed

for all positionsx according to:

σd
l (x) =

√

1

n

∑

x∈Ωx

(W d
D,l(x))

2. (6.3)

From this estimation, significance-weights are computed for each detail coefficient:

Gsig,d
l (x) =







1,
∣
∣W d

M,l(x)
∣
∣ ≥ kσd

l (x),

e
−



1−
(

Wd
M,l

(x)

kσd
l
(x)

)2




r

, otherwise

, (6.4)

wherek ∈ R, k ≥ 0 is a weighting factor. Averaged detail coefficientsW d
M,l(x) with

absolute value above the local, noise dependent thresholdkσd
l (x) are kept unchanged,

values below are attenuated according to their difference to the threshold. The parameter
k controls the amount of noise suppression in relation to the noise power. The higher the
value ofk, the more noise is removed. With increasing parameterr ∈ R the significance
weight tends more and more to an adaptive hard thresholding.In our experiments we used
r = 10.

6.3.3 Weighting of Detail Coefficients

Altogether, the averaged detail coefficients ofA andB are weighted with the product of
correlation based weight and significance-weight:

W d
R,l(x) = W d

M,l(x) ·Gsig,d
l (x) ·Gcorr

l (x) (6.5)



6.4. Experimental Evaluation 89

for all directionsd and all decomposition levelsl = 1, . . . , lmax. The approximation coef-
ficients at the maximum decomposition levellmax are just averaged:

Rlmax(x) =
1

2
(Almax(x) + Blmax(x)). (6.6)

The noise suppressed resultR is obtained by an inverse discrete wavelet transformation of
the averaged and weighted coefficients.

6.4 Experimental Evaluation

For the evaluation of the combined wavelet based filtering approach, experiments on sim-
ulated and measured data were performed. In the first part of the evaluation, noise and
resolution were investigated based on simulated data. The amount of noise reduction and
capability of preserving edges was compared for different configurations of the algorithm.
Furthermore, a quantitative comparison between 2-D and 3-Ddenoising was performed.
In the second part of the evaluation, example images are presented and a qualitative com-
parison of 2-D and 3-D results is performed.

6.4.1 Noise and Resolution

The proposed noise reduction method takes into account the local noise variance, the noise
anisotropy and orientation. It is, therefore, important for the evaluation to use a phantom
that on the one hand has enough variation in the local noise variance, but also shows clearly
anisotropic noise characteristics. Reconstructions from asimulated elliptical water phan-
tom (40 cm, 20 cm), with an embedded cylinder (radius 2.5 cm placed 10 cm off-center)
were used for the noise and resolution analysis. With this phantom, on the one hand, the
average standard deviation of noise within a certain regionof interest can be evaluated. On
the other hand, the circular object can be used for computingthe average modulation trans-
fer function on the edge of the circular inlay, as described in Section 2.5.2. Like for most
adaptive nonlinear methods, the performance of the proposed algorithm with respect to the
detection and preservation of real structures in the presence of noise, depends on the local
contrast-to-noise level. Therefore, the contrast of the embedded object in comparison to
water was varied (20, 60, 100 and 1000 HU), while the dose of radiation was kept constant,
leading to different contrast-to-noise levels at the edge of the inlay. The dose of radiation,
meaning the number of photons at the source, was chosen such that a standard deviation of
noise in the image close to the cylinder of about 20 HU was obtained. Fan-beam projec-
tions with 672 channels and 1160 projections per full rotation were simulated. Noise-free
projections were simulated first. For all contrast-to-noise levels 16 noisy realizations were
generated by adding Poisson distributed noise to the projections. TheA andB images
were computed from the full number of projections each afteradding Poisson distributed
noise of half the overall dose to the projections. The generation of the input datasets, there-
fore, corresponds to acquiring the same object twice, or, using a dual-source CT scanner
under ideal conditions. With ideal conditions we mean that both, the A- and B-system of
the DSCT scanner cover the complete FOV. Furthermore, effects like photon scattering are
neglected. All images were reconstructed at a FOV of 30 cm with the indirect fan-beam
FBP method described in Section 2.2 using a medium sharp reconstruction kernel (Sim30).
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The problem of evaluating the resolution in an image is that the contrast of the edge
compared to the noise level must be high enough in order to achieve smooth MTF curves.
The noise reduction method, however, behaves differently for varying contrast-to-noise
levels, what makes a contrast dependent analysis necessary. In order to still achieve smooth
MTF curves, the computed weights were again applied to the noise-free reconstructed
image, as described in the previous two chapters. By weighting the wavelet coefficients of
the noise-free reconstructed image, according to the weights computed from a certain pair
of noisyA andB images, the influence of the processing to the ideal signal can be made
visible. The results computed from weighting based on 16 different pairs of noisy input
datasetsA andB were additionally averaged before computing the MTF on the circular
inlay. It should be reminded here that the computed MTF from areconstructed CT image
is not a modulation transfer function in the sense that it describes a linear shift-invariant
system. It is more to be seen as a local average measurement for the resolution in the image.
Especially, if the MTF is computed on the edge of the circularinlay, it is the average MTF
of all the points on the circle surface and, additionally, anaverage over the certain different
directions, because the profile of the edge is circularly averaged. In case of a linear system
the MTF directly can be used for also determining the effect of the linear system on the
standard deviation of noise. However, in case of an adaptivefiltering and the computation
of local MTFs it is necessary to evaluate the noise properties of the filter based on another
figure of merit.

Of course, the figure of merit that describes, how well the method is reducing noise
in the image should not be done completely without considering image resolution. A fair
comparison of algorithms can only be achieved, if the noise level is compared for the same
resolution, or the other way round. It is however, very difficult, especially for nonlinear
adaptive methods, to tune the parameters such that exactly the same image resolution is
achieved after filtering. Therefore, a new evaluation strategy is proposed here, that tries to
do the noise evaluation under consideration of the local MTFmeasured from the image.

From the MTF measured on the edge of the circle a corresponding linear shift-invariant
filter can be computed that leads to the same average smoothing in the image as the adaptive
filter achieved in average on the edge of the circular inlay. Then the standard deviation of
noise after adaptive filtering in comparison to standard deviation of noise after application
of the linear filter that leads to the same average resolutionat the inlay can be investigated.
The frequency response of the one-dimensional linear filterĥlfil(ρ) is computed from the
quotient of the MTF (MTFafil(ρ)) measured in the processed image and the original MTF
(MTForig(ρ)) that is computed in a noise-free reconstruction of the phantom:

ĥlfil(ρ) =

{
MTFafil(ρ)
MTForig(ρ)

if MTFafil(ρ) < MTForig(ρ) andMTForig(ρ) 6= 0

1 otherwise
. (6.7)

The MTF in the adaptively filtered image is here bounded by theoriginal MTF. An incre-
ment of resolution at the edge is not accounted here. In orderto achieve a linear shift-
invariant and rotationally symmetrical filtering in two-dimensions, the reconstruction ker-
nel is modified, by multiplying its frequency responsek̂(ρ) with the frequency response of
the linear filter:

k̂mod(ρ) = k̂(ρ)ĥlfil(ρ). (6.8)

The image corresponding to the linearly filtered version of anoisy image is obtained from
another indirect fan-beam FBP reconstruction, but using themodified kernel̂kmod(ρ).
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(a) Original noisy image with ROIs used
for noise evaluation.

(b) 2-D filteringp = 1, k = 0. (c) 2-D filteringp = 1, k = 1.5.

(d) 3-D filteringp = 1, k = 0. (e) 3-D filteringp = 1, k = 1.5.

Figure 6.2: Elliptical water phantom with circular inlay (here with contrast of 100 HU) used
for noise and resolution analysis. The regions used for noise evaluation are marked in the
original noisy image (a). The results of filtering in 2-D without (b) and with consideration
of significance weights (c) are compared to the filtering result achieved in 3-D without (d)
and with significance weights (e). Display: c=50, w=200.
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The standard deviation of noise is then evaluated in 12 homogeneous circular regions
of the elliptical phantom, as displayed in Fig. 6.2(a). The standard deviation of noise is
computed separately for all 12 regions for the original noisy image (σorig), the image fil-
tered with the adaptive filter (σafil) and the image reconstructed with the linear filter that
leads to the average same smoothing at the edge of the circular inlay (σlfil). The mean and
the standard deviation of the noise standard deviations over the different image regions
can thus be considered. For all image regions, the noise reduction rate achieved with the
adaptive filter is defined as:

NRR = 1− σafil
σorig

. (6.9)

The noise reduction rate alone does, however, not consider the change in resolution. There-
fore, a new figure of merit, the SNR-gain is introduced here. Itsets into relation the stan-
dard deviation of noise in the adaptively filtered and linearly filtered image:

SNRG = 1− σafil
σlfil

. (6.10)

Both quantities are again evaluated for the 12 ROIs separately. The mean and standard
deviation of both quantities over the different image regions are then computed. The mean
values of the two quantities together can be interpreted as following:

• NNR and SNRG are approximately the same: This means that the adaptive filter has
caused nearly no smoothing at the edge. Consequently, the MTFmeasured in the
original and adaptively filtered images are nearly equivalent and the resulting linear
filter has nearly no effect being applied to the noisy image. The NRR thus reflects
the real gain in SNR.

• NRR is larger than the SNRG: This is the usual case if the edge was not perfectly
preserved. If the edge got smoothed, the MTF from the adaptively filtered image
falls below the original MTF. The resulting linear filter leading to the same average
smoothing at the edge is a lowpass or bandpass filter. The linearly filtered image
shows a reduced noise level, too. The real gain of the adaptive filter compared to the
linear filter is thus given by the SNRG.

Further, the standard deviations of both quantities show how much variation in the achieved
noise reduction and SNR-gain is obtained. If a high noise reduction rate is achieved in
average, but a high variation between the different regionsis present, this shows that the
method works fine in some regions, but bad in other regions. This is a clear hint that the
noise reduction method does not adapt to the local noise properties.

This evaluation strategy is now used for comparing different configurations of the pre-
sented noise reduction method in 2-D and 3-D. A comparison ofthe MTFs computed for
the four examples presented in Fig. 6.2 is shown in Fig. 6.3. The MTF in the original noise-
free image is compared to the MTFs computed from filtered images. Adaptive filters lead
to different amounts of smoothing for different contrast-to-noise ratios at the edge of the
circular object. Therefore, the MTFs are plotted for the different contrasts (1000, 100,
60 and 20 HU). Additionally, the MTFs resulting from only keeping the lowpass filtered
approximation coefficients at the maximum decomposition level lmax and setting all detail
coefficients to zero is shown. This gives the lower limit the MTF may reach if no structure
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(a) 2-D filteringp = 1, k = 0.
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(b) 2-D filteringp = 1, k = 1.5.
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(c) 3-D filteringp = 1, k = 0.
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(d) 3-D filteringp = 1, k = 1.5.

Figure 6.3: Local average MTF computed at the circular inlayof the elliptical phantom for
different contrasts at the edge. Comparison of four configurations of the proposed filter in
2-D and 3-D.
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(b) 3-D filtering.

Figure 6.4: Noise-resolution-tradeoff - Comparison of NRR for different values ofp with
(k = 1.5) and without (k = 0.0) significance weights in 2-D and 3-D.

was detected and all computed weights were zero and is thus denoted as maxfilter in the
following.

The MTFs in figure Fig. 6.3 show that for high CNR at the edge of the cylinder, the edge
can be preserved perfectly. With decreasing CNR the edge preservation is reduced and the
edges get smoothed. It is, however, noticeable that even in case of a CNR of 1, which
corresponds to the contrast of 20 HU at the edge, the MTF is still much better than the
MTF of the maxfilter. Of course, with increasing strength of the applied filtering, e. g. with
increasingk the ability to detect low contrast edges also reduces. Consequently, the MTF
decreases more drastically for low contrasts, ifk is increased. Comparing the results of the
2-D and 3-D filtering, it can be seen that for higher contrastsa better edge preservation is
achieved. For very low contrasts, like here the case of 20 HU,the smoothing at the edge
is even slightly increased. As already mentioned above, it is however important to look
at the noise-resolution-tradeoff and not just at noise or resolution separately. Therefore,
the NRR is plotted against SNRG/NRR in Fig. 6.4. The performanceof a noise reduction
method is better the higher the NRR and the closer the ratio between SNRG and NRR is to
1. If the ratio between SNRG and NRR rate is 1, the edge was perfectly preserved and the
complete NRR can be counted as a gain. In reality, however, this ratio falls below 1 if the
edge was not perfectly preserved, e. g. for a lower CNR at the edge. This ratio can even
become negative, if the linear filter, reaching the same average smoothing at the edge, leads
to a overall stronger smoothing in the homogeneous image regions than the noise adaptive
filter. In Fig. 6.4 each line represents a single configuration of the noise reduction method,
where the four points of the line show the results achieved for the different CNR levels that
were tested at the edge.

In Fig. 6.4 the noise-resolution-tradeoff is compared for different values ofp with
(k = 1.5) and without (k = 0) significance weighting in 2-D and 3-D. First of all it can be
seen that with increasingp a stronger noise reduction can be achieved. If the significance
weights are additionally used for the weighting of the coefficients, a higher noise reduction
can be achieved for the samep. It is, however, noticeable that for low CNR the significance
weights lead to increased smoothing at the edges. For highercontrasts at the edges, the sig-
nificance weights show no negative influence on the resolution, just a positive effect on the
noise reduction. In all cases it is noticeable, by comparingFig. 6.4(a) and Fig. 6.4(b) that
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much better results with respect to noise reduction and edgepreservation can be achieved
in 3-D.

6.4.2 Example Images

In Fig. 6.5 an example slice, taken from a thoracic scan, is shown. The original slice
(Fig. 6.5(a)) as well as the difference between the separatereconstructions (Fig. 6.5(b))
show directed noise due to high attenuation along the horizontal direction. An edge-
detection is performed by correlation analysis between theapproximation images, as can
be seen in the weighting image at the first decomposition level in Fig. 6.5(e). In Fig. 6.5(f)-
6.5(h) the combinations of correlation based weight and orientation dependent significance
weights are shown for the horizontal, vertical and diagonaldirections. This combination
allows an adaptive, anisotropic denoising. The noise suppressed result image (3 levels of
2-D-Haar-DWT, denoised withp = 1.0, k = 1.5) is shown in Fig. 6.5(c), together with the
difference to the original in Fig. 6.5(d). It can be seen thatdirected noise is reduced also in
regions close to edges without noticeably affecting image resolution.

In Fig. 6.6 results are presented for a thin reconstructed slice (0.8 mm) taken from a
CTA of a liver (see also difference images). The original noisy slice is shown in Fig. 6.6(a).
In Fig. 6.6(c) the denoising result of the proposed method in2-D is presented (p = 1.0, k =
1.5). Noticeably, the method adapts itself to the noise power inthe image and removes
noise more uniformly. In average, a reduction of pixel noise(standard deviation of noise in
homogeneous region) of approximately 45% was achieved in 2-D. Nevertheless, the over-
all image appearance is not very natural with respect to the residual noise power spectrum.
The reason for this is that we used only a small neighborhood of 5 × 5 pixels for corre-
lation computation. Therefore, the correlation analysis is not very reliable and some false
correlations lead to noise remaining in the image. In comparison, the denoising in 3-D
with 5 × 5 × 5 neighborhoods and same parameter settings, shown in Fig. 6.6(e), is more
effective. Noise is removed very well (up to 60%) in homogeneous areas and also close
to edges. Even at lower contrasts, edges are still preserved. For example, the contrasted
vessels in the liver are better visible in the noise suppressed image in comparison to the
original.

6.5 Conclusions

In this chapter the combination of the two previously introduced wavelet based noise re-
duction methods was presented. The correlation analysis between approximation coeffi-
cients of the wavelet representation of two images was combined with an orientation and
frequency dependent noise estimation. In addition to the correlation based weight, sig-
nificance weights were introduced, which suppress coefficients in dependence on the esti-
mated noise level of the wavelet coefficient. By combining thecorrelation and significance
weight, the wavelet coefficients are treated differently not only depending on their posi-
tion and the respective frequency band, but also for the different orientations. The result is
that an anisotropic noise suppression becomes possible, which automatically adapts to the
locally varying noise power. The anisotropic behavior is especially beneficial for datasets
with directed noise, like in the hips or shoulder. Furthermore, the filtering approach was
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(a) original ((A+B)/2) (b) (A−B)/2

(c) denoised (d) denoised− original

(e) correlation weight (f) horizontal weight (g) vertical weight (h) diagonal weight

Figure 6.5: Denoising results for a thoracic slice, displayed with c = 50 andw = 400.
Difference images are displayed withc = 0 andw = 100. The corresponding correlation
based weight and the combinations with orientation dependent significance weights are
shown for the first decomposition level (0 corresponds to black, 1 corresponds to white).
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(a) original ((A+B)/2) (b) (A−B)/2

(c) 2-D denoised (d) 2-D denoised− original

(e) 3-D denoised (f) 3-D denoised− original

Figure 6.6: Denoising results of different approaches for aCTA of a liver, displayed with
c = 200 andw = 700. The corresponding difference images are displayed withc = 0 and
w = 200.
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extended to 3-D. The application of the proposed method in 3-D showed higher noise re-
duction, up to 60%, and even improved edge-preservation.



Chapter 7

Noise Propagation Through Indirect
Fan-Beam FPB Reconstruction

In CT, post-processing techniques are often applied to the reconstructed images. Depend-
ing on the application, which can vary from diagnostic tasksto treatment assessment prob-
lems, these techniques include, for example, edge-preserving filtering segmentation or im-
age registration. It is a known fact that most standard post-processing techniques require a
model for the noise in the reconstructed images. Frequently, a white Gaussian noise model
based on a single, coarsely estimated parameter is assumed for the images. However, such
a choice is suboptimal because the noise in CT images is non-stationary and object depen-
dent. This chapter focuses on the problem of estimating the local noise variance in CT
images. Having access to the image variance offers the potential to significantly improve
the performance and outcome of post-processing techniques, as it has already been dis-
cussed in Chapter 5 and Chapter 6. For instance, it has been shown that taking into account
the local noise variance for wavelet denoising [Bors 08d] or diffusion filtering [Maye 07]
of CT reconstructions improves the noise suppression and gives more homogeneous results
over the whole image domain.

The noise estimation in [Bors 08d] and [Maye 07] is obtained bydividing the measure-
ments into two complete subsets yielding two images that arenearly independent in terms
of noise, as it has been discussed in detail in Chapter 5 and Chapter 6. The experiments,
however, showed that such an approach does not provide very reliable noise estimates.
Also, the averaging step makes the variance estimates fairly non-local, whereas pixelwise
estimates are desired.

A review of the literature shows that the image variance should preferably be computed
using the knowledge that the noise in each individual image pixel is a direct result from the
noise in the projections. In other words, the image variancecan be obtained by propagating
the noise in the data through the reconstruction pipeline. Such an approach is described
in [Kak 01, Buzu 04] for FBP reconstruction from parallel-beamdata, as it has been briefly
summarized in Section 2.4.2. It is also used in [Pan 99, Pan 03, Wang 05, Wund 08] for
direct fan-beam FBP reconstruction. All these references assume that the measurements
are uncorrelated and that their variance is known. Moreover, they do not consider parallel-
beam FBP reconstructions applied to rebinned fan-beam data.Reordering to parallel-beam
projections is favored by many CT manufacturers for reasons of computational efficiency

99
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Figure 7.1: Overview of noise propagation method.

and ease in handling special scanning features such as the quarter-detector offset or redun-
dant data.

The main contribution of this chapter, which has partially been published in [Bors 08a]
can be summarized as follows: In this chapter a new method forthe computation of the
image variance in indirect fan-beam FBP reconstructions is introduced, where the data
is first rebinned to parallel-beam geometry. The method follows the noise propagation
scheme discussed above but has to deal with the difficulty that the rebinning step corre-
lates the measurements together. To propagate the noise from one reconstruction step to
the next, a modular technique is introduced that relies on results of linear system theory
to compute any covariance terms that result from these steps. This technique makes the
proposed method approximate but allows an easy implementation and efficient computa-
tions. Regarding the noise in the measurements, we also assume that noise is uncorrelated,
as in [Kak 01, Buzu 04, Pan 99, Pan 03, Wang 05, Wund 08]. The proposed methodology
is validated with three different phantoms, using computer-simulated data of known vari-
ance. Given that the ultimate goal is to obtain the image variance map in addition to the
reconstruction, the statistical error in image variance calculation that results from estimat-
ing the variance in the data from a single measurement is additionally evaluated based on
simulated and real data.
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7.1 Methodology Overview

An overview of the here presented approach can be seen in Fig.7.1. In addition to the
reconstructed CT image, an estimate of the pixel-wise error should be computed. The local
noise estimate can then be used for several post-processingmethods that are performed on
the reconstructed CT image. Noise reduction methods can, forexample, be adapted to the
local noise statistics.

Every step of the reconstruction pipeline needs to be modified in order to reconstruct
noise variances. Starting with the noise estimates in the fan-beam projections, the noise
variance and correlation are subsequently propagated fromstep to step through the recon-
struction pipeline that is structured as follows:

• Rebinning from fan-beam projections to equidistantly spaced parallel projections.

• Convolution of the rebinned projections with the reconstruction kernel.

• Backprojection of the filtered projections.

• Hounsfield-scaling of reconstructed attenuation coefficients to normalized CT-values.

A detailed description of the reconstruction method can be found in Section 2.2.2. We rely
strongly on the fact that all individual steps of the reconstruction pipeline (interpolations,
convolution and backprojection) can be expressed as a linear combination of noisy data or
random variables. For the variance of a linear combination of random variables taken from
the random signalx(t) the following holds [Weis]:

Var

(
∑

i

aix(ti)

)

=
∑

i

a2iVar(x(ti)) +
∑

i

∑

j 6=i
aiajCov(x(ti), x(tj)), (7.1)

with ai defining the weights, e. g., taken from a finite impulse response (FIR) filter. As
can be seen from Eq. (7.1), in addition to the local variancesVar(x(ti)), the covariances
Cov(x(ti), x(tj)) are needed to compute the noise variance of the linear combination of
random variables. Additionally, for the exact computationof the noise variance after ap-
plying several linear filters in series, the propagation of the covariance matrix from step to
step would be needed. This makes the whole processing complicated and often computa-
tionally inefficient. Here, an original approximate methodis proposed that estimates the
covariance terms based on linear system theory.

When the variances, Var(x(t)), are available, it is known that the covariance between
the values of the random signalx(t) at two positionst1 andt2 can be computed using the
autocorrelation coefficient function (ACCF)ρxx(t1, t2) and the local variances, as

Cov(x(t1), x(t2)) =
√

Var(x(t1))Var(x(t2))ρxx(t1, t2). (7.2)

However, the above equation still does not facilitate the model and implementation be-
cause it requires the computation of the local autocorrelation coefficients. The propagation
of the variances and correlations from step to step would be much easier and could be
performed using linear system theory if wide-sense stationary (WSS) signals could be as-
sumed. The requirement for wide-sense stationarity is thatthe mean and autocorrelation
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are shift-invariant. In CT projections, noise is additive and can be assumed to be zero-
mean. Hence the assumption that the mean is shift-invariantis fulfilled. If the correlation
lengths are small and the linear combinations are only performed on coefficients concen-
trated around a given sample, it is a good approximation to assume that the ACCF is shift-
invariant. In the following the random signal at any step is assumed to be a WSS signal
in the sense that the ACCF can be estimated as a function of the parameterτ = t2 − t1.
Eq. (7.2) can then be rewritten as

Cov(x(t1), x(t2)) =
√

Var(x(t1))Var(x(t2))ρxx(τ). (7.3)

The ACCF can be expressed as the normalized autocorrelation function:

ρxx(τ) = ϕxx(τ)/ϕxx(0), (7.4)

where the autocorrelation function (ACF),ϕxx(τ), of a zero-mean WSS signal is:

ϕxx(τ) = ϕxx(t1, t1 + τ) = ϕxx(t1, t2) = E{x(t1)x(t2)}. (7.5)

In the ideal case of perfectly uncorrelated data, the ACCF is just a delta function, which
is zero everywhere except forτ = 0. The application of a linear shift-invariant filterh(t)
to a random signalx(t) changes its autocorrelation and thus also its autocorrelation coef-
ficient function. Even if a perfectly uncorrelated signal isthe input to a pipeline of several
linear operations, the outputs at the intermediate steps are no longer perfectly uncorrelated.
Therefore, the amount of correlation after performing a linear operation needs to be mod-
eled as well. The response of linear shift-invariant (LSI) system to the random signalx(t)
is computed by convolution:

y(t) = x(t) ∗ h(t). (7.6)

The output signaly(t) is still a random process. For the mean of the output signaly(t) the
following holds:

µy(t) = E{y(t)} = E{x(t)} ∗ h(t) = µx(t) ∗ h(t), (7.7)

whereµx(t) is the mean of the input. Consequently, filtering a zero-mean signal results in
zero-mean output. If the input signalx(t) is a WSS signal, then the autocorrelation function
of the outputy(t) also only depends onτ and can be written as [Oppe 96, Giro 01]:

ϕyy(τ) = ϕxx(τ) ∗ ϕhh(τ). (7.8)

This means the ACF of the output signal can be computed by convolving the ACF of the
input signal with the ACF of the filter. The ACF of the filter is given as [Oppe 96, Giro 01]:

ϕhh(τ) = h(τ) ∗ h∗(−τ), (7.9)

whereh∗(τ) is the complex conjugate ofh(τ). The ACCF, as defined in Eq. (7.4), is just
a normalized version of the ACF. Thus, it is valid to directly convolve the ACCF of the
input,ρxx(τ), with the filter ACCF,ρhh(τ), to compute the ACCF at the output:

ρyy(τ) =
ρ̃yy(τ)

ρ̃yy(0)
, with ρ̃yy(τ) = ρxx(τ) ∗ ρhh(τ). (7.10)
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The methodology used for noise propagation can be summarized as following: In or-
der to compute a pixel-wise estimate of the noise variance inthe reconstructed image, the
noise variance estimates and the correlation within the data is propagated from step to step
through the reconstruction pipeline. The starting point ofthe noise propagation method is
an estimate of the noise variance and noise correlation in the acquired fan-beam projec-
tions. For simplicity, we assume here that noise in the fan-beam projections is perfectly
uncorrelated, which is valid as long as crosstalk at the detector, afterglow and tube-current
variations are negligibly small. Consequently, the ACCF of thenoise in the fan-beam pro-
jections is assumed to be a delta function. For each stage of the reconstruction pipeline the
variance and ACCF are updated as follows:

1. The variance of the linear combination of random variables is computed according
to Eq. (7.1). The covariances needed for Eq. (7.1) are approximated using the ACCF
and the local variances of the input to the current stage of the pipeline, as described in
Eq. (7.3). Note again that only the ACCF is modeled under a wide-sense stationarity
assumption. By using the local variances for the computation, the non-stationarity
of noise is taken into account.

2. The current pipeline stage changes the correlation within the data. Therefore, the
ACCF that is used for the next processing step needs to be updated. This is done by
modeling interpolation and filtering steps to be represented by a linear shift-invariant
filter. The ACCF corresponding to the output of the filtered signal is computed ac-
cording to Eq. (7.10).

7.2 Noise Propagation Through Indirect Fan-Beam FBP
Reconstruction

The estimates of the noise variances in the fan-beam projections are the input to the algo-
rithm for noise propagation. These estimates can be based either on repeated measurements
of the same object, or just one single measurement and a calibrated noise model. In the
following, a detailed description is presented, on how the above introduced methodology
can be applied to all single steps of the reconstruction pipeline.

7.2.1 Rebinning

Starting with the noise variances, Var(P fan
k,l ), and ACCF,ρfan(α, β), of the acquired fan-

beam projections, the first step of the reconstruction pipeline is the rebinning to parallel-
beam projections. First, during azimuthal rebinning, Eq. (2.10) is applied to obtain hybrid
projections depending on the parallel projection angleθ and the fan angleβ. For interpo-
lating the noise variances Eq. (7.1) is applied to Eq. (2.10), giving:

Var(P hyb
m,l ) =

N2πf∑

k=1

(hazi(α̃m,l − αk))
2Var(P fan

k,l )+

N2πf∑

k=1

N2πf∑

k̃=1
k̃ 6=k

hazi(α̃m,l − αk)h
azi(α̃m,l − αk̃)Cov(P fan

k,l , P
fan
k̃,l

). (7.11)
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The covariances are computed based on Eq. (7.3) as

Cov(P fan
k,l , P

fan
k̃,l

) =
√

Var(P fan
k,l )Var(P fan

k̃,l
)ρfan(αk − αk̃, 0) (7.12)

As already mentioned before, noise in the fan-beam projections is assumed to be perfectly
uncorrelated. Thus, the ACCF of noise in the fan-beam projections is a delta function, i. e.
ρfan(αk −αk̃, βl − βl) = ρfan(αk −αk̃, 0) = 0. Consequently, the covariances in Eq. (7.11)
are all zero.

After that the complementary rebinning is performed. Two different cases need to be
distinguished here, too. If the quarter-detector-offset is used, two projections with an offset
of π are interleaved in order to increase the resolution within one projection. This step does
not influence the single variance values. They are also just interleaved:

Var(P com
i,2l−1) = Var(P hyb

i,l ), and Var(P com
i,2l ) = Var(P hyb

i+Nπp,Np+1−l). (7.13)

If no quarter detector offset is used, redundant measurements are averaged together. For
the variances again Eq. (7.1) is applied:

Var(P com
i,l ) =

1

4

(

Var(P hyb
i,l ) + Var(P hyb

i+Nπp,Np+1−l)
)

+
1

2
Cov(P hyb

i,l , P hyb
i+Nπp,Np+1−l). (7.14)

The covariances again cancel out if noise in the fan-beam data is assumed to be uncorre-
lated. The azimuthal and complementary interpolations do not introduce correlations to
the hybrid projections inβ direction. Thus, for the last rebinning step the data can still
be assumed to be uncorrelated. After this interpolation thecorresponding noise variances
Var(P (θ, t)) for every discrete parallel projection is obtained by:

Var(P par
i,n ) =

Nc∑

j=1

(hrad(β̃n − β′
j))

2Var(P com
i,j )+

Nc∑

j=1

Nc∑

j̃=1

j̃6=j

hrad(β̃n − β′
j)h

rad(β̃n − β′
j̃
)Cov(P com

i,j , P com
i,̃j

). (7.15)

With the same reasoning as above, the covariances are zero, if uncorrelated fan-beam pro-
jections are assumed.

After rebinning, noise in the parallel projections and between neighboring views is
no longer uncorrelated. The interpolation filter function used for azimuthal rebinning is
denoted ashazi and the radial interpolation filter ishrad. Based on these two filters the
autocorrelation coefficient function is computed that describes the amount of correlation
introduced to the data during the rebinning process. The complete interpolation filter is
modeled as a separable 2-D-filter:

hipol(θ, t) = hazi(θ) · hrad(t), (7.16)

which is an approximation since the(θ, t)-coordinates are not orthogonal relative to the
(α, β)-coordinates. Therefore, the ACCFρipol(t) corresponding to the 2-D interpolation
filter is:

ρipol(θ, t) = h(θ, t)/h(0, 0), h(θ, t) = hipol(θ, t) ∗ ∗hipol(θ, t), (7.17)
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(a) Example for azimuthal interpola-
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Figure 7.2: Example for linear interpolation weights appearing during azimuthal rebinning.
The continuous interpolation function is sampled only at few positions.

where∗∗ denotes a 2-D convolution. Because of the assumption of perfectly uncorre-
lated noise in the fan-beam projections, the updated ACCF after rebinning is equivalent to
ρipol(t). The convolution according to Eq. (7.10) with the ACCF of the fan-beam projec-
tions, which is a delta function, has no effect.

The approximation of the correlation introduced to the dataduring rebinning by the
continuous interpolation functions, as described above, is not the best solution when work-
ing with discrete data. The resampling during azimuthal interpolation usually leads to a
very regular interpolation pattern, as illustrated in Fig.7.2(a). Therefore, the interpolation
function is repeatedly evaluated at few positions only. Depending on how the two grids lie
to each other the continuous approximation might under- or overestimate the correlation
within the data. The continuous case assumes that all positions between the discrete grid
points are interpolated with the same frequency, which is not the case during the rebinning
procedure described above. The problem can be easily understood regarding one simple
example. If linear interpolation is used for computing samples that are placed perfectly in
the center between the original samples, the maximum of correlation is introduced to the
data. Two neighboring samples were computed by one half fromthe same original noisy
data placed between them. The other extreme would be that both grids are perfectly lying
on each other. Then no further correlation is introduced to the data at all. This example
already shows the importance of taking into account the discrete sampling of the data.

The average functions corresponding to the sampled azimuthal and radial interpolation
functions are computed taking into account the weights thatreally appear during interpo-
lation, which is basically a sampled version of the continuous interpolation function, as
shown in Fig. 7.2(b). The function corresponding to the azimuthal rebinning is computed
as:

h̃azi(θ) =

N2πp∑

m=1

Nf∑

l=1

N2πf∑

k=1

hazi(θ)δ(θ − α̃m,l + αk

∆α
∆θ). (7.18)

During radial rebinning an interpolation from a non-uniform to a uniform grid is per-
formed. This means that the distances between neighboring samples varies within a pro-
jection. The relative distance between neighboring samples within a projection is plotted
in Fig. 7.3(a). This has the effect that interpolation weights are not used with the same
frequency, as can be seen in Fig. 7.3(c). The distribution oflinear interpolation weights
depends on the channel number, as shown in Fig. 7.3(b). From this plot it can be seen
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Figure 7.3: Example for linear interpolation weights appearing during radial rebinning.
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quite clearly that close to the center ray the two grids are more or less lying onto each
other, because weights close to 0 and 1 appear. At the outer borders the weights seem to
be more randomly arranged. In practice this means that for reconstructions within a small
FOV around the iso-center nearly no correlations are introduced to the data during radial
rebinning. If a large FOV is reconstructed, the outer rays are needed for the reconstruction,
too. Thus stronger correlated data is used. This should be taken into account in estimating
the amount of correlation within the data after rebinning. One approach is to compute the
average sampled interpolation function that corresponds to radial rebinning. Here, only
those channels (n ∈ [nmin, nmax]) within the projection are taken into account that are used
for the reconstruction of the current FOV:

h̃rad(t) =
nmax∑

n=nmin

Nc∑

j=1

hrad(t)δ(t− β̃n + β′
j). (7.19)

Instead of working with the real continuous interpolation functions, the averaged sampled
versions presented in Eq. (7.18) and Eq. (7.19) are used instead in Eq. (7.16).

7.2.2 Convolution

The next step in the reconstruction pipeline is the convolution of the parallel projections
P (θ, t) with the kernel functionk(t) along the row directiont, as described in Eq. (2.18).
The noise variance in the filtered projections Var(P (θ, t)) can thus be computed based on
Eq. (7.1).

Basically, the noise propagation through the convolution can be split into two parts:
the convolution with the squared filtering kernel and the consideration of the covariances.
The convolution of the noise variances in the parallel projections with the squared fil-
tering kernel has also been considered in the theoretical analysis presented in [Buzu 04]
and [Kak 01]. However, the experiments will show that the covariance terms of the data
within the same projections are essential for getting reliable noise estimates. Altogether,
the noise variance in the filtered projections can be computed according to:

Var(P fil
i,n) = ∆t2






Np∑

s=1

P par
i,s k

2(tn − ts) +

Np∑

s=1

Np∑

r=1
r 6=s

Cov(P par
i,s , P

par
i,r )k(tn − ts)k(tn − tr)




 .

(7.20)
The covariance between two channels within one parallel projection can be approximated
using the autocorrelation coefficient function in Eq. (7.17):

Cov(P par
i,s , P

par
i,r ) ≈

√

Var(P par
i,s )Var(P par

i,r )ρipol(0, ts − tr). (7.21)
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Figure 7.4: Autocorrelation coefficient functions after convolution for two different recon-
struction kernels.

The projections are sampled with the sampling distance∆t. Consequently, Eq. (7.21) can
be reformulated such that the distance betweents and tr in discrete steps of size∆t is
included:

Var(P fil
i,n) = ∆t2

(
Np∑

s=1

k2(tn − ts)P
par
i,s +

qmax∑

q=1

ρipol(0, q∆t)×

Np∑

s=1

(√

Var(P par
i,s )Var(P par

i,s+q)k(tn − ts)k(tn − ts − q∆t)+

√

Var(P par
i,s )Var(P par

i,s−q)k(tn − ts)k(tn − ts + q∆t)
))

. (7.22)

The covariance parts are consequently implemented by additional convolutions. The pa-
rameterqmax controls how many neighboring channels are taken into account for covari-
ance computation. Usually, the autocorrelation functionρipol(θ, t) very rapidly goes to
zero. This means that only channels in a small neighborhood are correlated. Therefore, the
maximum distance between the channels that need to be considered and thusqmax can be
chosen in dependence of the ACCF:

qmax = argmaxq∈N
{
ρipol(0, q∆t) > ǫ

}
. (7.23)

Thoseq for which the correlation coefficient atq∆t is below a certain small thresholdǫ
are neglected in Eq. (7.22). Typical values forǫ are in the range of 0.01.

The convolution process inside the reconstruction pipeline introduces further correla-
tions within the parallel projections. In order to model this for the next step, the ACCF
after filtering needs to be computed. The filter ACCF is computedbased on Eq. (7.4) and
Eq. (7.9) as

ρkk(t) =
ϕkk(t)

ϕkk(0)
with ϕkk(t) = k(t) ∗ k∗(−t). (7.24)
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The correlation inside the data after convolution is described by convolution of the ACCF
after rebinning with the filter ACCF along the direction oft followed by normalization, as
described in Eq. (7.10):

ρcon(θ, t) =
ρ̃con(θ, t)

ρ̃con(0, 0)
, ρ̃con(θ, t) = ρipol(θ, t) ∗ ρkk(t). (7.25)

Two examples for different convolution kernels are shown inFig. 7.4.

7.2.3 Backprojection

After the filtering with the convolution kernel the next stepin the reconstruction pipeline is
the backprojection into image plane. For each image pixelx the sum over allNπp parallel
projection anglesθ ∈ [0, π[ is computed according to Eq. (2.20). The noise variance of the
reconstructed attenuation coefficients Var(µ(x)) then amounts to:

Var(µ(x)) = ∆θ2






Nπp∑

i=1

Var(P fil
i (x)) +

Nπp∑

i=1

Nπp∑

j=1
j6=i

Cov(P fil
i (x), P fil

j (x))




 ≈

≈ ∆θ2

(
Nπp∑

i=1

Var(P fil
i (x)) +

Nπp∑

i=1

jmax∑

j=1

(
Cov(P fil

i (x), P fil
i+j(x)) + Cov(P fil

i (x), P fil
i−j(x))

)

)

.

(7.26)

During the reconstruction algorithm only the azimuthal rebinning introduces a correlation
between directly neighboring projections. Thus, only the covariances between few neigh-
boring projections need to be taken into account. It is againpossible to determinejmax

based on the ACCF after convolution in direction ofθ:

jmax = argmaxj∈N {ρcon(j∆θ, 0) > ǫ} . (7.27)

For getting the projection valuesP fil
i (x) an interpolation is necessary, as described in

Eq. (2.21). Consequently, the covariances in Eq. (7.26) can be computed by:

Cov(P fil
i (x), P fil

j (x)) =

Np∑

n=1

Np∑

m=1

hbpj(t̃i(x)− tn)h
bpj(t̃j(x)− tm)Cov(P fil

i,n, P
fil
j,m), (7.28)

with
t̃i(x) = x sin θi − y cos θi. (7.29)

Accordingly, the variance can be computed as a special case by:

Var(P fil
i (x)) =

Np∑

n=1

(
hbpj(t̃i(x)− tn)

)2
Var(P fil

i,n)+

Np∑

n=1

Np∑

m=1
m6=n

hbpj(t̃i(x)− tn)h
bpj(t̃i(x)− tm)Cov(P fil

i,n, P
fil
i,m). (7.30)
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The covariances are approximated based on the ACCF given in Eq.(7.25):

Cov(P fil
i,n, P

fil
j,m) ≈

√

Var(P fil
i,n)Var(P fil

j,m)ρ
con(θi − θj, tn − tm). (7.31)

On the first glance, it seems that Eq. (7.28) and Eq. (7.30) require a large number of com-
putations because of the included double sums. However, theinterpolation functions are
different from zero only for a few neighboring channels. If linear interpolation is used,
as defined in Eq. (2.23), e.g. only two neighboring channels within one projection are
considered and consequently, only four summands are required in Eq. (7.28).

7.2.4 Hounsfield Scaling

The reconstructed attenuation coefficients are usually normalized to Hounsfield-Units. This
is done as described in Eq. (2.22). In order to estimate the noise in the normalized recon-
structed data, the following equation needs to be used:

Var(f(x)) = Var(µ(x))

(
1000

µw

)2

HU2. (7.32)

Consequently, the standard deviation of noiseσ(x) in the reconstructed and normalized
image can be computed by

σ(x) =
√

Var(f(x)). (7.33)

7.2.5 Covariance Between Reconstructed Hounsfield Values

The above presented theory can be extended to compute the covariance between recon-
structed Hounsfield values. Therefore, the correlation between neighboring pixels can be
determined analytically, too. The covariance between two normalized reconstructed pixel
values at two arbitrary positionsx1 andx2 can be computed as:

Cov(f(x1), f(x2)) =

(
1000

µw

)2

Cov(µ(x1), µ(x2)) HU2. (7.34)

This equation can be used for computing the complete covariance matrix of an image.
According to the variance computation in Eq. (7.26), which is just a special case of the
covariance, the covariance amounts to:

Cov(µ(x1), µ(x2)) = ∆θ2
Nπp∑

i=1

Nπp∑

j=1

Cov(P fil
i (x1), P

fil
j (x2)) ≈

≈ ∆θ2
Nπp∑

i=1

jmax∑

j=−jmax

Cov(P fil
i (x1), P

fil
i+j(x2)). (7.35)

Here, again the approximation is used that only few neighboring projections are correlated
because of the azimuthal rebinning. The number of neighboring projections is determined
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based on the ACCF as given in Eq. (7.27). The covariance betweeninterpolated values
taken out of two parallel projections is computed very similar to Eq. (7.28):

Cov(P fil
i (x1), P

fil
j (x2)) =

Np∑

n=1

Np∑

m=1

hbpj(t̃i(x1)− tn)h
bpj(t̃j(x2)− tm)Cov(P fil

i,n, P
fil
j,m),

(7.36)
where

t̃i(x1) = x1 sin θi − y1 cos θi, and t̃j(x2) = x2 sin θj − y2 cos θj. (7.37)

Finally, the same approximation that is used for the variance computation can be applied
here:

Cov(P fil
i,n, P

fil
j,m) ≈

√

Var(P fil
i,n)Var(P fil

j,m)ρ
con(θi − θj, tn − tm). (7.38)

The correlation coefficient between two image pixels can then be computed using Eq. (7.34)
and the local variances from Eq. (7.32):

ρimg(x1,x2) =
Cov(f(x1), f(x2))

√

Var(f(x1))Var(f(x2))
. (7.39)

7.3 Experimental Evaluation

The analytic model presented in the previous section makes use of some assumptions and
approximations, leading to a systematic error of the method. In addition, the method uses
noisy projection data as input to the noise estimation. Thisleads to an additional intrinsic
statistical uncertainty. To quantify systematic and statistical uncertainty of the presented
method, Monte-Carlo simulations were carried out.

7.3.1 Simulation

Three analytical phantoms were used for the evaluation of the noise propagation method:

• The FORBILD thorax phantom, in the following denoted as thorax phantom, is
shown in Fig. 7.5(a). It is reconstructed at a FOV of 41 cm, theslice is positioned at
z = 0 cm.

• A modified version of the FORBILD thorax phantom, in the following denoted as
shoulder phantom, is shown in Fig. 7.5(d). It is reconstructed at a FOV of 51 cm,
the slice is positioned atz = 14 cm. One of the lungs was translated0.75 cm in
z-direction in order to achieve more antisymmetry.

• The FORBILD head phantom with ears is shown in Fig. 7.5(g). It is reconstructed at
a FOV of 25 cm, the slice is positioned atz = 0 cm.

For all three phantoms, noise-free fan-beam projections were simulated using 1160 pro-
jections, 672 detector channels and a quarter detector offset. The following physical pa-
rameters were selected for the simulation: focus width0.7 mm, anode angle−82◦, delta
beta∆β = 360/4640 mm, 80 kV. The indirect fan-beam FBP reconstruction was per-
formed in combination with four different reconstruction kernels. The MTFs of the kernels
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are displayed in Fig. 7.6. For the noise propagation method the parameterǫ = 0.01 was
used in Eq. (7.23) and Eq. (7.27). The parametersqmax andjmax are thus equal to 1 for all
experiments.

7.3.2 Accuracy of the Noise Propagation

CT-image noise estimates were built according to the following three procedures:

a) Noise free projections were used for a Poisson-distributednoise estimation. The prop-
agation through the analytical model yieldsσa(x).

b) Monte-Carlo simulations ofNMC = 10000 CT images were generated. For each image,
Poisson-distributed noise was added to the projections. Pixel-wise noise computation
from theNMC reconstructed images givesσb(x).

c) In parallel, for each of theNMC images the noisy projections were used for Poisson-
distributed noise estimation. The propagation through theanalytical model yields
σc(x) and Var(σc(x)).

Procedure a) provides the expectation value for the CT image noise according to the pro-
posed method. The standard deviation computed in b) yields the gold standard to compare
with. The standard deviation imagesσa(x) andσb(x) are used to determine the systematic
error of the proposed method on a per-pixel basis. The pixelwise relative error is defined
as:

r∆(x) =
σa(x)− σb(x)

σb(x)
. (7.40)

The noise propagation method is precise if the relative pixelwise errors are small on the
complete image domain. Therefore, the average relative error

r̄∆ =
1

N

N∑

i=1

r∆(xi), (7.41)

and its variance

σ2
r∆

=
1

N − 1

N∑

i=1

(r∆(xi)− r̄∆)
2, (7.42)

over the different image pixels is computed, whereN is the number of image pixels and
r∆(xi) is the relative error at pixel positionxi. The average quadratic error, normalized on
a per-pixel basis is defined as:

s∆ =

√
√
√
√ 1

N

N∑

i=1

(r∆(xi))2 =

√

(r̄∆)2 +
N − 1

N
σ2
r∆
. (7.43)

Measuring the variance of the noise prediction during procedure c) exhibits its intrinsic
statistical uncertainty for a given dose and object. The ultimate goal of the here presented
noise propagation method is to get a variance map in additionto a reconstructed image,
using one single measurement. Then the input to the noise propagation is no longer the
exact noise variance in the projections, but a noisy estimate. Each of theNMC = 10000
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(a) Thorax (b) Analytical (c) Monte-Carlo

(d) Shoulder (e) Analytical (f) Monte-Carlo

(g) Head (h) Analytical (i) Monte-Carlo

Figure 7.5: Phantoms used for evaluation reconstructed with Sim50 (Thorax: 30 cm FOV,
display: w=50, c=400, Shoulder: 51 cm FOV, display: w=50, c=900, Head: 25 cm FOV,
display: w=50, c=900), together with analytical noise estimates and estimates from 10000
noisy realizations (Thorax noise display: w=25, c=50, Shoulder and Head noise display:
w=50, c=150).
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Figure 7.6: MTFs of kernels used for the experiments.
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noisy projections are used for estimating the noise variance in the projections respectively
and are then separately propagated through the reconstruction algorithm givingNMC stan-
dard deviation imagesσc,m(x) with m = 1, ...,NMC. From the stack of standard deviation
images the pixelwise mean̄σc(x) and variance Var(σc(x)) can be computed as:

σ̄c(x) =
1

NMC

∑

m

σc,m(x), (7.44)

Var(σc(x)) =
1

NMC − 1

∑

m

(σc,m(x)− σ̄c,m(x))
2. (7.45)

The pixelwise standard deviation of the standard deviationimagesσ (σc(x)) =
√

Var(σc(x))
is a measure for how stable the noise variances can be reproduced using different noise re-
alizations. For all three phantoms the values in Var(σc(x)) were well below 0.1%.

Table 7.1: Evaluation of the systematic error of the method proposed. Numbers are quoted
in percent (%).

Thorax Sim10 Sim30 Sim50 Sim0
σ̄b 3.7 5.8 13.2 10.2
r∆,1 -22.3±8.5 -11.0±9.8 5.5±11.2 3.3±9.7
s∆ 23.9 14.8 12.5 10.2
r∆,2 -18.4±8.9 -8.0±10.1 5.8±11.2 3.7±9.7
s∆ 20.4 12.9 12.6 10.4
r∆,3 -16.4±7.4 -5.9±7.7 8.3±8.9 6.1±7.1
s∆ 18.0 9.7 12.2 9.4
r∆,4 -3.6±3.6 -1.6±3.3 1.2±2.4 0.7±2.2
s∆ 5.3 3.9 2.8 2.3

Shoulder Sim10 Sim30 Sim50 Sim0
σ̄b 10.7 17.0 35.4 27.1
r∆,1 -18.7±9.4 -10.1±9.3 -1.4±11.1 -3.5±9.7
s∆ 20.9 13.8 11.1 10.4
r∆,2 -13.0±10.0 -5.8±9.8 0.4±11.3 -1.2±10.0
s∆ 16.5 11.4 11.3 10.1
r∆,3 -11.8±8.4 -4.4±7.7 1.9±9.8 0.3±8.2
s∆ 14.5 8.9 10.0 8.2
r∆,4 -1.8±4.0 -0.4±3.5 0.6±2.8 0.3±2.8
s∆ 4.4 3.5 2.8 2.8

Head Sim10 Sim30 Sim50 Sim0
σ̄b 16.1 26.1 62.0 58.3
r∆,1 -29.2±3.7 -19.9±6.9 4.9±13.8 20.9±11.1
s∆ 29.5 21.0 14.6 23.7
r∆,2 -27.8±3.8 -18.8±7.0 4.8±13.8 19.4±11.0
s∆ 28.0 20.0 14.6 22.3
r∆,3 -23.7±3.3 -14.4±4.3 10.2±9.2 25.7±6.0
s∆ 23.9 15.0 13.7 26.4
r∆,4 -6.3±2.1 -4.7±1.7 0.2±2.0 3.0±2.4
s∆ 6.7 5.0 2.0 3.9

Tab. 7.1 summarizes the results of the systematic error evaluation achieved for the three
phantoms. The average pixel noise valuesσ̄b in HU are listed for the different phantoms
and reconstruction kernels. This average pixel noise was determined by averaging over
the standard deviation image achieved from the Monte-Carlo simulation. In addition, the
relative systematic errors are listed for four different cases:

1. All covariances are neglected, givingr∆,1 ands∆,1.

2. The covariances during backprojection are neglected, giving r∆,2 ands∆,2.
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3. The covariances between neighboring projections duringbackprojection are neglected,
giving r∆,3 ands∆,3.

4. All covariances proposed in the method presented here aretaken into account, giving
r∆,4 ands∆,4.

The relative systematic errors are averaged over the whole image domain and quoted in per-
cent, together with their standard deviations. Additionally, the L2-norm errors are quoted
as well.

For better judging the results the standard deviation images obtained from the analytic
noise propagation and from the Monte-Carlo can be compared inFig. 7.5. Additionally,
horizontal and vertical lineplots through the center of thestandard deviation images are
displayed in Fig. 7.7, Fig. 7.8, and Fig. 7.9. The accuracy ofthe four different configu-
rations of the algorithm can here be compared visually for the different phantoms and
reconstruction kernels.

It is evident, that good results over the full range of convolution kernels can only be
achieved by considering the covariances during the convolution and backprojection pro-
cesses. This can be seen from the quantitative evaluation aswell as from the lineplots
through the standard deviation images. Without considering the correlations introduced
to the data during the processing, the noise is under- or overestimated, sometimes up to
more than 40%. This estimation error cannot be adjusted by a correction factor or shift,
because the deviation of the errors within the image strongly varies. The consideration of
the correlations introduced during rebinning for the convolution process only leads to im-
provements for smoother reconstruction kernels. It can be clearly seen from the lineplots,
that especially for Sim50 and Sim0 nearly no changes are noticable (regarding the magenta
and cyan curves). The reason is that the smoother kernels have a wider spatial extension
and, therefore, the correlations within the neighborhoodshave more influence. Taking into
account the correlation between neighboring channels during the interpolation performed
within the backprojections improves the noise estimation in all cases (regarding the red
curve in the lineplots). The additional consideration of correlations between neighboring
projections, when summing up the contributions from all directions to the local noise vari-
ance in the backprojection, has again a larger impact if smoother reconstruction kernels are
used. Another observation is that the influence is higher thefarther the distance of the pixel
to the iso-center. This can be understood regarding the ACCFs of the smooth Sim10 and
sharp Sim0 kernel plotted in Fig. 7.4. The larger the distance of the currently reconstructed
pixel to the iso-center, the larger is the distance between the channels of two neighboring
projections contributing to that pixel. While the ACCF is stillnot 0 for a smooth kernel,
there is no noticeable correlation between these samples incase of a sharp kernel. If all the
correlations are taken into account for the noise propagation the method shows good accu-
racy with an average relative error below 6.3% for the head phantom and even below 2%
for the shoulder phantom. The L2-norm errors are in about thesame range between 6.7%
for very smooth reconstruction kernels and close to 2% for sharp reconstruction kernels.

7.3.3 Real Data

In addition to the evaluation based on simulated data, some experiments with data acquired
at a Siemens Definition CT scanner were performed. For estimating noise in the projections
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(b) vertical - Sim10
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(c) horizontal - Sim30
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(d) vertical - Sim30
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(e) horizontal - Sim50
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(f) vertical - Sim50
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(g) horizontal - Sim0
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(h) vertical - Sim0

Figure 7.7: Horizontal and vertical cuts through standard deviation images for thorax phan-
tom - comparison of Monte-Carlo results to four different cases of analytical noise propa-
gation for four different reconstruction kernels.



7.3. Experimental Evaluation 117

−200 −100 0 100 200
12

14

16

18

20

22

24

26

28

30

x

st
an

da
rd

 d
ev

ia
tio

n 
of

 n
oi

se
 in

 H
U

 

 

(a) horizontal - Sim10

−200 −100 0 100 200
0

5

10

15

20

25

30

y

st
an

da
rd

 d
ev

ia
tio

n 
of

 n
oi

se
 in

 H
U

 

 MonteCarlo
1:AllCorr
2:NoCorrProjBp
3:NoCorrChanBp
4:NoCorr

(b) vertical - Sim10
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(c) horizontal - Sim30

−200 −100 0 100 200
0

10

20

30

40

50

60

y

st
an

da
rd

 d
ev

ia
tio

n 
of

 n
oi

se
 in

 H
U

 

 

(d) vertical - Sim30
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(e) horizontal - Sim50
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(f) vertical - Sim50
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(g) horizontal - Sim0
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(h) vertical - Sim0

Figure 7.8: Horizontal and vertical cuts through standard deviation images for shoulder
region of thorax phantom - comparison of Monte-Carlo resultsto four different cases of
analytical noise propagation for four different reconstruction kernels.
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(a) horizontal - Sim10
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(b) vertical - Sim10
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(c) horizontal - Sim30
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(d) vertical - Sim30
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(e) horizontal - Sim50
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(f) vertical - Sim50
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(g) horizontal - Sim0
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(h) vertical - Sim0

Figure 7.9: Horizontal and vertical cuts through standard deviation images for head phan-
tom - comparison of Monte-Carlo results to four different cases of analytical noise propa-
gation for four different reconstruction kernels.
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(a) Abdomen: Noisy Image (b) Abdomen: Analytical Noise Estimate

(c) Thorax: Noisy Image (d) Thorax: Analytical Noise Estimate

Figure 7.10: Experiments with real data acquired at a Siemens Definition CT scanner
(300mm FOV, B40f, display: w=50, c=400), together with analytical noise estimates (dis-
play: w=50, c=80). The pixel regions used for evaluation of local standard deviations in
noisy image and average standard deviation from analytic noise propagation are shown
with their respective numbers.
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of scanned CT data, a physical noise model for the projection data needs to be calibrated
in advance. As already mentioned in Section 2.4.1, the system specific parametersc and
σ2
e can be determined by measuring noise and signal strength at various fluxes. Especially,

if the CT scanner is equipped with a bowtie-filter, each detector channel has an individual
set of parameters. Eccentric positioned water cylinders ofdifferent diameters were used
for the calibration measurements performed at 120 kV and 300mA. At the same scanner
two different anatomical phantoms were scanned again at 120kV and 300 mA. The im-
ages reconstructed at a FOV of 25 cm with a medium sharp body kernel (B40f) are shown
in Fig. 7.10. The standard deviation of noise was measured in10 different homogeneous
image regions and was compared to the average standard deviation of noise from the ana-
lytical noise propagation, averaged over the same pixel region.

Table 7.2: Comparison of standard deviation of noise evaluated in homogeneous image
regions of reconstructed noisy CT imageref and mean standard deviation in this pixel
region of the analytic noise propagationσ̄rec. The standard deviations are given in HU, the
relative errorr∆ is given in percent.

Abdomen 1 2 3 4 5 6 7 8 9 10
σ̄ref 34.8 38.4 36.1 44.5 52.2 32.9 57.8 40.9 50.8 45.6
σ̄rec 34.5 38.6 36.3 46.2 47.0 33.1 54.0 42.4 49.9 41.7
r∆,r -1.0 0.5 -1.1 3.9 -10 0.5 -6.5 3.8 -1.8 -8.5

Thorax 1 2 3 4 5 6 7 8 9 10
σ̄ref 39.1 41.4 42.7 46.5 43.9 55.3 47.3 67.7 50.5 47.9
σ̄rec 37.6 38.4 39.3 45.1 42.5 50.6 46.0 59.7 47.8 47.1
r∆,r -3.9 -7.2 -8.1 -2.9 -3.3 -8.4 -2.7 -11.8 -5.4 -1.7

The standard deviation of noise evaluated in local neighborhoods of about 600 pixels is
here denoted as̄σref . These reference noise values are compared to the standard deviation
of noise from the analytic noise propagation, respectivelyaveraged over the different local
neighborhoods, and is denoted asσ̄rec. The maximum standard deviation of the computed
standard deviation values within the small pixel regions was in all cases below 2 HU in
case of the abdomen image and below 1 HU for the thorax image. Acomparison of the
standard deviations is presented in Tab. 7.2. In addition tothe standard deviations the
relative deviation of the reference noise and the computed standard deviations is computed
for the different image regions:

r∆,r =
σ̄rec − σ̄ref

σ̄ref
. (7.46)

It can be seen that the noise estimate from the analytic noisepropagation fits well to the
standard deviation evaluated in homogeneous image regions. The average relative devia-
tion is about -2.3% in case of the abdomen image and -5.5% in case of the thorax image.
The maximum relative deviation was about -12%. In most of thecases the local standard
deviation of noise is slightly underestimated.

7.4 Conclusions

In this chapter, a fast method for noise-propagation through indirect fan-beam FBP recon-
struction with rebinning to parallel-beam geometry was proposed. Due to the fact that
the rebinning step and all further processing steps correlate the input data, approximative
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models based on linear shift-invariant systems were developed for estimating the covari-
ance terms needed for the variance computations. The proposed methodology has been
validated by Monte-Carlo and demonstrates good accuracy with an average relative error
below 6.6%. It was observed that with increasing sharpness of the used reconstruction
kernels a lower systematic error of about 2% can be obtained.The main limiting factor
is seen in the approximation in the covariance terms. The better spatially concentrated
the involved operations work, the better the wide-sense-stationarity assumptions for the
ACCF computation holds, which explains the better results forsharper kernels. Due to the
fact that the ultimate goal is to compute a standard-deviation image for post-processing
purposes, the method was additionally tested with respect to statistical errors. Even if the
noise variance in the fan-beam projections was estimated from noisy projections of a sin-
gle noise realization, only negligible differences below 0.1% were observed, compared to
the case of perfectly known variance in the projections. Experiments with real accquired
CT data showed that in combination with a calibrated physicalnoise model the proposed
analytic noise propagation can be used for estimating the local standard deviation in the
reconstructed image. The relative deviation between the computed local standard devia-
tion of noise and the standard deviation of noise evaluated in small homogeneous image
regions is below 12% for all image regions evaluated for bothreal scans under investiga-
tion. Furthermore, the introduced approximations allow a fast and easy implementation.
Especially for the focus of application, the adaptation of post-processing methods to the
special noise, properties in CT, the presented noise propagation method is precise enough
and shows stable results also for estimated variances in theprojections from a single noisy
measurement. The computational performance of the noise propagation is comparable to
another reconstruction.

Of course, some simplifying approximations for the noise model in the fan-beam pro-
jections were used for the simulations and in the physical noise model. First of all, monochro-
matic X-ray beams were assumed, which is unrealistic for practical systems. It is, however,
very common to approximate the polyenergetic X-rays measured at the detector by only
considering an effective energy and an average number of photons, which is again very
close to the simple model used here. Furthermore, electronics noise was neglected for the
simulations. In real systems, electronics noise is usuallyvery small compared to quantum
noise, if the X-ray flux is high enough. Consequently, only forvery low doses electronics
noise plays a role. In the physical noise model that was used for the real data electronics
noise was considered. Obviously electronics noise, which is usually modeled as a Gaussian
noise floor does not severely influence the accuracy of the presented method. Further, noise
in the fan-beam projections was considered to be perfectly uncorrelated. This assumption
only holds as long as tube-current variations, cross-talk at the detector and afterglow are
negligibly small. In real systems the noise in the measured projections is usually very
small, but there are small correlations between neighboring channels and projections. Al-
though, these correlations were neglected in case of the real scans, the noise estimates are
still reliable enough for the desired post-processing application. For future investigations,
it is also possible to include the correlation of the input data into the proposed method-
ology. As long as these correlations can be modeled by a linear shift-invariant system,
the proposed methodology can still be applied with only little changes. The ACCF of the
fan-beam projections is then no longer a delta function, which is used for the covariance
computation during the rebinning and thus the covariances no longer cancel out in the
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first processing step. Consequently, the ACCF needs to be updated after the intermediate
rebinning steps, too.



Chapter 8

Orientation Dependent Noise
Propagation for Adaptive Anisotropic
Filtering

As already indicated in the last chapter, precise knowledgeof the local noise variance
would help in adapting various post-processing methods to the non-stationary noise in CT.
Noise reduction methods can for example make use of this additional knowledge and adapt
to the local contrast-to-noise ratio. Ideally, post-processing methods should also account
for the local correlation of noise. Improved noise suppression can be obtained knowing the
correlation of noise within the local neighborhoods that are used for filtering. Averaging
uncorrelated values leads to a stronger noise suppression than averaging values that are
strongly correlated. The computation of image covarianceshas been investigated for direct
fan-beam reconstruction in [Wund 08]. It is also possible toapproximate the covariances
in images reconstructed with indirect fan-beam FBP using theapproximation presented
in Chapter 7.2.5. Nevertheless, such computations are very time consuming if they are
performed pixel-wise for the whole image domain and, thus, not useful for image denoising
purposes in practice. Therefore, this chapter presents an extension of the analytic noise
propagation presented in the last chapter that additionally gives some information about
the correlation of noise without computing covariances. Additionally, the adaptation of a
bilateral filter to the non-stationary, correlated noise isinvestigated.

In a preliminary approach [Bors 08b], the local noise variance was split up into its hor-
izontal and vertical contributions. The estimated noise variances in the projections are
weighted with sine-/cosine-squares of the respective parallel projection angles and sepa-
rately propagated through the indirect fan-beam reconstruction, as described in Chapter 7.
The overall local noise variance is the sum of horizontal andvertical variance contributions.
The ratio between horizontal and vertical contribution to the local variance is then used for
adapting the bilateral filter. The Gaussian range filter can,e. g., be stretched or suppressed
along thex/y-direction. The remaining problem is that diagonally directed noise grains
evenly split up into its horizontal and vertical contributions according to this orientation
separation based on just the horizontal and vertical directions. As a result the filter in these
special cases remains an isotropic filter and the desired effect gets lost.

The idea of the improved approach, presented here, is: Per pixel the direction is deter-
mined that mostly contributes to the local noise variance. This is the direction for which
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the X-ray had to travel through most or densest material. It will be shown that this is at
the same time closely related to the direction of highest correlation within a local neigh-
borhood. Instead of determining just the horizontal and vertical contribution to the overall
local noise variance, the contribution in direction of the highest correlation and orthogonal
to it is computed. This means that for each pixel a specific separation into two directions
is performed. Based on these noise contributions and the corresponding angle pointing
out the orientation of the noise grain at a certain position,a noise adaptive filtering can
be performed that takes into account the noise correlations. The filter is adapted such that
strongest filtering is applied orthogonal to the direction of highest correlation. The concept
of bilateral filtering, a simple and widely used technique, is used here as a basis for noise
adaptive edge-preserving filtering.

8.1 Methodology Overview

The flowchart of the methodology is presented in Fig. 8.1 including intermediate results for
an example slice of a real scan. The method splits up into the following parts:

1. The CT image is reconstructed using indirect fan-beam FBP reconstruction.

2. The noise variance in the fan-beam projections is estimated according to a calibrated
physical noise model, as described in Section 2.4.1.

3. The local noise variance is computed based on the analyticnoise propagation for
indirect fan-beam FBP, as described in Chapter 7. At the same time the direction of
strongest correlation is determined for each image pixel.

4. Based on the computed direction of strongest correlation apixelwise separation of
the overall noise variance into the direction of strongest correlation and orthogonal
to that is computed. The separation is obtained by a modified noise propagation
method where sine-/cosine-square weights are used during the backprojection of the
variances.

5. The orientation dependent noise estimates in the image domain and the image point-
ing out the direction of highest correlation are used for post-processing of the re-
constructed CT image. Here, a noise adaptive bilateral filtering is proposed as an
example application.

In the following the determination of the direction of strongest correlation and the locally
dependent separation of the noise variance to the contribution along the direction of highest
correlation and orthogonal to it are described more in detail. After that the adaptation of
the bilateral filter to the non-stationary and non-isotropic noise in the CT image will show
how this additional information can be used for improving the signal-to-noise ratio in the
image.

8.2 Orientation Dependent Noise Propagation

In Chapter 7 an algorithm for the computation of local noise variances has been provided.
Given the noisy projection values, a simple (calibrated) noise model can be used for esti-
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Figure 8.1: Methodology overview.
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(a) Illustration of covariance contributions.(b) Angle pointing out the direction of strongest
correlation.

Figure 8.2: Illustration of covariance computation and determination of direction of
strongest correlation.

mating noise in the projections. Starting from this, the noise variance can be propagated
through the complete reconstruction pipeline.

In addition to the local variance, the correlation of noise is now analyzed. The compu-
tation of covariances is possible, as explained in Section 7.2.5. However, this computation
is rather time consuming. In this section, another possibility for getting information about
the noise correlation, without computation of covarianceswill be described. In a first step,
it will be shown that for each pixel in the image the directionof strongest correlation can
be easily determined. With this direction the first principal axis of the local noise grain is
obtained.

The second part of this section then describes a method for separating the local variance
into two noise contributions. This separation can be performed uniformly for the whole im-
age, e. g., into a horizontal and vertical contribution. As already mentioned above, this has
the drawback that in some cases no information about the noise anisotropy can be gained.
Therefore, an extended approach where a pixel specific separation into the direction of
strongest correlation and orthogonal to that is computed isintroduced.

8.2.1 Direction of Strongest Correlation

The non-isotropic noise property in reconstructed CT imagescan be mainly derived from
the non-stationary noise in the projections. As explained in chapter Chapter 7, the vari-
ances in the projections are backprojected for computing the local noise variances in the
reconstructed images, according to Eq. (7.26), which can also be written as:

Var(µ(x)) = ∆θ2
Nπp∑

i=1

v(θi,x). (8.1)
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For each pixel positionx, the variance contributions

v(θi,x) = Var(P fil
i (x))+

Nπp∑

i=1

jmax∑

j=1

(
Cov(P fil

i (x), P fil
i+j(x)) + Cov(P fil

i (x), P fil
i−j(x))

)
. (8.2)

coming from the parallel-beam projections at different projection anglesθi are collected,
or summed up, as illustrated in Fig. 8.2(a). The variance Var(P fil

i (x)) and covariances
Cov(P fil

i (x), P fil
j (x)) in Eq. (8.2) are computed according to Eq. (7.30) and Eq. (7.28). Be-

cause of this backprojection process, all image pixels thatare placed along the backpro-
jection lineL(θ, t) receive the same contribution from the projection at angleθ. The cor-
relations between neighboring projections (in direction of θ) and within a projection (in
direction oft) are rather small. Examples of estimated auto correlation coefficient func-
tions of noise in the projections after rebinning and convolution were shown in the previous
chapter in Fig. 7.4. Because of the small spatial extension ofthe ACCF most of the con-
tributing variances to the overall variance at a pixel positioned atx1 and another pixel atx2

are uncorrelated, except for the variance backprojected along the straight line defined by
x1 andx2. The correlation between the two pixels is stronger the higher the backprojected
variance along this straight line is. If different pixels with the same distance to the reference
pixel are considered, it becomes clear that the direction ofstrongest correlation is given by
the direction from which the strongest contribution to the overall variance is collected dur-
ing backprojection of the projection variances. This meansthat during the computation of
the local noise variance, the projection angle with the strongest contribution to the noise
variance of the actual pixel can be determined:

θmax(x) = argmaxθi {v(θi,x)} . (8.3)

From the determined angleθmax(x) in the range of[0, π] the direction vector

θ̆max(x) = (cos(θmax(x)), sin(θmax(x)))
T (8.4)

points in the direction of strongest correlation. It pointsout the first principal axis of the
noise grain, meaning the direction in which the noise grain has its largest spatial extension.
In case of an isotropic noise grain̂θmax(x) can be an arbitrary direction. An example for
the pixel-wise determined direction of strongest correlation is displayed in Fig. 8.2(b) for
the ellipse shown in Fig. 8.2(a). The angleθmax(x) is displayed color-coded.

8.2.2 Orthogonal Separation of Noise Variance

With the above presented analysis, the direction of strongest correlation can be computed
from the noise estimates in the projections. There is, however, no information given, if the
noise grain is really anisotropic or if the contributions from all directions are the same. In
order to obtain information about the noise anisotropy, a pixelwise separation of the noise
variance into its contributions from two orthogonal directions is computed.

The idea of the presented approach is based on the observation that the noise variance
in the parallel projection at angleθ mainly contributes to the noise variance in the image
orthogonal to the backprojection direction. This means that if the projection at angleθ
is very noisy and is backprojected, any line orthogonal to the backprojection line is very
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(a) Noisy ellipse (b) Standard deviation of
noise in horizontal direc-
tion.

(c) Standard deviation of
noise in vertical direc-
tion.

(d) Overall standard di-
viation of noise.

Figure 8.3: Example of horizontal and vertical noise contributions for elliptical water phan-
tom.

noisy, too. Any line that is parallel to the backprojection line, on the other hand, is inferred
by the same error from the current projection and thus shows aconstant error along this
line with respect to this projection direction. The theoretical basis for this observation
builds the Fourier-Slice-Theorem, as described in Section2.2. If only one parallel-beam
projection is considered the one-dimensional Fourier transformation of the projection at
angleθ is equivalent to the two-dimensional Fourier transformation of the reconstructed
function along the line through the origin in direction ofγ = θ − π/2. As discussed
before, the noise in CT can be assumed to be additive and zero-mean. Because of the
linearity of the FBP, noise can be considered separately. If the parallel-beam projection
acquired at angleθ just consists of noise, the reconstruction shows noise in the orthogonal
direction ofγ = θ − π/2, because the two-dimensional Fourier Transformation of the
reconstruction is only non-zero along this one line. This observation is useful for separating
the overall noise variance into its contributions to certain directions, e. g. the horizontal and
vertical directions [Bors 08b]. As described above, the projections withθ close to 0 mainly
contribute to the noise in vertical direction in the image (y-direction) and projections with
θ close toπ/2 to noise in horizontal direction (x-direction). By weighting the variance in
the projections with sine- and cosine-squares of the parallel projection angle, the overall
noise variance can be split up into two parts:

Var(µ(x)) = ∆θ2
Nπp∑

i=1

v(θi,x) = ∆θ2
Nπp∑

i=1

(sin2 θi + cos2 θi) v(θi,x) =

= ∆θ2
Nπp∑

i=1

sin2 θi v(θi,x)

︸ ︷︷ ︸

VarH(µ(x))

+∆θ2
Nπp∑

i=1

cos2 θi v(θi,x)

︸ ︷︷ ︸

VarV(µ(x))

. (8.5)

The variance contribution VarH(µ(x)) to the horizontal direction is computed by applying
sine-square weights depending on the parallel projection angle during the backprojection
process. Accordingly, the vertical variance contributionVarV(µ(x)) is obtained by using
cosine-square weights for the backprojection. Based on the horizontal and vertical vari-
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ances for the reconstructed attenuation values, orientation dependent variance images of
the reconstructed Hounsfield values can be computed, based on Eq. (7.32) and Eq. (7.33):

σ2
H(x) = VarH(µ(x))

(
1000

µw
HU

)2

, (8.6)

and

σ2
V(x) = VarV(µ(x))

(
1000

µw
HU

)2

, (8.7)

Clearly, these noise estimates depend on the local positionx. A noise estimation vector:

σ̂(x) = (σH(x), σV(x))
T (8.8)

is now given for every pixel positionx. By construction, the noise variance in the recon-
structed CT image can be expressed as:

σ2(x) = σ2
H(x) + σ2

V(x). (8.9)

This means that at positionx the standard deviation of noiseσ(x) is given by the norm
of the noise vector defined in Eq. (8.8). An example for such a separation into horizontal
and vertical noise contribution is shown in Fig. 8.3. It can be seen clearly that noise in
horizontal direction is much lower than noise in vertical direction for the elliptical water
phantom.

The above presented theory allows the separation of the noise variance into two or-
thogonal directions. The drawback, however, is that noise sometimes equally contributes
to both directions, e.g. in case of perfectly diagonally directed noise grains. Thus, no in-
formation about the anisotropy of noise can be gained anymore. Therefore, an extended
method for noise separation is described here. The local noise variance is split up into its
contribution in direction of strongest noise correlation at the local position and orthogonal
to that. Hence, the separation is done specifically for each single pixel position. The idea
of the extended method is as following: In a first step the overall local noise varianceσ2(x)
is computed as described in Chapter 7. The direction of strongest correlationθmax(x) can
be determined simultaneously to the computation of the overall local noise varianceσ2(x),
as described in Section 8.2.1. Then a pixelwise separation of the local variance into the
contribution orthogonal and along the direction of strongest correlation is computed.

The variance contribution orthogonal to the direction of strongest correlation is ob-
tained using pixelwise backprojection weights depending on the sum of the parallel pro-
jection angleθ and the angle pointing out the direction of strongest correlationθmax(x) at
positionx:

σ2
⊥(x) =

(

∆θ
1000

µw
HU

)2 Nπp∑

i=1

cos2(θi + θmax(x)) v(θi,x). (8.10)

Analogously, the variance contribution in direction of strongest correlation is given by:

σ2
||(x) =

(

∆θ
1000

µw
HU

)2 Nπp∑

i=1

sin2(θi + θmax(x)) v(θi,x). (8.11)
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The overall noise variance can again be expressed as pointwise sum of the two noise con-
tributions:

σ2(x) = σ2
⊥(x) + σ2

||(x). (8.12)

If the overall noise variance has already been computed, only one additional weighted
backprojection of the variances is necessary for getting the noise separation.

8.3 Noise Adaptive Bilateral Filtering

For the adaptation of anisotropic edge-preserving filtering methods to the noise character-
istics in CT, two things are of main interest. The local noise variance should be considered,
because noise in CT is non-stationary. Secondly, the local noise correlation should be taken
into account, because noise is non-isotropic. Here, a noiseadaptive method that is mainly
based on the idea of bilateral filtering [Toma 98], a simple and widely used edge-preserving
noise reduction approach, will be discussed.

In case of bilateral filtering, the imagef(x) is smoothed by non-linear averaging in
local neighborhoods. During averaging, in addition to the geometric closeness of image
pixels, also the photometric similarity between the pixel values is taken into consideration.
The filtered imagẽf(x) is computed as follows:

f̃(x) =
1

n(x)

∑

x′

f(x′)c(x,x′)s(f(x), f(x′)), (8.13)

wheren(x) is needed for normalization and is given by:

n(x) =
∑

x

c(x,x′)s(f(x), f(x′)). (8.14)

The functionc(x,x′), also called domain filter, takes into account the geometriccloseness
of the actual pixel at positionx and a neighboring pixelx′. The functions(f(x), f(x′)), in
the following called range filter, brings in the edge-preserving characteristic of the filter. It
takes into account the photometric closeness of the image pixels during averaging. In the
standard approach both, the range and domain filter, are usually chosen as simple Gaussian
filters [Toma 98]. The domain filter decreases with increasing Euclidean distance between
the neighboring pixels and the range filter decreases with increasing difference between the
pixel values. The standard deviations of these filters are the steerable parameters that con-
trol the amount of noise reduction on the one hand, but also the edge-preservation capabil-
ity on the other hand. The direct application of the standardbilateral filter to reconstructed
CT images shows unconvincing results in most cases. Due to thenon-stationarity of noise,
the selection of a global parameter for the range filter is problematic. The noise amplitude
varies in different image regions, and, thus, image regionswith lower noise level might be
smoothed well, while noise is visibly remaining in other regions. The range filter should be
adapted to the local contrast-to-noise level. Further, in case of strongly anisotropic noise
grains, the filter should try to stretch and rotate, such thata higher number of uncorrelated
values are used for averaging.
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8.3.1 Domain Filtering

Taking the anisotropy of noise in reconstructed CT images into consideration, the domain
filter is chosen as a multivariate Gaussian filter. It adjuststo the orientation of maximal cor-
relation at the local position and takes into account the local orientation dependent noise
variancesσ2

⊥(x) andσ2
||(x). The filter is stretch and compressed such that strongest filter-

ing is performed orthogonal to the direction of strongest correlation. The noise adaptive
domain filter is defined as:

c(x,x′) = e−
1
2
(x−x

′)TΣ−1
x (x−x

′). (8.15)

The covariance matrixΣx controls the degree of anisotropy and the orientation of thefilter.
It can be written as

Σx = R
T
xDxRx, (8.16)

whereRx is a rotation matrix:

Rx =

(
cos(γmax(x)) sin(γmax(x))
− sin(γmax(x)) cos(γmax(x))

)

(8.17)

andDx is a diagonal matrix:

Dx =

(
ν1(x) 0
0 ν2(x)

)

. (8.18)

The decomposition in Eq. (8.16) is the singular value decomposition of the covariance
matrixΣx. The principal axes are given by the row-vectors ofRx. Here it can be seen that
the first principal axis is rotated such that it points orthogonal to the direction of strongest
correlation. The extension of the filter in direction of strongest correlation and orthogonal
to it is steered by the singular values in the diagonal matrixDx. The singular valueν1(x)
controls the spatial extension of the filter orthogonal to the direction of strongest correlation
andν2(x) in direction of strongest correlation. These two values should be chosen based
on the orientation dependent variance contributionsσ2

⊥(x) andσ2
||(x). If both parts are

equivalent an isotropic Gaussian filter is desired. The stronger the two components differ
from each other the stronger the filter should be stretched indirection orthogonal to the
direction of strongest correlation. We define the singular values based on the ratio of the
orientation dependent local variances and the overall local variance:

ν1(x) = q

(

2
σ2
⊥(x)

σ2(x)
−1

)

d2, (8.19)

and

ν2(x) = q

(

2
σ2
||
(x)

σ2(x)
−1

)

d2, (8.20)

with parametersq ∈ N andd ∈ R. If the two variancesσ2
⊥(x) andσ2

||(x) are equivalent, an
isotropic Gaussian filter with standard deviationd is obtained. Otherwise, the parameterq
controls the degree of maximum anisotropy of the filter. The spatial extension of the filter
orthogonal to the direction of strongest correlation is maximally factorq times higher than
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along the direction of highest correlation. The above definition of ν1(x) andν2(x) ensures
that the area under the filter is constant:

∫ ∫

e−
1
2
(x−x

′)TΣ−1
x (x−x

′)dx dy
!
= const, (8.21)

because the determinant of the matrixΣ−1
x

is constant, independently from the distribu-
tion of the overall variance to the contributions into the two orthogonal directions. The
determinant is computed as:

det
(
Σ−1

x

)
= det (Σx)

−1 =
1

ν1(x)ν2(x)
=

1

d4
(8.22)

and consequently ensures the requirement.

8.3.2 Range Filtering

The second part of the bilateral filter is the range filter, which is the edge-preserving com-
ponent. It takes into account the photometric similarity ofneighboring pixels. The larger
the difference between the pixel values compared to the noise level, the lower is the impact
to the averaging result. With the knowledge of the local variances, the difference between
pixel values can be set into relation to the respective standard deviation of the two pixel
values. The variance of the difference of the two pixel values can be computed as:

Var(f(x)− f(x′)) = σ2(x) + σ2(x′) + 2Cov(f(x), f(x′)). (8.23)

However, the covariance between the pixels is not known here. As described above, the
computation of the covariance matrix is avoided because of computational performance
reasons. The correlation of noise has already been incorporated in the design of the domain
filter. Therefore, the covariance in Eq. (8.23) is neglected. The range filter is then defined
as a Gaussian filter that decreases with increasing local contrast-to-noise ratio:

s(f(x), f(x′)) = e
− 1

2

(f(x)−f(x′))2

(σ2(x)+σ2(x′))r2 . (8.24)

The parameterr ∈ R, r > 0 is used for controlling the amount of noise suppression. With
increasingr the range filter allows to take pixels with a larger intensitydifference to the
reference pixels more into account during averaging. A larger r thus leads to stronger
smoothing, but also to lower edge-preservation.

8.4 Experimental Evaluation

For the evaluation of the presented noise reduction method,experiments on simulated and
measured data were performed. In this section the proposed noise adaptive filtering method
(NABF) is compared to the standard bilateral filtering (SBF) approach with respect to noise
and resolution. In a second part of the evaluation section, example images from simulated
and measured data are presented.
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8.4.1 Noise and Resolution

For the experiments we used the same simulated data and evaluation strategy as already de-
scribed in Section 6.4.1. In order to achieve smooth MTF curves, several noisy realizations
are averaged and the MTF is computed in the averaged image. Preliminary experiments
showed, that a contrast-to-noise ratio of about 100 HU is necessary for getting reliable MTF
measurements for the phantom used here. Based on that observation the number of images
Nc that need to be averaged for the different contrast-to-noise levels can be computed:

Nc =

⌈(
100 · σc

c

)2
⌉

, (8.25)

whereσc is the standard deviation of noise andc is the contrast of the inlay compared to
water, both given in HU. Because of the fact that the noise in the image also changes if
the contrast of the inlay strongly varies, the standard deviation of noiseσc was evaluated in
one noisy realization within an ROI inside the cylinder withcontrastc for determining the
number of images based on Eq. (8.25).

The noise reduction method under investigation was then applied to all theNc images
at a certain contrastc. The MTF was evaluated on the average of all filtered images of
the same contrast. From the MTF measured on the edge of the circle a corresponding
linear shift-invariant filter can be computed that leads to the same average smoothing in the
image as the adaptive filter achieved in average on the edge ofthe circular inlay, according
to Eq. (6.7). Then the standard deviation of noise after adaptive filtering in comparison
to standard deviation of noise after application of the linear filter that leads to the same
average resolution at the inlay can be investigated.

The NRR (see Eq. (6.9)) and SNRG (see Eq. (6.10)) are then compared between the
SBF and NABF. The SBF simply uses a Gaussian range and domain filter, where the stan-
dard deviations for both are the input parameters to the algorithm. These two parameters
are constant over the whole image domain. The NABF introducedabove turns into a SBF,
if the standard deviations for the two orthogonal directions given for every image point
are equivalent and constant over the whole image domain. Then the angle pointing out
the direction of strongest correlation has no effect to the filtering result, because the same
isotropic domain filter is computed for every image pixel. For determining a reasonable
parameter for the range filter, the average noise varianceσ̄2

phan within the elliptical phantom
was computed. The standard deviation images were then defined to be of constant value
σ2
⊥(x) = σ2

||(x) =
1
2
σ̄2
phan for the whole image domain. The SBF with parameters (q = 2,

d = 3, r = 2) was then compared to two configurations of the proposed noise adaptive
bilateral filter (q = 2, d = 3, r = 1 andr = 2). Examples of filtered images are shown in
Fig. 8.4.

A comparison of the MTFs computed for SBF and NABF is shown in Fig. 8.5. The
MTF in the original noise-free image is compared to the MTFs computed from filtered
images. Adaptive filters lead to different amounts of smoothing for different contrast-to-
noise ratios at the edge of the circular object. Therefore, the MTFs are plotted for the
different contrasts (1000, 100, 60 and 20 HU). Additionally, the MTF resulting from the
application of an isotropic Gaussian filter withd = 3 is shown. This gives the lower limit
the MTF may reach if the range filter does not show any effect (r → ∞) and the bilateral
filter turns into a simple Gaussian domain filter. For all three cases it can be clearly seen
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(a) Original noisy image with ROIs used for noise
evaluation.

(b) Standard bilateral filtering.

(c) Noise adaptive bilateral filteringr = 1. (d) Noise adaptive bilateral filteringr = 2.

Figure 8.4: Elliptical water phantom with circular inlay (here with contrast of 100 HU)
used for noise and resolution analysis. The regions used fornoise evaluation are marked
in the original noisy image (a). The image after applicationof a standard bilateral filter is
shown in (b). Filtering results from two configurations of the proposed noise adaptive filter
are shown in (c) and (d).
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(b) Noise-adaptive bilateral filterr = 1.
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(c) Noise-adaptive bilateral filterr = 2.

Figure 8.5: Comparison of MTF computed in the averaged filtered images at different
contrasts. The standard bilateral filter is compared to two configurations of the proposed
method.

that for a very high contrast-to-noise ratio the edge is not smoothed and the MTF is close to
the original one. With decreasing contrast, the edges can nolonger be perfectly preserved
and the edges become smoothed. With increasing parameterr the smoothing at the edge
is increased for lower contrast levels. The loss of resolution at the edges in case of the
standard bilateral filter, shown in Fig. 8.5(a), is slightlystronger than for the noise adaptive
bilateral filterr = 1, shown in Fig. 8.5(b). Although the input parametersq, d andr are
the same for Fig. 8.5(a), and Fig. 8.5(c). It should, however, be reminded that the nice
statistical interpretation of the range filter does not holdfor the standard bilateral filter.
The local variances are not taken into account and, therefore, the parameterr does not
mean that an averaging over pixels that have an intensity difference of more thanr times
the local standard deviation is avoided. The standard deviation close to the circular object
is underestimated by using the constant noise estimateσ̄2

phan for the whole image domain,
what means that effectively a much lower filtering effect is obtained close to the edge of the
circular inlay with the standard bilateral filter than with the noise adaptive bilateral filter
using the same set of parametersq, d andr.

For all the different MTFs presented in Fig. 8.5 the corresponding linear filters that need
to be applied to the original image in order to get the same average smoothing at the edge
were computed. After the application of the linear filter thenoise reduction rate and SNR-



136Chapter 8. Orientation Dependent Noise Propagation for Adaptive Anisotropic Filtering

gain was compared between the different configurations and the different contrast levels.
The results of the noise-resolution analysis are summarized in Tab. 8.1.

Table 8.1: Contrast dependent noise-resolution analysis.
Original Noisy Image 20 HU 60 HU 100 HU 1000 HU
σorig in HU 17.0±4.0 16.8±3.6 17.1±4.0 20.5±6.4

Standard Bilateral Filter 20 HU 60 HU 100 HU 1000 HU
σfil in HU 10.8±4.3 10.6±3.8 10.9±4.3 13.3±6.9
NRR in % 38.7±9.6 38.7±10.7 39.2±10.6 40.2±13.1
SNRG in % 7.6±14.7 35.9±11.0 39.0±10.6 40.0±13.1

Noise Adaptive Bilateral Filter (r = 1) 20 HU 60 HU 100 HU 1000 HU
σ in HU 12.9±2.9 12.6±2.4 13.0±2.9 15.6±4.6
NRR in % 23.9±1.4 24.5±2.2 24.1±1.8 23.7±2.2
SNRG in % -0.7±4.0 27.5±5.2 36.4±4.6 24.0±6.1

Noise Adaptive Bilateral Filter (r = 2) 20 HU 60 HU 100 HU 1000 HU
σfil in HU 7.5±1.5 7.3±1.1 7.6±1.6 9.2±2.5
NRR in % 55.0±2.0 54.9±2.1 55.5±2.2 54.8±2.4
SNRG in % 2.4±4.0 46.1±2.8 54.9±2.2 54.8±2.4

From this quantitative analysis, it can be seen that the standard bilateral filter does not
take into account the local noise statistics. As can be seen in Fig. 8.4(b), noise in the image
is removed quite well in average. There are, however, strongvariations between the differ-
ent regions within the elliptical phantom. At the outer borders noise is strongly removed,
while in the center the noise suppression seems to be negligible. This is also reflected in
the high standard deviations of the noise standard deviation between the different image
regions in Tab. 8.1. In average, a noise reduction rate of about 38% was achieved, but with
a standard deviation of about 10%. The same effect is visiblein the values of the SNR-
gain. In comparison to a linear filter some regions are filtered much stronger than others.
From the variation of the standard deviations of noise within the different pixel regions it is
visible, that although in average the noise was reduced, e. g. from 20.5 HU to 13.3 HU, the
variation between the regions kept about the same or even slightly increased from 6.4 HU
to 6.9 HU. Compared to the mean noise the variation of noise over the image domain was
even increased.

In contrast to that, the proposed adaptive bilateral filter reduces the amount of noise
in the image, but also the variation between the different pixel regions. This can be seen
for both configurations of the proposed filter, also from the example images shown in
Fig. 8.4(c) and Fig. 8.4(d). In average, the standard deviation of noise was reduced about
24% withr = 1 and 56% withr = 2, with only a low variation between the different pixel
regions of 1.4-2.4%. Regarding the SNR-gain, the proposed method shows much lower
variation between the different pixel regions than the standard bilateral filter. With respect
to a noise-resolution-tradeoff, the computed values for the SNR-gain show that in nearly
all cases the resolution was preserved well. In comparison to a simple linear filtering that
leads to the same smoothing at the edge the NABF methods show a clear advantag. Only
for very low contrast-to-noise levels around 1 the edges canno longer be differentiated
from noise and thus the SNR-gain clearly drops. At contrast-to-noise levels between 3 to
5 the noise reduction can already be seen as a real gain, because the SNR-gain is close to
the NRR.



8.4. Experimental Evaluation 137

(a) Original

(b) Noise-adaptive bilateral filter (c) Standard bilateral filter

Figure 8.6: Clinically acquired thorax scan. Comparison of standard bilateral filter and
noise adaptive bilateral filter.
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8.4.2 Example Images

In Fig. 8.6 an example of a clinically acquired thorax scan isshown. The standard deviation
of noise was evaluated in 10 pixel regions, as illustrated inthe noisy original slice shown
in Fig. 8.6(a). The standard deviation of noise in the original image of72.0± 14.5HU was
reduced to48.0±15.9HU for the SBF and to44.4±9.9HU with our proposed NABF. Here
it can again be observed that the proposed NABF reduces the standard deviation of noise
and noise between the different pixel regions becomes more homogeneous. The SBF, on
the other hand, assumes all pixel values in the image are equally reliable. Therefore, some
regions in the image are smoothed stronger than others. At the end this results in a noise
suppressed image, too, but the standard deviation between the noise standard deviations in
the different pixel regions even increased.

8.5 Conclusions

In this chapter a new approach for computing orientation dependent noise estimates was
presented. Based on the theory of the Fourier-Slice theorem,the direction, which mostly
contributes to the local noise variance during backprojection can be determined for each
image pixel. The overall noise variance can then be split up into its contribution along
and orthogonal to this direction. With this technique it is possible to obtain information
about the local noise correlation in the image without evaluating the complete covariance
matrix. The additional information about local noise variance and correlation can be used
for adapting post-processing methods to the non-stationary and non-isotropic noise in the
reconstructed image. The effectiveness was demonstrated on the example of a bilateral fil-
ter. The evaluation on simulated and clinically acquired data showed that a noise reduction
close to 60% could be achieved without noticable loss of resolution. Only for contrasts
very close to the noise level, the edges can no longer be perfectly preserved. For CNR lev-
els larger than 3 the noise reduction rate can already be seenas a real gain in SNR, because
the perforance of the NABF is improved with respect to noise recution at the same average
resolution, compared to a simple linear filtering.



Chapter 9

Discussion

The non-stationary and non-isotropic noise in reconstructed CT datasets makes the use
of specially adapted methods for noise reduction indispensable. In the previous chapters,
basically two different approaches for noise adaptive filtering of CT reconstructions were
introduced. In the first part of this work, wavelet based noise reduction methods were
discussed, which use two input datasets. Correlation analysis between the wavelet repre-
sentations of the two input datasets and noise estimation inthe wavelet domain is used
for differentiating between structure and noise. In the second part, noise is analyzed in
the measured projection data. The propagation of variancesand covariances through the
reconstruction algorithm gives an estimate of the local image noise. The estimated local
noise variance and noise correlation is then used for noise adaptive filtering.

The evaluation of the different approaches already showed that high noise reduction
rates of about 60% can be achieved with both approaches, while anatomical structures are
well preserved. In this chapter the different proposed noise reduction methods are com-
pared to each other. The visual appearance of the processed datasets, as well as quantitative
criteria like noise reduction and resolution are considered. Based on the analysis of noise
and resolution, the potential for dose reduction is discussed. Furthermore, the computa-
tional requirements of the different approaches are analyzed and possible optimizations
are discussed. After the comparison of the methods, possible directions for future work are
considered.

9.1 Comparison of Proposed Noise Reduction Methods

If noise reduction methods for the use in CT are compared, different aspects are of in-
terest. First of all, the visual appearance of the processeddata plays an important role.
Especially, if the noise suppressed data should not just be used for post-processing appli-
cations. The processed images or volumes used for diagnosisshould ideally look like CT
images acquired at a higher radiation dose. Noise in the images should be reduced, but
resolution ideally be preserved. Furthermore, it is important that the images are free of
artifacts and do not strongly change the noise pattern. Important for the comparison of
noise reduction methods is of course also the quantitative comparison. If non-linear filter-
ing techniques are applied, resolution at the edges changesdepending on the contrast of the
edge. Consequently, a contrast dependent analysis of the noise reduction methods needs
to be performed. The noise reduction performance of a certain algorithm should always
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be considered together with the influence on image resolution. With respect to practical
usability of the proposed algorithms not only the image quality plays an important role.
The computational efficiency of the algorithms is also worthof consideration. Therefore,
the computational and storage costs of the certain algorithms are analyzed and discussed.

The above described aspects are in the following compared between the wavelet based
noise reduction method, described in Chapter 6, and the noise-adaptive bilateral filtering
introduced in Chapter 8. The qualitative, as well as the quantitative comparison is done
based on the same simulated CT datasets. The elliptical waterphantom, described in Sec-
tion 6.4, with a cylindrical inlay of varying contrasts is used.

9.1.1 Qualitative Comparison

In Fig. 9.1 one example of a noisy slice together with the results of the noise-adaptive
bilateral filtering at two different denoising strengths (r = 1.0 and r = 2.0) is shown.
The different wavelet based denoising techniques applied to the same example slice can
be found in Fig. 9.2. The wavelet filtering results are shown for different wavelet transfor-
mations, the 2-D-DWT, 2-D-SWT and 3-D-DWT all in combination with a simple Haar
wavelet. Two different filtering strengths are compared here (p = 1.0 andp = 2.0).

The following observations can be made by visual inspection:

• The 2-D-DWT in combination with Haar wavelet tends to show visible blocky re-
gions in the noise suppressed image. Especially, in case of stronger noise suppres-
sion like in Fig. 9.2(b), the processed images show strange noise patterns and are no
longer suitable for diagnostic imaging.

• The blocky regions that are visible with 2-D-DWT can be eliminated by using the
redundant and shift-invariant wavelet transformation 2-D-SWT instead. The noise
suppressed images in Fig. 9.2(c) and Fig. 9.2(d) look more natural.

• Clearly, best results with respect to noise reduction and preservation of edges are ob-
tained with the 3-D-DWT. The images look very natural with respect to the remain-
ing noise in the image, even in case of stronger noise suppression, like in Fig. 9.2(f).

• In comparison to the wavelet approaches, the NABF approach which is just working
on 2-D datasets, shows good results. The original noise pattern seems not strongly
changed, just reduced in its amplitude.

9.1.2 Noise and Resolution

The influence of the different denoising approaches to noiseand resolution has already
been discussed in detail at the end of each chapter. Here the main observations are sum-
marized and the wavelet based approaches are compared to thenoise-adaptive bilateral
filtering. The comparison between several noise reduction methods is not an easy task.
A fair comparison is only possible if image noise is evaluated at the same image resolu-
tion. Achieving the same image resolution for all approaches, on the other hand, is nearly
impossible. At least if non-linear methods are applied to the images, image resolution
might differ between the different image regions, and, as already shown in the evaluation
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(a) Original

(b) NABF r = 1. (c) NABF r = 2.

Figure 9.1: Elliptical water phantom with circular inlay (here with contrast of 100 HU).
Original noisy slice and noise-adaptive bilateral filteredimages (NABF) with two different
strengths of noise suppression (r = 1 andr = 2). Display: c=50, w=200.
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(a) 2-D-DWTp = 1.0, k = 0.0 (b) 2-D-DWTp = 2.0, k = 0.0

(c) 2-D-SWTp = 1.0, k = 0.0 (d) 2-D-SWTp = 2.0, k = 0.0

(e) 3-D-DWTp = 1.0, k = 0.0 (f) 3-D-DWT p = 2.0, k = 0.0

Figure 9.2: Elliptical water phantom with circular inlay (here with contrast of 100 HU).
Wavelet based noise reduction method with different wavelet transformations (2-D-DWT,
2-D-SWT, 3-D-DWT) and different strengths of noise suppression (p = 1.0 andp = 2.0),
without using significance weighting (k = 0.0). Display: c=50, w=200.
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(b) p = 2.0

Figure 9.3: Noise-Resolution-Tradeoff - Comparison of NRR fordifferent values ofp
without (k = 0.0 solid) and with (k = 1.5 dashed) significance weights in combination
with different wavelet transformations 2-D-DWT (blue), 2-D-SWT (gray) and 3-D-DWT
(red).
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Figure 9.4: Noise-Resolution-Tradeoff - NABF with two different noise suppression
strengths (r = 1.0 andr = 2.0).

sections of the previous chapters, also at differently contrasted edges. In addition to the
noise-reduction rate (NRR in Eq. (6.9)), a new figure of merit,the SNR-gain (SNRG in
Eq. (6.10)), has already been introduced in Chapter 6 for measuring the noise-resolution-
tradeoff.

The main idea of the evaluation strategy is briefly summarized here. The local average
MTF at the edge of a circular inlay is computed. From the MTF measured in the original
image and the MTF in the processed image, a linear filter can becomputed, which leads
to the average same smoothing at the edge. The linear filter isthen also applied to the
noisy image. The standard deviation of noise in different pixel regions (here 12 different
regions) is than compared to the standard deviation of noisein the original image (giving
the NRR defined in Eq. (6.9)) and to the standard deviation in the linearly filtered image
(giving the SNRG defined in Eq. (6.10)). The quotient of NRR and SNRG is then used as
a measurement for the edge-preservation capability of the method. It measures how much
the adaptive filtering can be seen as a gain compared to a simple linear filtering that leads to
the same average smoothing at the edge. If a quotient close to1 is obtained, the edge at the
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circular inlay was perfectly preserved and the noise reduction can be seen as a real gain.
Otherwise, if the ratio is below 1, this means that the edge was not perfectly preserved.
The edge was smoothed and consequently, the linear filter that leads to the same average
smoothing at the edge performed like a lowpass filter.

The NRR and the ratio between SNRG and NRR is plotted in Fig. 9.4 for the NABF
and in Fig. 9.3 for the wavelet based approaches. Each line line in the plot consists of four
points. They correspond to the evaluations at the four different contrast-to-noise levels that
were considered. The contrast at the circular inlay compared to water was varied between
20, 60, 100 and 1000 HU. Accordingly, the CNR at the edge of the inlay varied between
1, 3, 5 and 50. It can be seen clearly, that for all different noise reduction approaches the
resolution at high contrast edges was perfectly preserved,because the ratio between SNRG
and NRR is close to 1. The noise reduction rate can thus be seen as a real gain. With
decreasing contrast, the edges are no longer perfectly detected and get smoothed. The
lower the contrast at the edge, the stronger this effect is noticeable.

If we compare the different approaches, it can be observed that for the wavelet based
filtering methods the performance differs between the different wavelet transformation
methods. The 2-D-SWT is better than 2-D-DWT and 3-D-DWT is better than both 2-D
transformations. This observation holds for the NRR as well as for the edge-preservation
capability. Furthermore, it can be seen that higher NRR can beachieved if significance
weights (k = 1.5) are used compared to no significance weights (k = 0.0). For very low
contrasts, however the preservation of edges is slightly reduced, using significance weights.
With p = 1.0 lower noise reduction of around 37-54% is achieved than forp = 2.0, which
results in NRR of about 54-73%.

The NRR obtained with the NABF is about 24% forr = 1.0 and 55% forr = 2.0. In
comparison to the wavelet based noise reduction approaches, the edge-preservation with
the bilateral filter is better. Even for a CNR of 5 the edge is nearly not smoothed and the
SNRG/NRR is close to one. For lower CNR around 1 SNR without significance weighting
is comparable to the NABF. The 3-D-DWT based filtering is even better than the NABF, in
both NRR and edge-preservation.

9.1.3 Potential for Dose Reduction

The close relation between the radiation dose used for the acquisition of the projections
and the noise in the reconstructed CT datasets has already been pointed out in Section 2.4.
The standard deviation of noise in the reconstructed image is indirectly proportional to the
square root of the doseD [Kale 00]:

σ ∝ 1√
D
, (9.1)

which holds as long as quantum noise is the most dominant source of noise and other
effects, like electronic noise, are negligible. Goal of thenoise reduction methods proposed
in this thesis is either:

• Improving the signal-to-noise ratio in the image without increasing the radiation
dose, or

• Decreasing the radiation dose without decreasing the signal-to-noise ratio.
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The amount of noise reduction and the associated influence onimage resolution as been
discussed in detail in the last section. In this section we will now concentrate on the analysis
of the potential of dose reduction. More precisely, we are interested in how strong the
radiation dose can be decreased, such that in combination with one of the proposed noise
reduction methods no loss of image quality is noticeable compared to the image obtained
at the common dose. Image quality is here only considered with respect to the standard
deviation of noise and spatial resolution.

In a first step, we consider the upper limit of dose reduction based on the achieved
reduction of the standard deviation of noise in the image. For the moment we do not take
into account the influence on image resolution. According tothe proportionality expressed
in Eq. (9.1) the following holds:

Dmin

Dorig

=
σ2
afil

σ2
orig

, (9.2)

whereσ2
afil is the standard deviation of noise in the adaptively filteredimage (using one

of the proposed noise reduction methods),σ2
orig is the standard deviation of noise in the

original image. The doseDorig was used for the acquisition of the original image and
Dmin corresponds to the dose that would be necessary to acquire animage with standard
deviationσ2

afil without using an adaptive filter. The upper limit for dose reduction rate
DRRmax can, thus, be defined as:

DRRmax = 1− Dmin

Dorig

= 1− σ2
afil

σ2
orig

= 1− (1− NRR)2. (9.3)

If we now take the noise reduction rates from the last section, we obtain that the NRR of
37-54% of the wavelet based filter withp = 1.0 corresponds to aDRRmax of 60-79%,
and the NRR of 54-73% forp = 2.0 corresponds to aDRRmax of 79-93%. In case of the
NABF we get aDRRmax of 42% forr = 1.0 and 80% forr = 2.0.

The analysis presented so far does not take into account the resolution in the processed
images. If we only consider theDRRmax for a filter, arbitrarily high dose reduction rates
could also be achieved with linear filters. However, structures in the image get blurred
and the low dose acquisition usingDmin with the applied post-processing filter is clearly
not comparable with the unprocessed image acquired at the original doseDorig. Only
if the edges in the image are not influenced in image resolution in the processed image,
the maximum dose reduction rate is really achievable. The investigation of the noise-
resolution-tradeoff in the previous section showed that the smoothing of edges, due to the
application of the proposed algorithms, depends on the CNR atthe edge. It must be taken
into account that the CNR at the edge in the low dose acquisition (CNRlow) is reduced
compared to the CNR in the original image (CNRorig):

CNRlow =
√

Dmin/DorigCNRorig =
√

1−DRRmaxCNRorig, (9.4)

because the noise in the low dose acquisition is increased. We then get a more realistic
approximation of the achievable dose reduction rate on the basis of the SNR-gain, evaluated
at an edge withCNRlow, according to:

DRRapp =

{

1− (1− SNRG)2 if SNRG > 0

0 otherwise
. (9.5)
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Figure 9.5: Potential for dose reduction of wavelet based noise reduction methods - Com-
parison ofDRRapp for different values ofp without (k = 0.0 solid) and with (k = 1.5
dashed) significance weights in combination with differentwavelet transformations 2-D-
DWT (blue), 2-D-SWT (gray) and 3-D-DWT (red).
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Figure 9.6: Potential for dose reduction of noise adaptive bilateral filter - Comparison of
DRRapp for NABF with two different noise suppression strengths (r = 1.0 andr = 2.0).

This approximation of the achievable dose reduction rate takes into account the loss of
resolution due to the filtering. If no resolution was lost at the edge the SNRG is equivalent
to the NRR andDRRapp = DRRmax. Otherwise,DRRapp < DRRmax depending on the
ratio between SNRG and NRR.

The estimated potential for dose reduction of the wavelet based denoising approaches
are presented in Fig. 9.5. In Fig. 9.6 the estimated dose reduction rates are shown for the
NABF. TheDRRapp values, computed according to Eq. (9.5), are plotted against the CNR
in the original images. From the plots it can be seen that the expected potential for dose
reduction varies depending on the minimum CNR level we are interested in in the original
image. Consequently, it depends on the clinical applicationhow much dose can be saved
by applying one of the proposed post-processing filters. If very low contrasts close to
CNR values of 1 are of interest for the application, there is noor only low potential for
dose reduction, because it is difficult to preserve structures at very low contrasts in image
acquired at a lower dose. But even for low CNR levels between 3 to5 the application of
the proposed filters to low dose images can lead to a noticeable reduction of radiation dose
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up to 60% in 2-D and even close to 80% in 3-D. For CNR levels higher than 5 there is not
much difference in the estimated dose reduction compared tovery high CNR levels around
50, because edges with a CNR of about 5 can already be well preserved.

9.1.4 Computational Performance

Although noise reduction methods are usually seen as post-processing methods, the here
presented approaches are not simply applied to a reconstructed CT dataset as one would
expect for a typical post-processing application. Both algorithms require the acquired CT
projection data. The wavelet based approach for reconstructing two volumes from dis-
joint subsets of projections, the noise-adaptive bilateral filtering for performing the noise
propagation through the reconstruction algorithm. In bothcases special processing of the
projection data is necessary for generating the required input data for the noise reduction
algorithms. The computational requirements for generating the input data is, thus, the
first thing to be analyzed. After that the computational complexity of the noise reduction
algorithms themselves are analyzed.

Generation of Input Datasets

As already mentioned before, the wavelet method requires two input datasets. Different
possibilities for generating two input datasets are described in Section 4.2. It is possible
to use successive scans, split up one acquisition into even and odd numbered projections,
or use a dual-source CT-scanner. If two successive scans are used, two complete recon-
structions need to be performed. If one acquisition is splitup into two disjoint subsets
of projections, two reconstruction, but both at only half the number of projections is re-
quired. It is however, important to notice that only if a linear reconstruction algorithm is
used, the sum of the two separate reconstructions is equivalent to the reconstruction from
the complete number of projections. Otherwise, it is betterto additionally compute the
reconstruction from the complete set of projections and apply the computed weights to its
wavelet coefficients. The acquisition with a dual-source CT directly results in two projec-
tion datasets. The projections acquired at the one detectorare used for the reconstruction of
the first, the projections acquired at the other detector forthe reconstruction of the second
input dataset. Altogether, it can be summarized that all different approaches for generating
the two input datasets require two complete reconstructions.

The noise-adaptive bilateral filtering takes just one reconstructed CT dataset as its in-
put. Additionally, it requires the variance map that shows for each image pixel an estimate
of the local noise variance. Furthermore, the orientation dependent variance map is needed,
which shows a pixel wise estimate of the variance contribution of a certain orientation, e.g.
in direction of the strongest correlation, to the overall noise variance. This orientation de-
pendent variance map gives information about the local noise correlation and consequently,
the noise-anisotropy. The computation of the variance mapsis based on the noise propa-
gation algorithm described in Chapter 7. It is basically another reconstruction, however,
a modified reconstruction that allows the computation of noise variances. The computa-
tional performance of the noise propagation method is comparable with the reconstruction
of the HU-values. Nevertheless, more computations are involved due to the correlation
estimations during the noise propagation. The computationof the variance map and the
orientation dependent variance map can partially be performed together. They only differ
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in the backprojection step. Here, it is necessary to first compute the backprojection loop
for the variance map, where at the same time the direction of strongest correlation is deter-
mined. The direction of strongest correlation is obtained by detecting for each image pixel
the projection angle from which the strongest contributionto the overall noise variance is
achieved. In a second backprojection loop the weighted backprojection of the noise vari-
ance is computed based on the pixelwise determined direction of strongest correlation. In
sum one and a half additional reconstructions of noise variances need to be performed in
addition to the standard reconstruction of the HU-values.

Noise Reduction Algorithm

After the generation of the input datasets the main part of the method, the noise reduction
algorithm can start. The core of the wavelet based approaches is the computation of the
wavelet representation of the input datasets. As already described above, the wavelet de-
noising techniques presented here require two input datasets, which are both decomposed
into its wavelet coefficients. Different wavelet transformations can be used for this decom-
position. As the above discussion showed, the 2-D-SWT outperforms the 2-D-DWT and
the best visual and quantitative results are achieved with the 3-D-DWT. The use of the sta-
tionary wavelet transformation, on the one hand, or the three-dimensional transformation,
on the other hand, do not only come with better denoising results, but also with increased
computational and storage cost. While one decomposition step of the 2-D-DWT has a
complexity ofO(N logN) for an image ofN ×N pixels, the 2-D-SWT has a complexity
of O(N2). The SWT, furthermore, does not perform a downsampling step after the filter-
ing and consequently, the number of pixels in the approximation image is constant over all
the decomposition levels, meaning that for all levelsl up to the maximum decomposition
level the same number of computations needs to be performed.The downsampling of the
DWT reduces size of the approximation image at levell to 2−lN × 2−lN and accordingly
fewer computations are necessary for the decomposition at levell + 1. The 3-D-DWT has
a complexity ofO(N logN log logN) for a volume ofN3 pixels, where the number of
coefficients is kept constant, regardless of the maximum decomposition level.

Especially, for the further processing on the basis of the wavelet representation of the
input data, it plays an important role, if a downsampling step is performed or not. For
each detail coefficient of the wavelet representation an according weight needs to be com-
puted, in order to suppress the noisy coefficients. The number of computations scales
with the number of detail coefficients. The number of detail coefficients up to the max-
imum decomposition levellmax in case of DWT amounts to3

∑lmax

l=1 (2
−lN)2. In case of

2-D-SWT the number of overall detail coefficients is3lmaxN
2, and for 3-D-DWT we have

7
∑lmax

l=1 (2
−lN)3. The respective weights can be computed efficiently and onlysmall local

neighborhoods are needed. The weights are computed independently for each detail coef-
ficient, which means that this step can be well be parallelized, or computed on streaming
architecture, like graphics cards.

After the weighting of the detail coefficients one inverse wavelet transformation is nec-
essary. The computational cost of an inverse DWT is comparable with the DWT decompo-
sition. The inverse SWT, however, is computational more expensive, if the redundancy of
the data should ideally be used for the reconstruction. Depending on the redundancy factor
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R at a respective decomposition level,R times the computations of an inverse DWT are
necessary. The redundancy at levell of the SWT isR = 2l.

The noise-adaptive bilateral filtering can be computed inO(N2). For each image pixel
a weighted sum with its local neighborhood is computed for determining the noise sup-
pressed new pixel value. All pixels can be calculated independently. The algorithm is,
thus, well suited for parallel computing.

9.2 Suggestions for Future Research

The application of edge-preserving filters to reconstructed CT images is a relatively new
approach and is so far not commonly applied in clinical practice. The examinations of
the previous section showed the practical applicability ofthe proposed algorithms and
demonstrated that potentially a remarkable gain in signal-to-noise ratio can be achieved
with the new techniques. Nevertheless, some open questionsand possibilities for further
improvements remain. It has been shown that with better knowledge about the local noise
properties in the reconstructed datasets improved noise-adaptive filtering methods can be
developed. The deeper investigation of methods for noise analysis, also in 3D, is thus an
important part for future research. Furthermore, the use ofother sparse representations like
the curvelet transformation, can potentially lead to improvements in noise reduction in CT.
In the following some ideas for future research are described.

9.2.1 Noise Analysis Methods

Throughout this thesis, it has been shown that one of the keysfor the development of effi-
cacious noise reduction methods is to have precise knowledge about the underlying noise
characteristics. In CT, noise in the acquired projection data can be well described by phys-
ical models. The noise in the projections then propagates through the reconstruction algo-
rithm to the reconstructed volumes. Noise in the images is thus a direct result of the noise in
the measurements, but can no longer be easily described. It is necessary to use noise prop-
agation algorithms in order to determine the local noise variance and correlation. Such
noise propagation algorithms might become rather complicated and computational expen-
sive, especially, if all correlations of the input data or induced during the processing should
be taken into account. The proposed approximation scheme for estimating the correlation
within the data based on linear system theory, as introducedin chapter Chapter 7 might
also be applicable in the context of other reconstruction methods. In this thesis, the noise
propagation has only been investigated for 2-D indirect fan-beam FBP reconstruction. The
application of the here presented theory in 3-D reconstruction methods, like the weighted
filtered backprojection (WFBP), is one field for future research.

Another interesting aspect is the frequency dependent analysis of the noise after recon-
struction. Some post-processing methods, like the waveletbased noise reduction, decom-
pose the reconstructions into frequency bands and process on the frequency representation
of the data. For this purpose, it would be beneficial to have access to the noise variance
and correlation in the respective frequency band. It is possible to perform a frequency se-
lection during reconstruction, for example by modifying the reconstruction kernel, e. g. by
multiplying its frequency response with a bandpass filter. If the noise propagation is then
performed with the modified reconstruction kernel the noisevariance can be computed for
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a certain frequency band. An interesting investigation would be to compare if this more
precise frequency dependent noise analysis helps in improving the noise reduction algo-
rithms. It might also be possible to compute the noise in the wavelet coefficients of the
reconstructed dataset directly from the noise estimates inthe projections. Here, the theory
on multiresolution reconstruction [Dela 95, Bonn 02] might be helpful for developing noise
estimation methods for wavelet coefficients of reconstructed CT datasets.

9.2.2 Noise Reduction in CT

The evaluation of the different proposed noise reduction methods already showed, that
noise reduction in 3-D gives best results with respect to noise reduction and preservation
of structures. So far the NABF has only been considered in 2-D,because methods for noise
propagation of 3-D reconstruction methods, like the WFBP are so far not available. Based
on the comparison between the 2-D wavelet based noise reduction and the NABF it could
be observed that improved edge-preservation at comparableNRR is achieved with NABF.
It is, therefore, promising to obtain even better results byextending the noise propagation
and NABF to 3-D.

Of course, the computed variance and orientation dependentcontributions to the noise
variance that were proposed in this thesis, can potentiallybe used for adapting other post-
processing methods to the non-stationary and non-isotropic noise in reconstructed CT
datasets. Other filtering methods, or image processing techniques like segmentation and
registration could make use of the knowledge about the noisestatistics in the image or
volume. Especially, for methods, which are based on image gradients, it would be help-
ful to have an estimate of the uncertainty of the reconstructed image pixels, in order to
differentiate between gradients that are computed due to noise or real structures.

Another idea for future research would be to use other sparserepresentations, like the
curvelet transformation [Star 02] for noise reduction in CT.It combines the resolution hi-
erarchy known from wavelet transformations and the Radon transformation and is thus
closely related to CT reconstruction. Noise reduction in theprojection domain has the
advantage of having good estimates of the noise variance. The Signal-to-noise ratio is,
however, better after reconstruction, because during the backprojection process an averag-
ing of many noisy samples is performed. In this work the combination of both advantages
was performed by estimating noise in the reconstructed dataset from the projections and
use this for noise reduction. Based on the curvelet transformation the good knowledge
about the noise statistics in the projection data and the good localization of edges in the
reconstructed data can be combined. It is however necessary, to include noise estima-
tion approaches for curvelet based noise reduction in CT. So far the proposed thresholding
approaches only consider white Gaussian noise in the reconstructed images. The noise
propagation approach introduced in this thesis could also be used for improved threshold
determination of the curvelet coefficients of a CT dataset. Furthermore, the extension of
the curvelet transformation to 3-D is still under investigation and could probably be more
closely investigated in the context of 3-D reconstruction.
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Summary and Conclusions

In this thesis methods for structure-preserving noise reduction in reconstructed CT datasets
were investigated. The goal was to improve the signal-to-noise ratio without increasing
the radiation dose or noticeably affecting the spatial resolution. Due to the close relation
between image noise and radiation dose, this improvement atthe same time opens up a
possibility for dose reduction. Two different original approaches for noise reduction in CT
were developed, implemented and evaluated.

The first part of the thesis covers wavelet based noise reduction methods. They are
based on the idea of using reconstructions from two disjointsubsets of projections as in-
put to the noise reduction algorithm. The two input datasetsare generated such that they
show the same structure, but differ with respect to noise. Correlation analysis between
the wavelet coefficients of the two input datasets can then beused for differentiating be-
tween structure and noise. We evaluated the proposed methodin combination with dif-
ferent wavelet transformation techniques with respect to noise and resolution. It turned
out, that the non-redundant SWT showed best qualitative and quantitative results. High
noise reduction rates about 45% were achieved. Within a human observer study the low-
contrast-detectability was evaluated. The experiment showed that even small objects with
a contrast-to-noise level close to 1 can be detected as good,or even better after the applica-
tion of the adaptive filter in comparison to the unmodified original image. The comparison
with a state-of-the-art projection based noise reduction method, furthermore, showed that
better edge-preservation at comparable noise reduction isobtained with the new method.
In order to allow anisotropic filtering in the wavelet domain, a technique for noise estima-
tion from the difference of the two input datasets was proposed. The comparison of the
computed noise estimates with results from Monte-Carlo showed that average pixelwise
relative errors between 11.6% and 20.7% are achieved. A noise estimation based on just
two measurements, thus only allows a rough estimation of thepixelwise standard devia-
tion of noise. Nevertheless, the proposed thresholding method based on local, frequency
and orientation dependent noise estimates leads to an anisotropic filtering and shows much
better results than standard wavelet thresholding methodsin case of CT. Especially, for
datasets with strongly directed noise, like in the shoulders or hips, improved results are
obtained with the proposed algorithm. We then combined the correlation analysis and
noise estimation and extended the algorithm to 3-D. The noise reduction in 3-D showed
much better results than in 2-D. The processed images look more natural in case of 3-D.
Furthermore, higher noise reduction rates of more than 60% are obtained.

151



152 Chapter 10. Summary and Conclusions

In the second part of the thesis, a new approach that is based on noise propagation
through the reconstruction algorithm was introduced. The noise variance in the recon-
structed image is a direct result of noise in the projections. We developed an original ap-
proach for computing pixelwise estimates of the noise variance in the image reconstructed
with indirect fan-beam FBF. The difficulty is that the rebinning step, which reorganizes the
acquired fan-beam projections to parallel-beam projections, correlates the data. In contrast
to other approaches the correlations introduced to the dataduring the reconstruction are
modeled by linear system theory and are taken into account. With the new noise prop-
agation method average pixelwise relative errors between 2.0% and 6.7% are achieved.
The noise propagation approach was then extended in order toadditionally give informa-
tion about the local noise correlation. We proposed a sine-/cosine-square-weighting of the
noise variances in the projections and separate noise propagation in order to obtain the hor-
izontal and vertical contribution of the noise variance forevery pixel. The approach was
then improved such that for each individual pixel a specific separation into two orthogonal
directions can be computed. The variance contribution in direction of strongest correlation
and orthogonal to that can be determined for each pixel. Thisadditional knowledge was
then used for developing noise-adaptive filtering methods.We proposed a bilateral filter,
which adapts itself to the non-stationary and non-isotropic noise in CT. With this method
noise reduction rates close to 60% were achieved in 2-D.

In addition to the development of new noise reduction methods for CT, this work also
presented some new ideas for the evaluation of non-linear filters. Clearly, the reduction of
the noise variance in the image is an important quality criteria, but the influence on the spa-
tial resolution plays an important role, too. Usually, spatial resolution is only considered at
high contrast objects. If non-linear processing is performed, image resolution might change
depending on the local contrast-to-noise ratio. Therefore, a contrast dependent evaluation
of the spatial resolution was introduced. Furthermore, we proposed a new figure of merit
for the noise-resolution-tradeoff, we call SNR-gain. The evaluation is based on the com-
parison to the linear filter, which leads to the same average spatial resolution. The new
evaluation method can be used for more realistically judging the potential for dose reduc-
tion, depending on the clinical task. The estimated dose reduction rates that were computed
on basis of the new noise-resolution-tradeoff do not simplyconsider the improvement of
image noise by the application of the filter. They also consider the loss of resolution at a
certain contrast-to-noise ratio. Depending on the clinical application, the minimum con-
trasts that are of interest might vary. If lesions should be detected very low contrasts are
usually of interest, on the contrary, in case of bone fractures very high contrasts are of in-
terest. If very low contrasts close to CNR values of 1 need to bedifferentiated, there is no
or only low potential for dose reduction, because it is difficult to preserve structures at very
low contrasts in image acquired at a lower dose. Based on our proposed estimation of the
potential for dose reduction we can conclude that even for low CNR levels between 3 to 5
the application of the proposed filters to low dose images canlead to a noticeable reduction
of radiation dose up to 60% in 2-D and even close to 80% in 3-D. It should, however, be
reminded that an extended clinical study is necessary to proove these estimates in clinical
practice also in context of different diagnostic and treatment assesment tasks.
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Acronyms

A.1 CT Reconstruction

CT computed tomography
MSCT mulit-slice computed tomography
DSCT dual-source computed tomography
FBP filtered backprojection
WFBP weighted filtered backprojection
SMP segmented multiple plane
HU Hounsfield Unit
FOV field of view
MTF modulation transfer function
SNR signal-to-noise ratio
CNR contrast-to-noise ratio
PSF point-spread-function
LSF line-spread-function
lp line-pairs

A.2 Wavelet Transformation

WT wavelet transformation
CWT continuous wavelet transformation
WFT windowed Fourier transformation
STFT short-time Fourier transformation
DWT discrete time wavelet transformation
SWT shift-invariant wavelet transformation
ATR ‘a-trous wavelet transformation
FFT fast Fourier transformation
Db2 Daubechies 2 wavelet
CDF9/7 Cohen-Daubechies-Fauraune wavelet
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A.3 Denoising

CORR correlation coefficient based weighting
GRAD gradient approximation based weighting
S80 sharp reconstruction kernel
B40 smoother reconstruction kernel
ROC receiver operating characteristic
TPR true positive rate
FPR false positive rate
STSWT standard thresholding using on SWT
ANESWT adaptive noise-estimation based thresholding usingSWT
CASWT correlation based weighting using SWT
NRR noise reduction rate
SNRG SNR-gain
SBF standard bilateral filtering
NABF noise-adaptive bilateral filtering

A.4 Noise Propagation

ACF auto correlation function
ACCF auto correlation coefficient function
WSS wide sense stationary
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Notation

B.1 CT Reconstruction

I0 intesity at source
N0 number of emitted photons at source
I intesity at detector
r focus radius
α focus angle
β fan angle
θ parallel projection angle
t orthogonal distance to iso-center
L ray
x 2-D or 3-D spatial position
x, y, z spatial coordinates
P projection
P (α, β) fan-beam projection
P (θ, t) parallel-beam projection
F Fourier transformation operator
R Radon transformation operator
µ attenuation coefficient
µw attenuation coefficient of water
kr ramp kernel
k apodized convolution kernel
q apodization window
µ attenuation coefficient
µw attenuation coefficient of water
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Nf number of channels in fan-beam projection
N2πf number of fan-beam projections in2π
Np number of channels in parallel projection
N2πp number of parallel projections in2π
Nπp number of parallel projections inπ
∆α,∆β, ... sampling distances/ increments
k, l... indices
P fan
k,l fan-beam projection atαk andβl
P hyb
m,l hybrid projection atθm andβl
P com
i,j complementary rebinned projection atθi andβj
P par
i,n parallel-beam projection atθi andtn
P par
i,n filtered parallel-beam projection
h interpolation function
hazi azimuthal interpolation function
hrad radial interpolation function
hbpj backprojection interpolation function
f function to be reconstructed in HU
x Cartesian coordinates, position
U signal measured at detector
NU measurement error/noise of signal
Nq quantum noise
Ne electronics noise
c, c̃ constants
n number of X-ray quanta quanta
P probability distribution
E expectation
σ2
q variance of quantum noise
σ2
e variance of electronics noise
σ2
I variance of intensity
σ2
P variance of projection
W highest spatial frequency within measured projection
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B.2 Wavelet Transformation

f function
w window function
w∗ complex conjugate of w
ψ wavelet function (mother wavelet)
φ scaling function (father wavelet)
s scaling factor
τ translation
Ψ Fourier representation ofψ
sj dyadic scale
τk translation corresponding to dyadic scale
j, k indices
dj,k detail coefficient at scalesj and translationτk
cj,k approximation coefficient at scalesj and translationτk
g analysis lowpass filter
h analysis highpass filter
g̃ synthesis lowpass filter
h̃ synthesis highpass filter
A = A0 image (approximation at level 0)
s = 2−J scale of input image
l decomposition level
lmax maximum decomposition level
Al approximation at levell
WH
A,l horizontal detail coefficient ofA at levell

WV
A,l vertical detail coefficient ofA at levell

WD
A,l diagonal detail coefficient ofA at levell

gl, hl, g̃l, h̃l analysis and synthesis filters used at levell

G,H, G̃l, H̃l z-transformations of filters
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B.3 Wavelet Denoising

A,B input datasets (2D, 3D)
P set of projections
P1 first subset of projections
P2 second subset of projections
Pi projections at angleθi
R⋆ reconstruction operator
M mean of input datasets / reconstruction from all projections
D difference of input datasets
S noise-free signal
N zero-mean additive noise
NA, NB, ... zero-mean additive noise inA,B,...
σ standard deviation of noise
σNA

, σNB
standard deviation of noise inA,B,...

R denoised result
C similarity value based on correlation analysis
CH
l similarity value in horizontal direction at levell

Cov covariance
Covx local covariance aroundx
Var variance
Varx local variance aroundx
Āx local mean ofA aroundx
Ωx local neighborhood aroundx
η weighting function for local neighborhoods
η̄x mean value of weighting function
w weighting function for detail coefficients
p parameter of weighting function controlling the strength of denoising
L linear combination
g1, g2 weights
d direction
τ threshold
σa estimated standard deviation of noise
σb reference standard deviation of noise
r∆ relative error
r̄∆ average relative error
σr∆ variance of relative error
s∆ average error, normalized on per-pixel basis
G weighting image
Gcorr correlation coefficient based weighting image
Gsig significance weighting image
τ threshold
ĥlfil Fourier transformation of linear filter
MTFafil MTF of adaptively filtered image
MTForig MTF of original image
k̂mod modified reconstruction kernel
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B.4 Noise Propagation

ρxx normalized autocorrelation function/ autocorrelation coefficient function
φxx autocorrelation function
ρfan autocorrelation of noise in fan-beam projections
ρipol autocorrelation of noise after rebinning
ρconv autocorrelation of noise after convolution
δ Kronecker delta-function

B.5 Noise-Adaptive Bilateral Filtering

v(θi,x) variance contribution from projections at angleθi to positionx
θmax angle with largest variance contribution
θ̆max direction of strongest correlation
VarH horizontal variance contribution
VarV vertical variance contribution
σ2 standard deviation of noise in image
σ2H standard deviation of noise in image in horizontal direction
σ2V standard deviation of noise in image in vertical direction
σ2|| standard deviation of noise in image in direction of strongest correlation
σ2⊥ standard deviation of noise in image orthogonal to direction of strongest correlation
f input data
f̃ filtered output data
c domain filter
s range filter
Σx covariance matrix of Gaussian filter at positionx

Rx rotation matrix
Dx diagonal matrix
ν1, ν2 singular values
q parameter that controls the maximum degree of anisotropy
d parameter that controls the spatial extension of the domainfilter
r parameter that controls the strength of noise reduction
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