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Abstract

The projection data measured in computed tomography (CT)ams$equently, the slices

reconstructed from these data are noisy. This thesis igaéss methods for structure-
preserving noise reduction in reconstructed CT datasetsgdal is to improve the signal-

to-noise ratio without increasing the radiation dose os loisspatial resolution. Due to the

close relation between noise and radiation dose, this ingonent at the same time opens
up a possibility for dose reduction. Two different origiag@lproaches, which automatically
adapt themselves to the non-stationary and non-isotropgenn CT, were developed,

implemented and evaluated.

The first part of the thesis concentrates on wavelet basexk meduction methods.
They are based on the idea of using reconstructions from tgjoint subsets of projec-
tions as input to the noise reduction algorithm. Correlatioalysis between the wavelet
coefficients of the input images and noise estimation in taeahket domain is used for dif-
ferentiating between structures and noise. In the secoridgraoriginal approach based
on noise propagation through the reconstruction algorithpnesented. A new method for
estimating the local noise variance and correlation inrege from the noise estimates of
the measured data is proposed. Based on the additional iafiemabout the image noise,
an adaptive bilateral filter is introduced.

The proposed methods are all evaluated with respect to ttaeneld noise reduction
rate, but also in terms of their ability to preserve struesurA contrast dependent resolution
analysis is performed to estimate the dose reduction patefthe different methods. The
achieved noise reduction of about 60% can lead to dose liedueites between 40% to
80%, depending on the clinical task.



Kurzfassung

Die in der Computertomographie (CT) gemessenen Daten singugaht und somit auch
die daraus rekonstruierten Schichten. In dieser ArbeiderMethoden zur struktur-
erhaltenden Filterung von rekonstruierten CT Datensatmersucht. Das Ziel ist eine
Verbesserung des Signal-zu-Rausch-Verhaltnisses ohridnirg der Strahlendosis oder
Verlust an Ortsauflésung. Aufgrund des engen Zusammentmvigshen Rauschen und
Strahlendosis eroffnet diese Verbesserung auch die Miglitzur Dosisreduktion. Zwei
verschiedene originare Ansatze, die sich automatisch amiht-stationare und nicht-
isotrope Rauschen in der CT anpassen wurden entwickelt, mgpigert und ausgewertet.

Der erste Teil der Arbeit konzentriert sich auf Wavelet betsi Rauschreduktionsver-
fahren. Diese basieren auf der Idee, Rekonstruktionen van disjunkten Teilmengen
an Projektionen als Eingabe fur den Algorithmus zu verwandEorrelationsanalysen
zwischen den Waveletkoeffizienten der Eingangsbilder und BRauschabschéatzumg im
Waveletraum werden zur Differenzierung von Struktur und $ghen verwendent. Im
zweiten Teil der Arbeit wird ein origindres Verfahren vosgblagen, das auf Rauschfort-
pflanzung durch den Rekonstruktionsalgorithmus basierhe Beue Methode zur Ab-
schatzung der lokalen Varianz und Korrelation des RauscmeBiid aus der Rausch-
abschatzung der gemessenen Daten wird vorgeschlagen. réBasiuf der zuséatlichen
Information Utber das Bildrauschen wird ein adaptiver brktr Filter vorgestellt.

Die vorgeschlagenen Methoden werden alle bezuglich deicbien Rauschreduktion-
srate, aber auch in Hinblick auf ihre Fahigkeiten Struktura erhalten untersucht. Eine
kontrastabhéngige Analyse der Ortsauflésung wird durétgetind zur Abschatzung des
Dosisreduktionspotenials der verschiedenen Methodemeretet. Die erzielte Rauschre-
duktion von etwa 60% kann je nach klinischer Fragestellun@asiseinsparungen zwis-
chen 40% und 80% fuhren.
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Chapter 1

Introduction

1.1 Motivation

Computed tomography (CT), invented by Godfrey N. Hounsfield9@2, was the first
method that allowed to generate non-overlapping axiagéslaf the interior of a human'’s
body without opening it. Today, CT is associated with highcedficy in radiologic diag-
nostics and has become an indispensable tool in medicalieaaoms. Unfortunately, it is
also said to be a high dose application: although CT made ypatrdut 7% of all radio-
logic examinations in 2005, its contribution to the oveeaiposure of humans in Germany
to radiation in medical examinations was approximately getiwe 08]. This explains
the increased interest in the development of new technifpuetose reduction in CT that
was strongly noticable during the last few years. The diffyctinat arises with the demand
for dose reduction is its direct impact on image quality.

All physical measurements are subject to statistical uas#y, which, in case of CT,
is primarily due to the variable number of X-ray quanta meagwat the detector. The re-
sulting interference, which is known as quantum noise, ésrnttost relevant noise source
in CT. Noise introduced in the measurement of the intengtitepagates through the re-
construction algorithm to the resulting CT slices. Therds@as recognizable as pixel
noise. The connection between dose and image quality idyclesible: with a decreasing
radiation dose the noise increases, which makes a reli@g@alsis more difficult or even
impossible. An additional problem is that X-rays passingtigh the human’s body are
attenuated differently, depending on the density and theuatnof the material along the
ray. Therefore, the strength of noise varies between therdift measurements, which
leads to inhomogeneous noise in the reconstructed slicgeecially in body regions like
the shoulder or the hip, directed noise appears, pointingheudirection of strongest at-
tenuation, for example, where the rays had to travel thralegisest material, e.g. bones,
or largest tissue quantity.

The investigation of new approaches for dose reductionawittoss of image quality
is one of the major topics in CT research, today. If it was gmedb reduce the noise in
lower dose images while preserving all clinically relevsintictures, essentially producing
images that correspond to those generated with a higheytthesgroblem would be solved.
But how can the noise be minimized without the loss of diagoalty relevant content
of the image? This is a difficult task and many methods for enoeluction lack this
important property. For example, it is widely known that plenlowpass filters can be

1



2 Chapter 1. Introduction

used to eliminate high frequency noise. However, it is asmmon knowledge that their

application results in blurred edges and the destructiamll structures, meaning lower
spatial resolution. Thus, always a compromise must be fbehsdeen radiation dose, noise
and spatial resolution.

1.2 Related Work

Different techniques for dose reduction in CT have been megan the recent years.
In [McCao 06] X-ray beam filtration, X-ray beam collimation,tamatic exposure control,
peak kilovoltage optimization, improved detection systfficiency and noise reduction
algorithms are listed as examples for technical mechanisndose reduction. Of course,
since the installation of the first CT scanners until now, aofogffort has been spent in
the development of new scanner hardware to achieve higheimaaglity at lowest possible
radiation dose. The availability of faster computer syst@md increased storage capability
are the reason why software based approaches for reduemgdtation dose gained more
and more attention. These software approaches can badieadkbparated into two groups:
the methods that perform dose optimization during the aitipm of the projection data
and the methods that try to improve the quality of the retectipely acquired data.

One possibility for optimizing the acquisition is to use @uatic exposure controls.
They adjust the tube current continuously during scannint thus, achieve a remarkable
dose reduction [Kalr 05, Gres(02, Sues 02]. Currently thesellaee automated exposure
control techniques available: longitudinal, angular, anchbined modulatior [McCo 06].
Longitudinal modulation techniques adapt the tube cuf@rdifferent scanning positions,
depending on desired image quality and attenuation of thg begion being scanned. For
this adaption, single localizer radiographies are comgnoséd. With angular modulation,
the overall dose for one rotation is distributed such thaséhdirections with stronger at-
tenuation are acquired at a higher dose than those with lattesruatiori[Kale 99, Gres00].
This makes the noise variance more homogeneous for thestiffdirections and conse-
quently leads to more homogeneous noise in the images. iBipec the region of the
shoulder or hip, angular modulation is utilized. The magstriction is that X-ray tubes
cannot produce arbitrarily high doses. Consequently, gicegoise cannot be completely
avoided. Even in cases where it is possible to adapt the tulvert such that noise be-
comes more homogeneous across the different projectianrtsef reduction of the overall
radiation dose leads to decreased image quality due toasedenoise.

With the invention of CT the first publications about noiseuetibn based on sim-
ple lowpass filtering came up [Ruthi76, Chew 78]. The applicatiblinear filters, how-
ever, requires a compromise between noise and resolutizer. tBe years, many different
approaches for noise suppression in CT have been investig&ter example, iterative
numerical reconstruction techniques that optimize stediobjective functions [Lang 95,
[Elba 03]. Iterative reconstruction techniques have theaathge that the noise statistics
in the projections can directly be taken into account dutimg reconstruction process.
The disadvantage, however, is the high computational coge@tive methods. This
is still the main reason, why they are not yet used in clinicaitine. Other methods
model the noise properties in the projections and seek fon@thed estimation of the
noisy data followed by filtered backprojection (FBP) [Fesslan4, [La R06]. Further-
more, several linear or nonlinear filtering methods for eaisduction in the projection
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data [Hsie 98, Kach 01, DemiD1] have been proposed. In therityapf the projection
based methods, the filters are adapted in order to reduce maistly in regions of highest
attenuation. Thus, the main goal of these methods is thectieduof directed noise and
streak artifacts. As a result, especially in the case oflpeanstant noise variance over
all of the projections, these filters either do not removeramige, or the noise reduction is
accompanied by noticeable loss of image resolution.

The goal of the methods proposed here, is the structurewiag reduction of pixel
noise in reconstructed CT-images. Most publications, whegteture-preserving filters are
applied to the reconstructed images [Rust 02, Llu 03], howeleenot account for the non-
stationary and anisotropic noise characteristics in CT. difieult noise properties after
reconstruction are the main reason, why the direct appicaif standard edge-preserving
filtering methods, like nonlinear diffusion filtering [Ca@Por bilateral filtering[Toma 98],
do not lead to convincing results. Basically, two problengsiwsually obtained: If the non-
stationarity of noise is not considered, some image regamasstrongly smoothed, while
other regions show nearly no filtering effect. The other pobis that most algorithms
are detecting structures based on gradient computatior iliformation about the noise
anisotropy is present, noise streaks are sometimes deétedbe structure and no smooth-
ing across them is performed. Comparable observations camade for other standard
approaches, in particular wavelet-domain denoising tecias, which decompose the in-
put data into its scale-space representation. Most of thkEgwithms are based on the
observation that information and white noise can be sepanasing an orthogonal basis
in the wavelet domain, as described e.g.[in [Hubb 97]. Ttoletiihg methods have been
introduced, which erase insignificant coefficients, butspree those with larger values.
The difficulty is to find a suitable threshold. Choosing a veighithreshold may lead to
visible loss of image structures. On the other hand, a vesytloeshold may result in
insufficient noise suppression. Various techniques haee bdeveloped for improving the
detection and preservation of edges and relevant imagempifor example by comparing
the detall coefficients at adjacent scales [XU 94, Fagh 02¢. aldditive noise in CT-images,
however, cannot be assumed to be white. Making matters evem complicated, noise is
not stationary, violating, for example, the assumptionfizu 03] for estimating the sta-
tistical distributions of coefficients representing stues or noise. Furthermore, directed
noise grains are usually visible in CT images, what makes igtendtion between noise
and structures even more difficult. Motivated by the congtéd noise conditions in CT,
methods which adapt themselves to the noise in the imagesdeseloped here.

1.3 Contributions

This work investigates methods for structure-preserviogea reduction in reconstructed
CT datasets based on correlation analysis. The goal is tairaghe signal-to-noise ratio
without increasing the radiation dose or noticeably affecthe spatial resolution. Due to
the close relation between image noise and radiation doseimprovement at the same
time opens up a possibility for dose reduction. The contitims of this work can be
summarized as follows: Two different original approach@sioise reduction in CT were
developed, implemented and evaluated.
Wavelet Based Noise ReductionThe first approach is based on the idea of using

reconstructions from two disjoint subsets of projectioasmgut to a wavelet based noise
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reduction algorithm, as we first introduced(in [Bor$ 06]. Tilsa was inspired by the work
of Tischenko et al[[Tisc 05], where two radiography imadeken shortly after each other,
are used for wavelet denoising. The algorithm was refinech #oat it can be combined
with different wavelet transformations and a new correlattoefficient based similarity
measurement was introduced in [Borsi08c]. An alternativealetbased filtering method
was developed, which allows anisotropic filtering [BorslO7hj [Bors 08d] we propose
a local, frequency and orientation dependent noise esamggchnique for threshold de-
termination in the wavelet domain. The weighting of noisyailecoefficients based on a
combination of correlation analysis and noise estimatiahthe extension of the algorithm
to 3-D was introduced in [Bors Q7b].

Noise Propagation for Noise-Adaptive Bilateral Filtering: The second approach is
based on noise propagation through the reconstructionritdgo A new approach for
computing pixelwise estimates of the noise variance in go®mstructed image was de-
veloped [Bors 08a]. In contrast to other approaches thelatioes introduced to the data
during the reconstruction are modeled by linear systemryhand taken into account.
The noise propagation approach was then extended in or@elditonally give informa-
tion about the local noise correlation. [n [Bors 08b] we preguba sine-/cosine-square-
weighting of the noise variances in the projections andrsg@aoise propagation in order
to obtain the horizontal and vertical contribution of theseovariance for every pixel. The
approach was then extended such that for each individual pispecific separation into
two orthogonal directions can be computéed [Bors 09]. Theavexé contribution in di-
rection of strongest correlation and orthogonal to that lmametermined for each pixel.
This additional knowledge can be used for improving filtgrmethods, like bilateral fil-
tering [Toma 98], by adapting it to the non-stationary and-ismtropic noise in CT.

Evaluation: In addition to the development of new noise reduction meshfod CT,
this work also presents some new ideas for the evaluationmdinear filters. Clearly, the
reduction of the noise variance in the image is an importaatity criteria, but the influ-
ence on the spatial resolution plays an important role, tdsually, spatial resolution is
only considered at high contrast objects. If non-lineacpssing is performed, image res-
olution might change depending on the local contrast-isenmtio. Therefore, a contrast
dependent evaluation of the spatial resolution becomesssacy, which was introduced
in [Bors 08¢]. Furthermore, we proposed a new figure of meritlie noise-resolution-
tradeoff, we call SNR-gairi [Bors 08b]. The evaluation is basedhe comparison to the
linear filtering, which leads to the same average spatialuésn. The new evaluation
method can be used for more realistically judging the paaéfar dose reduction, depend-
ing on the clinical task.

1.4 Thesis Outline

The thesis is structured as follows: The work starts with thapters, where some theo-
retical basics are reviewed and summarized.

» Chapter 2: A short introduction to the basic concepts of CTres@nted. The recon-
struction methods used throughout the rest of the thesiseai@wved. Furthermore,
two major quality criteria, noise and spatial resolutioe gtroduced.
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» Chapter 3: The wavelet transformation theory is briefly eexdd and the different
wavelet transformation methods used for denoising in tiieviing chapters are
described.

The main part of the thesis describes two different kindsragfimal noise reduction ap-
proaches for the use in CT. In both cases correlation anasysged for obtaining informa-
tion about the local noise characteristics in the reconstidatasets. How this correlation
analysis is performed, however, strongly differs betwémentivo approaches.

The first part (Chapters 4-6) of the thesis describes wavatadnoise reduction meth-
ods that use two reconstructed CT datasets as input. The pubdiatasets are generated
such that they show the same structure but differ with rddpamage noise.

» Chapter 4. Different possibilities for the generation o thwvo input datasets are
discussed. Two different methods for the detection of §icamt wavelet coefficients
based on correlation analysis are described and compacednhbination with three
different wavelet transformation methods. Image noiserasdlution are used for
quantifying the image quality in the processed images.

» Chapter 5: A new approach for local, orientation and fregyeshependent noise
estimation in the wavelet domain is proposed. The standevehtion of noise is
estimated from the difference of the two input datasets. dapéve thresholding in
the wavelet domain is performed based on the local noismatds. The method is
evaluated with respect to noise, resolution and noise hemgity and compared to
the approach presented in Chapter 4.

» Chapter 6: The combination of correlation analysis and logcese estimation for dif-
ferentiating between structures and noise in the wavelsiaitois described. Noise
reduction algorithm can be applied either to the reconsttli2z-D slices or the 3-D
volumes. The performance of the noise reduction is compagsleen the applica-
tion in 2-D and 3-D.

The second part of the thesis describes how noise estinrathe projections can be
used for analytic computation of local noise charactessin reconstructed images and
how these local noise estimates can be used for adaptindesthnoise reduction methods
to the special image noise in CT.

» Chapter 7. A new method for analytic noise propagation thhondirect fan-beam
FBP reconstruction is proposed. Based on estimates of the marg&ance in the
projections the local image noise in the reconstructed CTgéma computed. The
correlations between neighboring detector channels ao@giions are estimated
and taken into account for the propagation of the varianddee accuracy of the
noise estimation is evaluated by comparing with Monte Canmkations.

» Chapter 8: In addition to the local noise variance the cati@h of noise is analyzed.
Instead of computing local covariances, a new figure of ni@rihe noise anisotropy
is introduced. The computation of contributions to the aaigriance in two orthog-
onal directions is described. The separation into the twections is performed for
each pixel specifically into the direction of strongest etation and orthogonal to
that. Exemplary the adaptation of a bilateral filter to thealanoise characteristics is
introduced and evaluated.
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The last two chapters present some comparisons betweeiffédrert approaches pre-
sented and finalize the work.

» Chapter 9: The wavelet based approaches and the noisavadaifdteral filtering
are compared to each other. Visual appearance, noise avdti@s and computa-
tional requirements are discussed and ideas for futuraregsare presented.

» Chapter 10: A summary of the work and conclusions finalizetlesis.



Chapter 2

Principles of Computed Tomography

The noise reduction methods investigated in this work aeeigfly designed for the use
in CT. Therefore, this section gives an introduction to theidaoncepts of computed to-
mography. In contrast to other imaging modalities, lik@ttianal projection radiography,
where the images are a direct result of the measurementtges in CT first have to be
computed. When we talk about images in the reminder of thsghee always mean the
reconstructed 2-D slices or 3-D volumes. The name projedsion the reminder of this
thesis used for denoting the data used for reconstructiafierént reconstruction tech-
niques are available. However, the ones most frequently inséinical practice are based
on the filtered backprojection. The 2-D and 3-D reconstamctnethods used throughout
this thesis are briefly described in the following. Furtliee most important quality char-
acteristics, noise and resolution, used for quantitatweduation are discussed. A general
survey about the basic concepts of CT can be found’in [Kale @pe®©6]. For a deeper
theoretical understanding, overviews are given in [Buz(Kak 01] and [Noo 08].

2.1 Development of Computed Tomography

With the invention of CT, a new field in radiologic diagnosiseopd up. The new imaging
technigue was the first to non-invasively acquire axialesiof the interior of a human’s
body. According to Buzud [Buzu 04], ,the rapid development of @dm the installation
of the first scanner generation until today ,has been, atidsstdriven by three essential
goals: Reduction of acquisition time, reduction of X-ray espre, and, last but not least,
reduction of cost“. In the following some of the most impaittaevelopments in CT are
summarized. More details about the history of CT can be foarfBuzu 04].

The first medical CT scanners, installed in 1972, were heathgea. They had a single
needle-like X-ray beam and a single detector element thatpeaitioned at the opposite
side of the measuring field. The X-ray tube and detector warel&aneously shifted along
a straight line in order to take projections along equidigyedistributed parallel rays pass-
ing through the object. This acquisition of parallel-beammigctions was then repeated for
different projection angles. The big disadvantage of tachhique was the long acquisi-
tion time, that could be drastically reduced by the develephof row detectors and the
start of fan-beam tomography in 1975. In fan-beam tomogrageveral detector elements
are placed close to each other in one line such that the whetsunement field can be
X-rayed at once for a certain projection angle.

v
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(a) Siemens Somatom Definition (b) Siemens Somatom Definition with open
gantry.

Figure 2.1: The first dual-source CT scanner - Images prowgesiemens Healthcare.

The invention of the so called slip ring in 1987 was anothdestone regarding fast
CT acquisition, because the continuous rotation of the tuldedatector became possible.
This ring in the gantry is used for the power supply of the tahd detector, but also for
data transmission and communication. This developmeritleddhe invention of helical
CT (incorrectly called spiral CT) in 1989. During continugusbtating the tube and the
detector around the patient, the table with the patient igingathrough the gantry, leading
to a helical acquisition path. Furthermore, the row detscieere extended to multi-row
detectors and the so called cone-beam tomography or nlio#i-ST (MSCT) was born.
Comparable to the motivation for fan-beam CT, the use of a maltidetector speeds up
the data acquisition and allows to scan whole organs witwvndr even just one single rota-
tion. Additionally, the reconstruction with isotropic stion in all three spatial directions
became possible. In 2005 the first dual-source CT scanner (PSasintroduced, where
two X-ray tubes and two independent detectors with an offsabout 90 degrees can work
in parallel. The motivation for DSCT was to speed up the adtisfor cardiac CT, but
it also enabled the establishment of applications like -@m&rgy in clinical routine. An
image of a modern DSCT scanner is displayed in[Fig. 2.1 witkezland opened gantry.

With the development of new and improved scanning hardwies reconstruction
methods had to be advanced as well. Based on the mathemb&oay ton the inversion
problem developed by Johann Radon already in 1917, the @ltemekprojection (FBP)
reconstruction was the first to allow an efficient and nunalgicrobust implementation.
Most of the methods used in the clinical practice today aliebsised on the filtered back-
projection. With the introduction of cone-beam CT, methamtseikact 3-D reconstruction
came up 09]. Neverthelessoajpate methods like
the weighted filtered backprojection (WFBP) [Stieé 04], or segted multiple plane recon-
struction (SMP)[[Stie 02] are still the ones used in clinicaitine for helical cone-beam
CT due to their higher flexibility and lower complexity. Itéikee reconstruction methods,
where certain constraints can be used for handling e.g. mptaie or very noisy data,
gained a lot of interest in the last few years [Kunz/07, Surjn They seem to become
more and more practically relevant since parallel compubecame widely available, e.g.,
by using modern graphics processors for general computing.
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X-ray Source

Figure 2.2: Geometry and Notation.

2.2 2-D Reconstruction

In order to understand how images of the interior of an obgact be computed using
measured X-ray projections, it is reasonable to first looR-8t reconstruction methods
from 1-D projections.

2.2.1 Data Acquisition Model

The basic data acquisition parameters are illustrated gn[ER. The geometry of 3rd
generation CT scannels [Buzu 04] is considered here, whidlrismtly most widely used
in commercial systems. This means that the fan-beam piajscare acquired with equi-
angular ray spacing, and that the detector and the X-rayceootate together around the
object under investigation [Kak 01]. The X-ray source tcégey is thus a circle. The axial
slice to be reconstructed lies in the x-y-plane and is in dlewing also called image.

It is assumed that the X-ray tube emits monoenergetic plotdhe original intensity
I, of the X-ray beam is proportional to the number of emittedtphsN,, which is viewed
as a known deterministic constant. Each #ayy, 5) that passes through the object is
attenuated. The intensity measured at the detector is

[(Oé, 6) = [0 e fL(a’B) M(X)dxa (21)

for a certain tube-angle and fan-angles. The linear attenuation coefficient of the object
at positionx = (x,y)” is denoted ag(x). The line integral in the exponential function
describes the attenuation aloh@v, /3). It is given by:

P(a,f) = —In (I(O"ﬁ)) - /L(aﬁ) 11(x) dx. (2.2)

Iy

A fan-beam projection is in the following denoted @&, ).
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ux,y)

(Fu)(pcosy, psiny)

P0,1)

(Fwp.p)

Figure 2.3: lllustration of the Fourier-Slice theorem.

Fig.[2.2 shows thak(«, ) can also be parameterized using parallel-beam coordinates
0 andt. The following relations hold:

0 = a+p, (2.3)
t = Rsinp. (2.4)

The process of resorting acquired fan-beam projectionsrdirgy to Equations (213) and (2.4)
to a set of parallel-beam projections is called rebinning pBsallel-beam projections, we
refer to line integrals that are sampled uniformlyimandt and are denoted &3(6,t) in
the following.

The linear operatoR that maps the function(x) to its equidistantly distributed parallel-
beam projection® (6, ¢) is called Radon transformation:

P(0,t) = (Ru)(7,1), (2.5)

wherey = ¢ — 7/2. Goal of all reconstruction methods is to invert the Radondfar-
mation, and thus to compute the unknown position dependtiemiLetion coefficients(x)
from the given projections. The Fourier-Slice theoremésttieoretical basis for the filtered
backprojection algorithm. It describes the connectiomien the Radon transformation
and the two dimensional Fourier transformation of a funtctio

(FP)(0,t) = (F(Ru)) (v, p) = (Fu)(pcosy, psiny). (2.6)

It states that the one-dimensional Fourier transformatioa parallel-beam projection at
angled is equivalent to the two-dimensional Fourier transformratf the function along
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the radial line at angle.. A formal proof of the Fourier-Slice theorem can be found
in [Buzu 04/ Kak 01l Noo 08]. A schematic description is présdin Fig[2.B. The recon-
struction of CT images based on the direct application of theier-Slice theorem is possi-
ble, but requires an interpolation to Cartesian coordinatége Fourier domain in practical
applications. In order to avoid this resampling in the Feudomain, the filtered backpro-
jection reconstruction (FBP) was developed. FBP can be tiréetived from the Fourier-
Slice theorem by inserting the coordinate transformafBuwli 04 Kak 01, Noo 08]. The
filtered backprojection reconstructs the vali(&) according to:

pu(x) = /07r /_OO PO, t)k,.(t — (xsinf — y cos))dtdo, (2.7)

where the inner integral describes a convolution (filteriapng the parallel-beam pro-
jection with the ramp filtet:,.(¢) and the outer integral the backprojection of the filtered
projections into the image plane.

2.2.2 Indirect Fan-Beam Filtered Backprojection

With the introduction of fan-beam tomography, reconstarcimethods like the filtered
backprojection had to be adapted to the new acquisition. FBf reconstruction can be
adjusted to directly handle the fan-beam data. Based on #egtion of equationg (2.3)
and [2.4) to the filtered backprojection equation](2.7)ait be derived that the projections
need to be pre-weighted, the reconstruction kernel mustiéetad and during backprojec-
tion a distance weighting is necessary for each pixel to bengructed [Buzu 04]. Alter-
natively, the fan-beam data can first be resorted to patadiem data using equatiofs (2.3)
and [Z2.4), followed by standard FBP reconstruction. Thersgepproach is also called in-
direct fan-beam FBP or rebinning FBP. Reordering to parakeln projections is favored
by many CT manufacturers for reasons of computational efiigi@nd ease in handling
special scanning features such as the quarter-detecset off redundant data.

The indirect fan-beam FBP reconstruction algorithm is noviesged. The description
is focused on discrete data. The fan-beam projections arereesi to be acquired over
360 degrees with a uniform sampling angle.. The number of projections is even and
denoted aNo,¢, SO thatAa = 27/N,y,¢, and the first projection is at positian = 0.
Each projection includes; rays with the fixed ray sampling distance being written\gs
Thus, the following sampling conditions are assumed:

ax = (k—1)Aa, k=1,...,Noy, pr=(1-1=(N¢=1)/24+d)Ap, 1=1...,N¢,

(2.8)
whered = 0.25 if a quarter-detector offset is applied add= 0 otherwise. The discrete
fan-beam measurements obtained at these sample Iocatdnlf?@la: P(ay, 5))-

Rebinning

The first step in the reconstruction pipeline is the resamgpif the fan-beam measurements
to parallel-beam data. This resampling is performed inglo@nsecutive steps: azimuthal,
complementary and radial rebinnirig [Buzu 04]. A schemat&cdption can be seen in
Fig.[2.4 and Fid. Z]5, with and without quarter-detectoseif
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Figure 2.4: Rebinning with quarter-detector offset.

The azimuthal rebinning acts enat fixed s to estimate hybrid projection data corre-

sponding to samples @™ (9, 3) = P(6 — 3, 3). The estimation is performed at

Hm = (m—l)AQ, m = 1,...,N27rp, 61: (1—1—(Nf—1)/2+d)A/8, 1= 1...,Nf,

(2.9)

whereA# = Aa, and the intermediate values are denoted®’@ls ~ P™>(6,,, 3). The
relation betweerPs" and P, is

N27‘rf

PP = " h* (G — on) P, (2.10)
k=1

m

whereh? is a given, short-length interpolation kernel, and

dm,l - em - /Bl . (211)

In this relation, the values o?lfﬁ“ corresponding tdx < 1 ork > Ny, are obtained using

a 2r-periodical extension of the measurements. The secondhpdiseg step reorganizes
the hybrid projection data onto 180 degrees using the carfemplementary rays ex-
pressed by the relatioR™" (0 + =, —3) = P™®(#, 3). This step requires distinguishing
two casesd = 0.25 (see Fig 24) and = 0(see Fig. Zb). In the first case, the rays at posi-
tion 6,,, + 7 are interleaved with the rays at positi@p to obtain projections with increased
resolution. In the second case, two values are availabledohn ray and these values are
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Figure 2.5: Rebinning without quarter-detector offset.

simply averaged together to get improved estimate3™®f(, 3). In both cases, we obtain
estimates o™ (0, /3) at

b =(-1)A0, i=1,....Noyp  Bi=(-Ne—1)/2)A8, j=1....N., (2.12)

whereN,, = No.¢/2. Ford = 0.25, the sampling distance results&xp’ = Aj5/2 and the

number of channeldl, = 2N;; otherwise, the sampling distange’’ = A/ and number
of channels\N, = N; remains unchanged. The data at the end of this second stetéenw
asP™. Ford = 0.25, the complementary rebinning relation is

com __ phyb com __ phyb
Pi,?j - Pi,j ) and Pi,2j—1 - Pi+N,rp,Nf+1_j7 (213)

whereas, forl = 0,

com __
Pyt =

(P"+ PER sy - (2.14)

N | —



14 Chapter 2. Principles of Computed Tomography

The final resampling step acts grat fixedd to estimate values corresponding to sam-
ples of PP (6, t) = P™ (6 — 3, arcsin(t/R)). The estimation is performed at

0p=@1-1)A0, i=1,..., Ny, th=m—-1— (N, —1)/2)At, n=1...,N,,

(2.15)
where N, = N, and At = RAf', and the resulting values are denoted2§" ~
pPeom(;, arcsin(t, / R)). The relation betweef" and 5™ is

N¢
PR =" hd(3, — )P, (2.16)
=1
where i
fn = arcsin (t,/R) . (2.17)

In this relation, functiorh**! is a given, short-length radial interpolation kernel.

Convolution

The next step in the reconstruction pipeline is the coni@iubf the parallel-beam projec-
tion data,P"", with an apodized version of the ramp filter, denat€d). This convolution

is applied at fixed view index and gives

Np
PR =AY k(t, — t) PR (2.18)
s=1
The precise definition of the filtering kernel is
k(t) = / q(p) |pl ™ dp, (2.19)

whereq(p) is the apodization window. In clinical practice a varietyagfodization win-
dows are available, with each selection yielding a specdfiomromise between noise and
resolution. On the one hand, smooth kernels, commonly egdir soft-tissue imaging,
suppress high frequency noise, but entail a low image résnluOn the other hand, sharp
kernels yield higher resolution but to the cost of giving theonstructed images a more

noisy appearancé [Buzul04].

Backprojection

The final step in the reconstruction pipeline is the baclquotipn. The filtered parallel-
beam projection data are backprojected to obtain an estiofdhe attenuation coefficient

at positionx:
Nap

p(x) ~ Af Z Pil(x), (2.20)

whereP!(x) is obtained fromPfi! by interpolation. Specifically, the interpolation is com-
puted as
Np

Pil(x) = Z hPPI (2 sin 0; — y cos 6; — t,) P

in

(2.21)

n=1

whereh’Pi is a given, short-length interpolation kernel.
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Hounsfield-Scaling

The reconstructed attenuation coefficients are usualipalized to Hounsfield Units (HU)
according to:
Flax) = PO = ey o0 o, (2.22)
e

with 1., defining the attenuation coefficient of water.

Interpolation kernels

One-dimensional interpolation was involved three timegh@& reconstruction pipeline,
twice for the rebinning step and once for the backprojectiés noted, different inter-
polation kernels can be used each time, if desired. The sshphd most frequently made
choice is the linear interpolation kernel:

— A
hz) = ao MMzl <Az (2.23)
0 else

whereAz is the sampling distance. If linear interpolation is usée, $ums in Eq[{Z.10),
Eq. (Z.16), and EqL(Z.20) simplify to two weighted summands

2.3 3-D Reconstruction

With the introduction of helical CT and multi-row detectolng treconstruction of isotropic
3-D volumes became possible.

2.3.1 Scanning Geometry

Two different scan modes are distinguished: sequentialhatidal scans. In sequential
mode, the source and a multi-row detector rotate on a cirpalédh around the object being
scanned. This procedure can be repeated for certain tabigops, meaning for different
z-positions, as illustrated in Fig. 2.6(a). In helical mptiee tube and detector are again
rotating around the patient, which is at the same time caotisly moved through the scan
plane. Therefore, the source moves on a helical path ardwndtject being scanned, as
illustrated in Fig[ 2.6(B).

The projections now consist of several detector rows, eatth avcertain number of
detector channels, and consequently two-dimensionatgtions are acquired for different
source-detector positions.

2.3.2 Weighted Filtered Backprojection

As an example of a state-of-the-art 3-D reconstructionrieple, the basic principles of the
weighted filtered backprojection reconstruction (WFEP)d$8#] are shortly summarized.
The WFBP is an approximate reconstruction method for helicakebeam CT, which is
closely related to the indirect fan-beam FBP method destribehe previous section.
Basically four main steps are necessary:
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multi-row| 7. multi-row .
detector_| | [H\]- sequential detector helical -
- acquisition acquisition
z z
R e SSE S E=Esm e «
X-ray

source

(a) (b)
Figure 2.6: 3D-Acquisition: Sequential (a) and helicalgbans.

* The cone-beam projections are row-wise rebinned to mhnadbjections. This can
be performed in the same manner, as explained in Sdctich 2.2.

» The parallel projections are then convolved with the rstarction kernek(t), as
described in Sectidn 2.2.2. This is again performed for eastseparately.

* In a third step the filtered projections are weighted adogytb the distance of the
row to the center row. Weighting down outer detector rowsiced artifacts after
reconstruction. Stierstorfer et al. [Stig 04] proposedradeiv function with a cosine-
square-apodization.

* The last step is the normalized backprojection of the &lteand weighted projec-
tions. It can also be expressed as the summation over paatéprojections. This
partitioning is performed, because a voxel might receivéridoutions from projec-
tions at one or more focus positions, depending on the pasiti the voxel and the
table speed that is used for moving the patient through the CT.

2.4 Noisein CT

Before considering methods for noise reduction in CT datas iimiportant to get an
overview of the origins and properties of noise in the priiggs and the reconstructed
data.

2.4.1 Noise of Signals and Projections

The signalU measured at the detector is subject to statistical unogytalt can be de-
composed into its noise-free expectation vaf€&’) and an error terniVy;, which is zero-
mean [Vest 98]:

U=EU)+ Ny, with E(Ny)=0, and oy =1/E(N;). (2.24)
The error term consists of two components, quantum nijsand electronics nois#’.:

Ny = N, + N.. (2.25)
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Both sources are independeét {V,N.) = 0) and zero-meanf(N,) = £(N.) = 0), and,
thus, the variances can be added

op = 02 + 02, (2.26)
with 02 = £(N7) ando? = £(N?). The signal is generated by the absorptiom afuanta
at the detector [Vest 98]:

EWU)=c&(n), andconsequently N, =c(n—E(n)). (2.27)

The expected number of quanta is in the following denoted*as £(n). The physical
process of generating and absorbing quanta consists of mdagendent small random
processes and underlies Poisson statistics, which candoelokd by the probability dis-

tribution [Buzu 04]:

PN =n) = ()" el=m). (2.28)

!
n:

The variance of a Poisson random variable is equivalenstmé@an. Thus, quantum noise
of the signal can be expressed as:

or =cn* = c*E(n). (2.29)
The intensity is proportional to the measured signal [BuZwadd can thus be written as:
[ = ¢&U = &E(n) + éNy. (2.30)
The noise-free expected intensity&s(n) and N; = ¢ Ny is the error, with
o] = Fopy = & (o, + o). (2.31)
Given the noise of the intensity, the noise in the projectian be estimated:
op = Var{ln(ly) — In(I)} =~ Var{In(I)}, (2.32)

becausd| can be considered to be known with negligible erfor [Kak Ollije logarithm
can be written as

In(I) = In(§(I) £ o) = In (5(1) (1 + %)) —In(&(1)) + In (1 + m) (2.33)

Based on the linear term of the series expansion [Buzu 04]

n(l+z) f:

=1

i i

or —l<zx<l (2.34)

the variance of noise in the projection can be estimatedafgel (n) according to:

s o cEm)+al 1 o?

PEED T T EEmE &) T @Em)e (2.39)
This relation clearly shows that with decreasing number @)X quanta measured at the
detector, noise in the projection increases. The systewifepparameters ando? can
be determined by measuring signal strength and noise aiugfluxes. Especially, if
the system is equipped with a bowtie-filter, each detectannobkl has an individual set of
parameters.
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2.4.2 Noise after Reconstruction

The reconstruction of the location dependent attenuatiures is performed on noisy pro-
jection data. Accordingly, noise in the projections alsogargates through the reconstruc-
tion algorithm to the final slices. The problem is that all ihiermediate steps, like inter-
polations or filtering with the convolution kernel, intrackicorrelations to the noisy data.
This makes the analytical description of noise in the rettonted data more difficult. A
detailed discussion of the propagation of noise throughritieect fan-beam FBP recon-
struction, as described above, is given in Chapter 7. Her#hisnsection, only a very
simplified description of noise in the reconstructed datarésented. All correlations are
neglected and a FBP reconstruction from parallel-beam girojes is considered.

The relationship between the discrete parallel-beam giioje valuesP’" and the at-
tenuation coefficientg(x) is given by:

Nap Np
7TAt . ar
pu(x) = N E E k(x cos Oy, — ysin by, — tn)Pil’Dn . (2.36)

TP =1 n=1

This results in a variance of the reconstructed attenuabeifficients of

2 Nzp Np

A
CTZ(X) = (; t) Z Z E*(x cos 0y — ysin € — t,)o% (65, ty), (2.37)

™ i=1 n=1

provided that there are no correlations between differepjeptions. The noise variance
in the reconstruction can be interpreted as a filtered bagkgtion of the noise variances
of the parallel projections, but with the squared weightspédeially for the center of a
homogeneous circular disk and under the assumption thatwmanoise is the dominant
source of noised(’ > o7) it can be derived that [Buzu 4]

2 A7

70,0 = =20 [ 1K) dp. (2.39)
ﬂpnc —5A7

where K (p) is the frequency representation of the filter functidm). Eq.[2.38) shows

that the noise in the reconstructed image depends on thefdiftetion used for the filtered

backprojection algorithm. The variance of the central pigeproportional to the area

under the squared magnitude of the filter function in freqyespace. The average number

of X-ray quanta of the central rays reaching the detectoermoted as:..

The most important properties of noise in the reconstrudigdsets can already be
explained based on this simplified consideration. Noise inr€Dbnstructions is object
dependent, non-stationary and correlated. In[Fig. 2.7 symeiconstructed CT slice, the
corresponding projections and the standard deviation iserin the projections are shown
as an example. As E{.(2137) clearly shows, the noise varianthe image directly de-
pends on noise in the projections. Noise in the projectisnisfiuenced by the absorption
of X-rays traveling through the object. Consequently, défe projections might differ
with respect to their noise variance. This explains why eédispends on the object being
scanned. Further, it explains, why noise differs for défgrpositions in the reconstructed
image. Depending on the position the weighting of projewithat contribute to the sum is
varied. Thus, noise in the reconstructed image becomestabionary. The third property
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standard deviation of noise
reconstructed image fan-beam projections in fan-beam projections

Figure 2.7: lllustration of noise in projections and redomsted image. X-rays traveling
through the object along the red line were strongly attexdiatThe corresponding line
integral measured at the detector for this ray is highlighg a red arrow in the fan-beam
projections and the corresponding standard deviation iserio the fan-beam projections.

can also be explained based on Eq. (R.37). The backprajgmtizess means that the noise
variance of one projection? (6, t) influences pixels that are placed along the lir{é, t).
Altogether the variance at a certain position is gained ftioesum of contributions of pro-
jections from different directions. If one of these contitihg directions has a very high
variance, compared to other directions, then two pixelaglbe lineL(0,t) are stronger
correlated than pixels along another direction. This isrd@son for the anisotropic noise
grains visible in most CT reconstructions. Especially, fodypregions, where rays have to
travel through much denser or much more material for cedaettions, directed noise is
visible.

2.5 Spatial Resolution in CT

The discussion in the last section clearly showed that nai€€T can be influenced for
example by the convolution kernel used for the filtered baajgation. When dealing
with medical images, not only noise is important for judgintage quality, but also the
spatial resolution plays and important role. Spatial nesoh tells how many line pairs per
centimeter (Ip/cm) can be distinguished in the reconstdignage. It thus indicates how
close two neighboring lines can get to each other beforedhieyo longer be distinguished
due to the vanishing modulation of the image values, i. e.vHriation of the gray values
between the lines [Buzu04]. One of the most frequently usets tior describing the
resolution capability of imaging systems is the modulatransfer function (MTF). In this
section, different possibilities for measuring resolatio reconstructed and processed CT
datasets based on the MTF are discussed. Furthermore, théfheencing parameters to
azimuthal and radial resolution and the coherence with 8agpf the projection data are
briefly summarized.
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Figure 2.8: Azimuthal and radial resolution in the recamstied image (left). Illustration
of sampling points of parallel-beam projections in Foudemain (right).

2.5.1 Azimuthal and Radial Resolution

Generally, when talking about spatial resolution in CT, a#imal and radial resolution are
distinguished [Kak 01]. Azimuthal resolution describes thsolution along a circular path
with fixed distance to the iso-center. It is mainly influentscthe number of projections
and the distance to the iso-center. Radial resolution de=sthe resolution along a straight
line through the iso-center. It is mainly influenced by thenter of detector channels
and the convolution kernel. The difference between azialugimd radial resolution is
visualized in Figl Z8.

The maximum possible resolution, is limited by the samplghe projection data.
Based on Shannon’s sampling theorém [Buzu 04, Kak 01], theektgspatial frequency
that can be measured for each projection is limited by

W = 1/2At, (2.39)

if At is the sampling distance within a parallel-beam projectidhe number of detector
channels and the number of projections are usually chosgnteat azimuthal and radial
resolution are about the same. In [Fig] 2.8 it can be seen hosatinpling points of parallel-
beam projections are located in the frequency domain. Tsienagtion that azimuthal and
radial resolution are about the same is fulfilled if

2W 1 s

U=, T A, A v=WAl= oo

(2.40)
are the same. This is fulfilled #7> ~ 7 [Kak01].

2.5.2 Measuring Resolution in Images

Resolution in the reconstructed CT image is not the same f@uoaitions and might also
vary for different directions. This makes the investigataf resolution in CT very com-
plicated. Thus, resolution is usually only considered & iiso-center, or a position very
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Figure 2.9: lllustration of MTF computation at the edge ofraular object.

close to the iso-center. The expression MTF in the contespatial resolution in recon-
structed CT images is rather misleading. It does not desariipear shift-invariant system
in the system theoretical sense, but is more to be seen aalM®€E, e. g. in the iso-center.

Different techniques for measuring resolution in CT imagedste The most famous
is the so called wire method [Cunn|92]. A thin metal wire, pthcise to the iso-center,
is acquired. Due to the high density a high contrast betweemvire and the background
in the image is obtained. The point-spread-function (PSf€) eonsequently the MTF
can thus directly be computed from the neighborhood arohed¢nter of the wire. The
different radial directions are commonly averaged. If teeonstructed images with the
wire are very noisy, several noise realizations are averagerder to increase the SNR
and get reliable MTF measurements. The problem in this wetkat resolution should
be determined in images where adaptive filters were apptieddise suppression. The
detection and consequently the preservation of edges dsperthe contrast-to-noise ratio
(CNR) in the image, as the different experiments in the renrinéi¢his thesis will show.
The wire method, which is just considering high-contrasbhetion, is no longer practical,
if the MTF should be determined for different CNR levels.

Another possibility for measuring the resolution in redomsted data is, the so called
edge techniqué [Judy [76, Cunn 92]. The line-spread-fun¢ti&ir) is determined along a
straight edge in the image, which has a slight slope of abmutdegrees with respect to
thez or y-axis. The slight slope makes it possible to compute an avepted edge profile
along the edge. This slight slope of the edge is in fact necg$sr the MTF computation.
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Otherwise, if the edge is perfectly aligned with the pixeldgan arbitrary MTF might
result, depending on the sampling of the edge with discrets The derivative of the
edge profile gives the PSF. Its Fourier transformation fnkgads to the average MTF
along this line. The advantage of the edge technique islieatdntrast at the edge can be
varied easily, enabling a contrast dependent MTF evaluafibe critical point of this edge
technique is, that the edge has a certain orientation. Caesdy, resolution is evaluated
for that orientation only and does not represent the avereg@ution of all directions.
This might be a desired feature for some investigations, @.the resolution should be
evaluated for different directions separately. In manyesakowever, the average MTF of
all directions is more of interest.

Instead of computing an averaged edge profile along a stradge, it is also possible
to use e.g. a circular object [Li07]. Basically, the MTF cortgiion is the same as for
the edge technique, except for the computation of the edgfer The different steps
needed for the computation of the average local MTF alongtige of a circular object
are summarized in Fig.2.9. The edge profile in this case is&eet by averaging the
radial lines going through the center of a circle. More praty speaking, pixels within a
certain distance range to the center of the circle are agdraghich is also called binning.
Averaging all pixel values within the same bin leads to anayed edge profile along the
border of the circle. The critical part of this method can eersin choosing the size of the
circular object. The smaller the object the more local thegeresolution is determined. If
the object is too small, however, the pixel grid might be ting the precision of the MTF
computation. An additional aspect that needs to be coreiderthe contrast of the object
compared to the noise level. If a larger object, coveringgelanumber of image pixels,
Is used, the averaging over the different directions intiye@educes the noise level in the
edge profile. This might result in a smaller number of imad@s$ heed to be averaged in
order to get reliable MTF measurements in cases of lowerastto-noise ratio.
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Wavelets in Image Denoising

The theoretical basis for the first part of noise reductiothmgs, described in this thesis,
is the discrete wavelet transformation (DWT). The wavebatsformation (WT) provides a

tool for local frequency analysis, which is the strength paned to other frequency repre-
sentations such as the Fourier transformation. In thisteh#pe main concepts of wavelets
and wavelet transformations are reviewed, which are nefledthorough understanding
of the wavelet-based denoising algorithms. More detaibaibtyavelet theory can be found

in numerous books like [Daub 92, Malll99, Meye 93] lor [Stra.96]

3.1 Introduction to the Wavelet Representation

The Fourier transformation (FT) can be used to determin&dggiency content of a signal
and is one of the most important tools in signal analysis. @fmes disadvantages is the
fact that it only provides a frequency resolution, but naispar time resolution. Although

all frequencieg present in a signal can be identified with the Fourier trams&tion, no
information about the position or tinteof their presence can be given. Consequently, the
Fourier transformation is only suitable for global, but fartlocal signal analysis.

One possibility to overcome this problem is to divide thengignto several parts, so-
called windows or frames, which can then be analyzed seggrdthis approach leads to
theWindowed Fourier TransforrfWFT), also referred to a&Short-Time Fourier Transform
(STFT), which is defined as

STFT(r, p) = / FEw (= r)e2mintdy, (3.1)

wherew*(t) defines the complex conjugate of the window functioft). The window
functionw(t) is shifted through the signdl(¢) and suppresses the signal outside the defined
region of interest. This allows the computation of a locacpm. The problem is that,
due to Heisenberg’s uncertainty principle, it is not pokestb reach a high resolution in
time and frequency simultaneously. Regarding the choickeoiindow functionu(t) this
results in the following tradeoff [Niem 83]: the window widshould be small enough to
get a good time resolution and large enough to get a gooddreyuresolution. Another
drawback of the STFT is that, once the window size has beesecha remains fixed for

all frequencies. A more flexible signal analysis is possiatl variably sized windows as
used for the wavelet transformation (WT). Long time intesvate used in regions where

23
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precise low-frequency information is wanted, and shorttarivals in regions where higher
frequencies are of interest. This difference between the-frequency resolution in the
STFT and the wavelet transformation is illustrated in Fed8i .

p p

(a) STFT (b) WT

Figure 3.1: Comparison of the time-frequency resolutiomieen short-time Fourier trans-
formation (STFT) and wavelet transformation (WT).

3.1.1 Wavelets

Wavelets are generated from a single basis funation called mother wavelet by means

of scaling and translation:
1 t—T
t) = — 3.2
Varlt) = 2 () (32)

with
s, TeR,s>0.

The scaling factos is used for expansion and compression of the wavelet. Tharmar
ter 7 is responsible for the translation. For energy normalrathe factor\/Lg is needed.

The Fourier transformatiof (p) of the wavelet)(¢) must satisfy the admissibility condi-

tion [Niem 83]
o0 2
om [T L @9
oo pl
This can only be fulfilled if
v(0) =0, (3.4)

which means that wavelets must have a band-pass like spefffale 04]. From equa-
tion[3.4 it follows that the mean of the wavelet in the spatialime domain must be zero,
which requires

/Oo Y(t)dt = 0. (3.5)

Therefore, it must be oscillatory, which explains the nanagelet.
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3.1.2 Continuous and Dyadic Wavelet Transformation

With this definition of wavelets a local signal analysis b®es possible. The continuous
wavelet transformation is defined as:

Wr(s.r) = [ fou 0 (3.6)

where*(t) is the complex conjugate af(¢). The coefficientdVT'(s, ) specify the
similarity of the wavelet), , to the function around the positian

The frequency information is included in the scaleA low scales describes a com-
pressed wavelet that can only detect rapidly changingldetad, therefore, corresponds to
high frequencies; analogously, a high scale correspondsitrequencies. This is the rea-
son why the wavelet transformation is referred to as a tioaesand not a time-frequency
representation.

The original continuous function can be reconstructed fitsrwavelet coefficients by

1 [ [ dsdr
)= /_ i /_ WG () (3.7)

The constant,, results from the admissibility equatibnB.3. The CWT is siméiriant and
highly redundant[Mall 99].

3.2 Discrete Wavelet Transformation

Usually, the discrete wavelet transformation (DWT) is agged with the signal expansion
into a (bi-)orthogonal wavelet basis. In contrast to thehlyigedundant CWT there is no
redundancy included in the DWT representation of a signale 3¢aless; are usually
chosen as powers of two and the time sampling is proportiortale scaling

s;i=27andm,=k-s;=k-277, j kel (3.8)

leading to a dyadic sampliﬁgwhich has also been used for illustrating the time-fregyen
resolution of the wavelet transformation in figure Figl 3Mavelet transformations, which
use this kind of sampling are also called dyadic waveletsfiamations. The DWT uses
the dyadic sampling. However, it cannot be interpreted asvged version of the CWT.
The choice of the wavelets that can be used for DWT is far ma@gictéve. In order to
be able to represent a finite-energy sigfid) € L*(R) by a non-redundant set of wavelet
coefficients, according to

FO) =" Y distult), (3.9)

Jj=—00 k=—00

the wavelets

{wj,k@) = \/% (0 (t ;Tk) dt} : (3.10)

(j,kez)

1Sometimes, the definitiosy; = 27 is used in literature.
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Figure 3.2: Two-stage DWT analysis and synthesis filter bartie wavelet coefficients
after two decomposition levels of a one-dimensional DWT agélighted in blue color.

must build a basis of.*(R). Then, the wavelet coefficients . are given by the inner
products of the signaf(¢) with the dual basis); j(¢):

ds = / " FOd . (3.11)

3.3 Multiresolution Analysis

The theoretical framework for constructing (bi-)orthogbwavelet bases and for the fast
computation of the wavelet transformation is the multiteon analysis[[Mall89]. Due
to the band-pass-like spectrum of the wavelets, it can beetethat a series of dilated
dyadic wavelets shifted through the signal results in a hzass filter bank. With the
constraint off(¢) being band limited, its whole spectrum might be covered liyitely
many scaled versions of the wavelet. Mallat introduced theadled scaling function
¢sx(t), which covers the lowpass parts covered by infinitely marngtelil wavelets up
to a givenJ. The signalf(t) can then be split into a low frequency approximation part
and its high frequency detaitsaccording to:

FO =" conpunt) =D coapdint) + > diisths_1x(t). (3.12)
K

k k

On the basis of the two-scale relation

o(t) = V2 gro(2t — k) (3.13)

and analogous for the wavelets

Y(t) = V2 (2t — k) (3.14)

which states that a scaling or wavelet function at a giveteszn be expressed in terms of
translated scaling functions at the next smaller scalaritle derived that the coefficients
¢, andd; ;, can be computed by filtering with the analysis high-passid low-pass filter
g followed by downsampling, according to:

Cjk = /f(t)¢j,k(t)dt = Zgn—2kcj+1,n (3.15)
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and

dj = / FOYrt)dt = hookCisrn. (3.16)
The reconstruction can be expressed as

Cj+1,k = Z Jk—2nCjn + Z ilkﬂndj,n, (3.17)

which can be interpreted as up-sampling of the detgiland approximation coefficients
c; i filtering with the synthesis high-pagsand low-pasg filter and summation of the two
parts. An example of a two-stage analysis and synthesiskiek is shown in Fig. 3]12. As
can be seen from Eq.(3]15), Hg.(3.16) and Eq.(3.17) thelataed scaling functions are
not needed for the computation of the discrete wavelet dposition or reconstruction.
Instead the analysis and synthesis filters need to be desggmefully. For perfect recon-
struction of the signal the following two conditions mustdor the z-transformations of
the filters:

H(2)H(z) + G(2)G(z) =0 (no aliassing) (3.18)
H(2)H(—z2) + G(2)G(—z) = 2277 (no distortion) (3.19)

whereq € Z defines the system deldy [Stra 96)].

The above described fast algorithm is in literature usuellgrred to as discrete wavelet
transformation (DWT). Throughout the rest of this thesis de this notation. For a data
array with N samples the DWT has a computational and storage complexity( o),
which is even faster than the fast Fourier TransformatidtT{f-which has a complexity of
O(Nlog N). In practical applications the approximation coefficieatshe highest scale
s = 277 are approximated by the input data samples. If the samptitegvials are sulffi-
ciently small the approximation error of directly using thput samples as approximation
coefficients is negligibly small [Wick 94].

3.4 Wavelet based Noise Reduction in Images

The introduction to the wavelet representation presergéarsoncentrated on one-dimen-
sional signals. The main focus of this thesis is the noispgsion in images. Therefore,
this section summarizes the main principles of the threfergifit wavelet-transformation
schemes and wavelets that are used within this thesis feemeduction purposes.

3.4.1 Wavelet Transformations in Higher Dimensions

In addition to the separable extension of the DWT, two redohdavelet transforma-
tions are discussed: the stationary wavelet transform&8WVT) and the algorithm a trous
(ATR). In this section, the main differences between theedéfht approaches are explained
and schematic descriptions of the algorithms are presehktadhe theoretical derivations
the books[[Mall 99| Stra 96] give detailed information.
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Figure 3.3: Schematic description of two decompositiorelewf a 2-D-DWT. In each
step the one-dimensional DWT is successively applied todiws and the columns of the
image.

Figure 3.4: Two levels of a 2-D-DWT applied to a CT image.

DWT in Higher Dimensions

When dealing with images, the two-dimensional wavelet fansation is required. The
one-dimensional transformation can be applied to the ravdsclumns of an imagel
successively, which is referred to as separable transtaymMall 89]. The original input
image is also denoted a%), the approximation at the highest scale or at decomposition
levell = 0. Each step of the wavelet transformation decomposes thexpation image
at levell into four two-dimensional blocks of coefficients: the lowpdiltered approxima-
tion imageA, ., and three detail imaged’y, ,, WY, , andW}, , which include high
frequency structures in the horizontal (H), vertical (V)dasiagonal (D) directions. In
Fig.[3.3 a schematic description of the separable two-dsme@al DWT is presented. Like
the 1-D case, the 2-D multiresolution wavelet decompasitian be computed iteratively
from the approximation coefficients of the previous decositm level. An example of a
2-D-DWT performed on a CT-image is shown in Higl3.4. The sdga@BWT can easily
be extended to also work for more than two dimensions.

SWT - Stationary Wavelet Transformation

The computational efficiency and the constant storage caxitplare key advantages of
DWT. Nevertheless, the non-decimating wavelet transfaonatlso known as stationary
wavelet transformation (SWT), has certain advantages oWF Doncerning noise reduc-
tion [Coif 95,[Naso 95]. Mainly, SWT works in the same way as DWihwhe difference
that no downsampling step is performed. In contrast to DWE ftequency resolution is
now gained by upsampling the wavelet filtgrsaind & after each iteration. The analysis
filter bank of the 2-D-SWT is presented in Hig.]3.5. The numifavavelet coefficients in
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Figure 3.5: 2-D-SWT analysis filter bank. No downsamplingled toefficients is per-
formed. Instead the frequency resolution is obtained byonping the filters.
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Figure 3.6: 2-D-ATR analysis and synthesis filter bank. Cmyhpass filtering to one
direction without lowpass filtering orthogonal to that ispéed in order to achieve the
horizontal and vertical detail coefficients. No diagondhile are obtained. The frequency
resolution is again obtained by upsampling of the filters.

all blocks (A;, WY, W}, andWW},) are the same as number of pixels in the original im-
age, independent from the decomposition lév@lhis leads to an overall increased storage
complexity of SWT compared to DWT. At decomposition level redundancy factor of
2! is included for each dimension. The reconstruction frors thdundant representation
is not unique. If coefficients are modified, as it is done inesasf noise reduction, an
additional smoothing can be achieved by combining all fidsseconstructions from non-
redundant subsets. More precisely, at lévielr each dimension the averagedfinverse
2-D-DWTs is computed.

ATR - Algorithm a Trous

A third alternative two-dimensional wavelet transformatconsidered in this thesis is the
a-trous (ATR) algorithm as described in [Mall92]. The anayand synthesis filter banks
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are shown in Fid.316. The main difference in comparison to D@ SWT is that only
two instead of three detail images are computed at each geston level. The ap-
proximation coefficientsd;, at decomposition level are again computed by filtering the
approximation coefficients of the previous decompositemel/ — 1 with the lowpass filter
in both directions. The detail coefficients are filtered witile one-dimensional highpass
only in one direction respectively, resulting in two detaibgesWEl andWXl. In contrast
to DWT and SWT, no lowpass filtering orthogonal to the highpdssrifng direction is
performed. Diagonal detail coefficients are not needed éofegt reconstruction because
no downsampling step is performed. For the reconstruchiomjever, an additional low-
pass filtering withy,orthogonal to the highpass filtering direction is neces&arthe detalil
coefficients, in order to compensate for the missing diabdeiail coefficients[[Mall 92].

3.4.2 Choice of Wavelet

Many different wavelets and wavelet families can be fountka@nature. In the following,
a short overview of some of the most important wavelets ismgiwhich are used within
this thesis. The wavelet functions of the Haar, Db2 and CDB&%&hown in Fid. 3]7.
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Figure 3.7: Wavelet functions of Haar, Db2 and CDF9/7, whiehused for noise suppres-
sion within this thesis.

Haar Wavelet

The Haar wavelet was already introduced in 1909 by AlfredrHaho was interested in
the construction of basis functions for tié(R). As illustrated in Fig.3.7(a), the Haar
wavelet is discontinuous and resembles a step functions dtthogonal and symmetric
wavelet is the simplest member of wavelet families such asbBehies or Biorthogonal
Spline wavelets. The analysis high-pass and low-passsféter defined as:

H(z) =2 (1 — lzl) (3.20)
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and

2 2

V2 is needed as a normalization factor for compensating tissoibisalf of the components
while downsampling [Stra 96]. Because of orthogonality,ahtis given if

G(2) = V2 (1 + 121) . (3.21)

/ i (8 pe (1)t = {(1) :é: Jrandk = (3.22)
the dual filters for synthesis can be computed according to:
G(z) = H(—2) (3.23)
and i
H(z) = —G(—=). (3.24)

Daubechies Wavelets

Daubechies wavelets were the first wavelets after the Hazzletsthat were found to build
an orthonormal basis ih?(R). Daubechies wavelets are compactly supported and regular.
The maximum number of vanishing moments of the wavelet fanc¥ is indicated by
its name DbN. The length of the filter i5V. In Fig[3.7(b) the wavelet functiobb2 is
visualized. This example displays another property of [2ahies wavelets. They are not
necessarily symmetric. The filter coefficients of DaubesRi¢Db2) wavelet are given by
[Getr 05]:

H(z)=hiz+ho+h 127"+ h 927" (3.25)

and
G(Z) = h_QZ - h_1 + h02_1 - h12_2 (326)
with
1++/3 34+43 3-3 1-3
hoo=—7, hay=—r—, hy=—7=, hi=——.
42 42 42 442

The corresponding synthesis filter can again be computestdiog to equatiof 3.23 and
[3.24.

Bi-orthogonal Spline Wavelets

Spline Wavelets provide a smooth, regular and symmetriis laasl have a close form rep-
resentation. It is well known that symmetry and exact rettacson are incompatible,
except for the Haar wavelet, if orthogonal wavelets are u3dxkrefore more flexible bi-
orthogonal wavelets have been introduced. Instead of omeletaeand one scaling function,
as in the orthogonal case, additionally a dual Wavégg(t) and scalingéj,k(t) function
are defined. OnexZ(j,k(t)) is used in the analysis step and the other,(t)) for the syn-
thesis. How to construct bi-orthogonal spline waveletsisfly summarized in[[Getr 05].

SplineV.N wavelets, withn = B(N +N) — 1J can be generated as following:

2 n

H(z) = /(2)21772] (”—zl) Zm: <m N ”) ()" (z—2+2H", (327

n=0
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A(z) = /(2)21V2) (HTZ) , (3.28)

G(z) = zH(—=2), and G(z)=z"'H(-=2). (3.29)

The filter coefficients for the Spline4.4 also known as Cohantizchies-Fauraue(CDF9/7)
wavelet are given by:

H(z) =hy(2* + 2 4 ha(22 +272) + ho(ZP+ 27 )+ hi(z+ 2 +hy  (3.30)

and
G2)=g3(2+ 27+ g+ 2 ) +q(z+ 271 + g (3.31)

with

hy = 0.037828455507 g3 = 0.064538882646

hs = —0.023849465019 g» = —0.040689417620
he = —0.110624404418 g1 = —0.418092273333 .
hi = 0.377402855613 gy = 0.788485616614

ho = 0.852698679009

The wavelet functions for analysis and synthesis are displan Fig[3.7(d) and Fi§. 3.7(d).

Different wavelets and wavelet transformations used inféHewing for noise reduc-
tion in CT datasets were briefly reviewed in this chapter. Naane ready to have a closer
look on wavelet based noise reduction algorithms for theu&sT.



Chapter 4

Adaptive Wavelet based Noise Reduction
Using Multiple CT Reconstructions

Recently, Tischenko et al. [Tisc05] proposed a structuvinganoise reduction method us-
ing the correlations between two images for threshold detextion in the wavelet domain.
Their approach was motivated by the observation that, itrastto the actual signal, noise
is almost uncorrelated over time. Two projection radiofgsapnages, which are acquired
directly one after the other, show the same information lmigenbetween the images is
uncorrelated assuming, of course, that the patient doesiaeg¢. This concept of image
denoising serves as a basis for the suppression of pixed momputed tomography im-
ages, described in this chapter, which has partially bebhghed in [Bors 06, Bors 08c].

The main contributions in this chapter are: The generatigpatially identical input
images, where noise between the two images is uncorrelataddressed for the case of
CT. Two different similarity measurements for differeniigt between structure and noise
in the wavelet representation of the input images are imyegsd. Moreover, the use of
different wavelet transformations with different propestfor the noise reduction based on
two input images are compared. The nonreducing ‘a-trousrittgn (ATR), the dyadic
wavelet transformation (DWT) and the stationary waveletgfarmation (SWT) are com-
pared in combination with both similarity measurements.e Tifferent approaches are
evaluated with respect to reduction of pixel noise and puvasen of structures. Experi-
ments based on phantoms and on clinically-acquired da@pesformed. Within a human
observer study the low-contrast-detectability in noisgt denoised images was compared.
Finally, the proposed method is compared to a projecti@ethanoise reduction method
that is used in clinical practice.

4.1 Methodology Overview

Figure[4.1 illustrates the different steps of the noise cédn method. Instead of recon-
structing just one image from the complete set of projestiBntwo imagesA and B,
which only differ with respect to image noise, are generalduls can be achieved by sep-
arate reconstructions from disjoint subsets of projestidmageA is reconstructed from
the set of projection®1 (e.g. from the set of projections acquired at the first deteatt a
DSCT) andB is reconstructed fron2 (e.g. the set of projections acquired at the second

33



34Chapter 4. Adaptive Wavelet based Noise Reduction Using MelG€T Reconstructions

&

A\ 4 A
CT-Reconstruction CT-Reconstruction
from PI from P2

Wavelet Wavelet
Decomposition Decomposition
Correlation
Analysis
A 4
| Averaging |

And Weighting

y
Wavelet
Reconstruction

Figure 4.1: Block diagram of the noise reduction method
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detector of a DSCT). The two images include the same struatfmemation, but noise
between the two images is assumed to be uncorrelated.

Both images are then decomposed into multiple frequencybgd 2-D discrete
dyadic wavelet transformation. This allows a local freqreanalysis. The detail coef-
ficients of the wavelet representations include higherdeagy structure of the images
together with noise in the respective frequency bands. Heoraduction of high frequency
noise as it is present in CT images, only decomposition lesa®ring the most domi-
nant frequency bands of the noise spectrum are of interéess, thus, not necessary to
compute the wavelet decomposition down to the coarsest.s@dle number of decom-
position levels that cover the noise spectrum depends orettunstruction field of view
(FOV). The smaller the FOV the smaller the pixel size and eqaosntly the higher the
frequencies at the first decomposition level. Due to theritgaic scale of the wavelet
transformation, halving the FOV, e.g., means that one mecemhposition level is needed.
The experiments showed, that in most cases few decompos$itvels, e.g. 3 or 4, are
sufficient because they cover approximately 90 percenteofrtquencies of an image, if
dyadic wavelet decompositions are used.

For each decomposition level a similarity image is compubiskd on correlation anal-
ysis between the wavelet coefficientsfnd B. The goal is to distinguish between high
frequency detail coefficients, which represent structofermation and those which rep-
resent noise. High frequency structure that is present ih images should remain un-
changed, while coefficients representing noise should ppregsed. A frequency depen-
dent local similarity measurement can be obtained by comg#ne wavelet coefficients of
the input images. Two different approaches will be desdrilide similarity measurement
can be based either on pixel regions taken from the lowpaseefil approximation images,
or on the high frequency detail coefficients of the wavelptesentation of the images.

Level dependent weighting images are then computed by mgpdypredefined weight-
ing function to the computed similarity values. Ideallye tresulting masks include the
valuel in regions where structure has been detected and valuekesthan1 elsewhere.
Next, the wavelet coefficients that correspond to the recocison from the complete set
of projections are weighted according to the computed wgighimage. If a linear re-
construction method is used, the averaged wavelet coeiffscad the input images (detail-
and approximation-coefficients) are equivalent to the \‘eaefficients of the image re-
constructed from the complete set of projections. Otherwise wavelet coefficients of
the image reconstructed from all projections is used forghtng. In both cases only
one inverse wavelet transformation is necessary in ordget@ noise suppressed output
image R. This output image corresponds to the reconstruction fiteencomplete set of
projections but with improved signal-to-noise ratio (SNR).

4.2 Multiple CT-Reconstructions

The input images are generated by separate reconstrutamslisjoint subsets of pro-
jectionsP1 C P andP2 C P, with P1 NP2 = (), |P1| = |P2| andP = P1 U P2, where

|P| defines the number of sampleskrand is assumed to be even. The two input datasets
A and B are computed according to

A=TR{P1} and B =TR*{P2}, (4.1)
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whereR* defines the reconstruction operator, like in our case adiltdrackprojection
based reconstruction method. Generally, other recongirutechniques can be used,
however, the investigation of the influence of the recomsitbn technique to the denois-
ing method is beyond the scope of this work. Different retmasion methods may also
lead to special requirements for the valid sets of projestiBl and P2. However, the
restrictions based on Shannon’s sampling theorem arefealall kinds of reconstructions
(seel[Natt86]). In the following we assume that the samptivegprem is fulfilled for both
single sets of projections.

Both separately reconstructed images can be written as apagite@n of an ideal
noise-free signab and zero-mean additive noisé&

A:S+NA and B:S+NB, (42)

with N, # Npg, and the subscripts describing the different images. Thalisignal, re-
spectively the statistical expectatién is the same for both input imagés= £(A) =
£(B) and hence also for the averaye= $(A + B), which corresponds to the reconstruc-
tion from the complete set of projections if a linear recansion method is used. The
noise in both images is non-stationary, and consequerglgtidndard deviation of noise
depends on the local positisn= (z,y)”, but the standard deviations;, (x) ando y,, (x)

at a given pixel position are approximately the same beciawuseerage the same number
of contributing quanta can be assumed. Noise between tiecgiomsP1 andP2 is uncor-
related and accordingly noise between the separately seécated images is uncorrelated,
too, leading to the following covariance:

CoV(N4, Np) = Y Na(x =0, (4.3)

xe€)

with x defining a pixel position an denoting the whole image domain.

Generally, the above scheme can also be extended to workmvatk than two sets
of projections. The reason for restricting all the follogyidiscussions on just two input
iImages can be found in the close relation between the sthmgaation of noiser and

radiation dose [Kale 00]: '

v/ dose 7

which holds as long as quantum statistics are the most dowsaairce of noise and other
effects, like electronic noise, are negligible. If the sigbimjections should be split up into
q equally sized parts the effective dose for each separagebnistructed image is divided
by a factor ofq. Thus, the standard deviation of noise increases by a faftgrg in
every single image. The detectability of edges based oreledion analysis depends on
the contrast-to-noise level, as the experiments show.eftia, it is reasonable to keep the
number of separate reconstructions as small as possité®ifcav contrasts are of interest,
leading tog = 2.

Dual-Source CT The simplest possibility for acquiring1 andP2 is to use a dual-
source CT-scanner where two X-ray tubes and two detectoisiwgarallel [Brud 06], as
illustrated in Figl 4.2(a). If for both tube-detector-sysis, also called A- and B-system,
the same scan and reconstruction parameters are used, dtialgpdentical images can
be reconstructed directly. The imageis reconstructed from the projectioi*$ acquired
at the first detector and the imagefrom the projection$2 of the second detector. Instead

o X

(4.4)
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(a) Schematic description @) Extension of projections of Bc) Percentage of rays acquired at
DSCT. system with data from A-systenthe A-system used for reconstruc-
tion of B-image.

tube-angle a

Figure 4.2: Left: Schematic description of a DSCT-scannernddk: lllustration of
padding of projections acquired at smaller second detéctdored in blue) in DSCT sys-
tem with data from the larger detector (colored in red). Ridlie percentage of correlated
rays used for the reconstruction within a FOV of 35 cm of thex&ge, where the mea-
surement FOV is only 26 cm and the data at the outer borderaddgul form the other
tube-detector-system.

of simply averaging both images, they can be used as inphétodise reduction algorithm
in order to further suppress noise.

In real DSCT systems the detector of the B-system might be sntakn the detector
of the A-system. Therefore, the projections acquired aBisystem are extended at the
outer border with data from the A-system, as explained initiet [Brud 06]. The exten-
sions of the projections is illustrated in Hig. 4.2(b). Withis technique two images can
be reconstructed at the full measurement FOV of the largect®. Inside the FOV that
is covered by both detectors independent acquisitions fr@amwo detectors exist. Con-
sequently, noise within these regions can be assumed todmeratated between the two
images. Outside this region only parts of the projectiomdvddrom independent mea-
surements due to the padding of the projections. Therefmigg in this outer region is
no longer perfectly uncorrelated. How many independentsunesnents are used for the
reconstruction of a certain point depends on the distandei®point to the fully covered
FOV. The percentage of padded data is shown inFig. 4.2(a) agample.

Single-Source CTIf no DSCT scanner is available, different approaches foregen
ating two disjoint subsets are possible. For exampleand P2 can be acquired within
two successive scans of the same body region using the sameirsg parameters. This
requires that the patient does not move between the two.scans

In order to avoid scanning the same object twice, anothesilpitisy is proposed for
generatingA and B from one single scan. Let us first consider parallel geomeiry
assume that noise between neighboring parallel project®oncorrelated, which means
that cross-talk at the detector is negligibly small. Thewg tomplete images can be re-
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constructed, each using only every other projection. Sigadly, the A image is computed
from the even and th& image from the odd numbered projections:

Pl ={PJ]i mod2=0}, (4.5)
P2 ={PJi mod2=1}, (4.6)

where the total number of projections is assumed to be evgardllel projection acquired
at the rotation anglé is denoted a$>. Under the constraint of uncorrelated parallel pro-
jections, noise betweefiandB is again uncorrelated as stated in equafiod (4.3). If atinea
reconstruction method, like the filtered backprojectionsed, the average of the two input
images again corresponds to the reconstruction from th@letenset of projections. Thus,
averaging the two separately reconstructed images camdspo the reconstruction using
the complete set of projections. It has the same image 1g@oland the same amount
of pixel noise. However, halving the number of projectiongim influence aliasing arti-
facts and resolution il and B. With decreasing number of projections the artifact radius
within which a reconstruction free of artifacts is possjlilecreases [Oppe|06]. Further-
more, azimuthal resolution is reduced away from the isderefiKak 01]. Usually, for
CT-scanners commonly available, the number of projectisrsei to a fixed number that
ensures a reconstruction free of artifacts within a cef@V at a certain maximum res-
olution. Thus, for the application of this splitting tecfjne, care must be taken that the
number of projections for separate reconstructions idsgh enough for the desired FOV
in order to avoid lower correlations due to reduced resotutir artifacts inA and B. Al-
ternatively, the scan protocol can be adapted to acquirddbbled number of projections
per rotation.

A comparable splitting technique can also be applied wherkiwg with fan-beam
data. Basically, two different methods for splitting of m@cijions are possible: the fan-
beam projections can be split up before or after rebinningati@llel-beam projections.
If the fan-beam projections are first rebinned to parales projections and then split
up into two disjoint subsets, the problem arises that nogte/éen the two reconstructed
imagesA and B is no longer uncorrelated, because all projections werd tmethe re-
binning step. Therefore, it is more reasonable to split @pféim-beam projections before
rebinning. The radial rebinning, however, is a non-lineperation. As a consequence
the mean imagé/ = (A + B) is no longer the reconstruction from the complete set of
projections. This effect is nearly not noticeable closenmiso-center, but with increasing
distance to the iso-center resolution is slightly redudedrder to make sure, that the final
result R corresponds to the image reconstructed from the completd# peojections with
increased SNR, the wavelet coefficients of the image reassistt from the complete set
of projections should be weighted.

4.3 Correlation Analysis in the Wavelet Domain

The separately reconstructed imagésnd B are decomposed into multiple frequency
bands by a discrete wavelet transformation. Here, thréerdift wavelet transformations:
‘a-trous wavelet transformation (ATR), discrete time wavetansformation (DWT), and
shift invariant wavelet transformation (SWT) are comparéith nespect to their noise re-
duction properties in CT based on correlation analysis.
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Detail coefficients gained from the multiresolution wavelecomposition of the input
images include structure information together with noidee goal of the correlation anal-
ysis is to estimate the probability of a detail coefficientresponding to structure. This
estimate is based on the measurement of the local frequismsndent similarity of the
input images.

Two different methods for similarity computation will besdussed. First, a correlation
coefficient based measurement, comparing pixel regioms the approximation images,
will be introduced. Secondly, a similarity measuremenectly based on the detail coef-
ficients, is presented. The core idea behind both methodsikes For all detail images
of the wavelet decomposition, including horizontal, veati(and diagonal) details, a cor-
responding similarity imagé’; between the corresponding wavelet decompositions of the
two input images4d and B is computed for each levélup to the maximum decomposition
level ... The higher the local similarity, the higher the probabithat the coefficients at
the corresponding positions include structural inforomatihat should be preserved. Ac-
cording to the defined weighting function, the detail coéffits are weighted with respect
to their corresponding values in the similarity image. Detaefficients representing high
frequency structure information should be preserved, evhdisy coefficients should be
suppressed.

4.3.1 Correlation Coefficients

One popular method for measuring the similarity of noisyadatthe computation of the
empirical correlation coefficient, also known Bearson’s correlation It is independent
from both origin and scale and its value lies in the intefval; 1], where 1 means per-
fect correlation, 0 no correlation andl perfect anticorrelatiori [Bron 00]. This correlation
coefficient can be used in computing the local similaritywestn two images, by taking
blocks of pixels in a defined neighborhood around each pixéie two images and com-
puting their empirical correlation coefficient.

This concept can be extended by comparing images of waveéficents. In order to
estimate the probability for each detail coefficient of thevelet decomposition to include
structural information, the computation of a similarityage at each decomposition level
is proposed. The similarity image is of the same size as thal demages at that decom-
position level, meaning that for each detail coefficient aesponding similarity value is
calculated.

An important point is the selection of the pixel regions ugadthe local correlation
analysis. A very close connection between the detail coeffiis and the similarity values
can be obtained if the approximation coefficients of the jprewdecomposition levél- 1
are used for correlation analysis at levelvhere the original image is the approximation
image at level = 0. For the similarity value”;(x) the weighted correlation coefficient
is computed between the approximation coefficiehts and B;_; within the local neigh-
borhood(2, around the current positianaccording to:

_ CoV(Ar1,Bi)
V/Var (A4, _1)Var(B_1) 7

Ci(x) (4.7)
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with weighted covariance

Cow(4, B) = — 3 (A — Ay) (B() — B) n(%, %), (4.8)

Thx %€

and weighted variance

Varg(A) = 1 37 (A®) - A (%, %), (4.9)

T %O

wheren(x, x) is a weighting function. Different possible weighting failonis are presented
later. The mean value of within the neighborhoofl, is defined as:

Ay = ! > AR), (4.10)

|Qx’ %€

where|(),| denotes the number of pixels . For normalization the mean value »in
(), is needed:

e = Ty 2 &), (4.11)

XEQx

The functionn(x,x) is, on the one hand, used for defining the local neighbortepd
within the image domainf) around the pixelk that contributes to the local correlation
analysis:

O ={x|x € QAnX,x) > €}, (4.12)

wheree > 0 is a small number. On the other hand, different locally delpaih weights
can be used, such that some pixels are considered more thens,at. g. the intensities at
positionsx very close tax can be weighted stronger than those farther away.

With this definition it is possible to directly use those appmation coefficients for the
correlation analysis, which mainly influenced the detaéftioient at positionk at levell
through the computation of the wavelet transformation. irhdtiresolution wavelet de-
composition is computed iteratively. Thus, the detail Goreints at level are the result
of the convolution of the approximation image at level 1 with the respective analysis
lowpassg, and highpassg; filters. During the computation of the inverse wavelet tfans
mation, the approximation image at level 1 is reconstructed by summing up the approx-
imation and detail coefficients at levéfiltered with the synthesis filter and ;. The
wavelets used here, all lead to spatially limited filters. €&muently, a detail coefficient
at a certain position is influenced by a certain number oflpik®m the approximation
image and has influence to a defined region of pixels in thecppation image due to
the reconstruction. These relations are considered fadéfiaition ofr. For this purpose
the function¢ is defined first:

£(x) = qu(@)huy) * gi(@)ha(y)] + ()G (y) * ha(2)ai(y)| + 15(2)guy) * gu(x) g ()],
(4.13)
which is then shifted such that is symmetric to the origin.e Tanctionn can then be
defined such that exactly those coefficients of the appraiemamage of the level—1 that
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(a) Haari =1 (b) Haar, =2 (c) CDR9/7,l =1 (d) CDF9/7, =2

Figure 4.3: Similarity measurement based on correlatigffiodents using the Haar and
CDF9/7 wavelet for the first two decomposition levels of DWT.

have influenced a certain detail coefficient and that areenfted by that detail coefficient
through the inverse transformation are considered for dheetation analysis:

X):{1 if ¢(x—%) >0

e (% (4.14)

Y

0 otherwise

With this definition ofy the region around the positiontakes into account all the pixels
from the approximation image that are directly connectetthéocertain pixel ak through
the wavelet analysis and syntheses steps. All coefficieitténathe so defined region are
equally weighted for the correlation analysis. The maximmumber of coefficients within
this region amounts t@®n)?, wheren is the length of the wavelet filters, df= 0. Without
loss of generality the filters here are assumed to be of equateen length.
Another possibility is to use the weights £for computing a weighted correlation coeffi-
cient with

(%, x) = £(x — X). (4.15)

This weighting directly takes into account the weights & #malysis and synthesis filters.
Usually, the wavelet filters are close to O at the outer bard@hese coefficients have a
lower impact on the correlation valuesjf' is used.

The weighting function on the other hand can also be a Gausigtion that decays with
increasing Euclidean distancexofndx:

1 =13
e 25 . 4.16
gV 2T ( )

If n&"is usede > 0 should be used in order to restrict the region for corretatinalysis
to a certain well defined neighborhood, because the Gaussiation only asymptotically
goes to 0 with increasing distancesofindx.

(R x) =

4.3.2 Gradient Approximation

The core idea of a gradient-based similarity measuremetat &xploit the fact that the
horizontal and vertical detail coefficientgY and W can be interpreted as approxima-
tions of the partial derivatives of the approximation imagdevell — 1. In the case of
the Haar wavelet, for example, the application of the higspgdter is equivalent to the
computation of finite differences. Coefficientsli¥ show high values at positions where
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(a) Haar/ =1

Figure 4.4: Similarity measurement based on approximatadignts using the Haar and
CDF9/7 wavelet for the first two decomposition levels of DWT.

high frequencies in the-direction are present, while coefficientslii have high values
where high frequencies in thedirection can be found. The detail coefficients in horizon-
tal and vertical direction of both decompositions are cdeissd as approximations of the
gradient vectors. The similarity can then be measured bypating the angle between the
corresponding approximated gradient vectors. The goal gbtain a similarity value in
the rangg—1; 1], similar to the correlation computations of €q.14.7. Therefthe cosine
of the angle is computed:

WX,Z(X)WE,!(X) + WEI(X) ng(x)
VVY,60)” + (W5,60)° (W3,60) + (WH, ()’

where the index A refers to the first and B to the second inpagen

This kind of similarity measurement has also been used lh&isko [Tisc 05] in com-
bination with the ‘a-trous wavelet decomposition. As atlgaxplained in Section 3.4.1,
only horizontal and vertical detail coefficients are conaguin the case of the ‘a-trous
algorithm. However, the additional lowpass filtering ogbaal to the highpass filtering
direction in the case of DWT and SWT is advantageous with redpeedge detection.
The only problem is that the gradient approximation, asohiced so far, in the case of
DWT and SWT, can sometimes lead to visible artifacts. [Figad.&0d the difference im-
ages in Fid.4.5(b) show four example regions where thislpmlran be seen using the
Haar wavelet.

Noticeably, artifacts predominantly emerge where diagsinactures appear in the im-
age, and their shape, in general further justifies the assommnat diagonal coefficients
are falsely weighted down. The different sizes of the astfare due to errors at different
decomposition levels. Suppression of correlated diagstnattures at a coarser level in-
fluences a larger region in the reconstructed image. Themdas these types of artifacts
is that diagonal patterns exist, which lead to vanishingitiebefficients in horizontal and
vertical direction. If the L2-norm of one of the approximaigradient vectors is too small
or even zero, no reliable information about the existenceoofelated diagonal structures
can be obtained from Equatidn (4117).

The simplest solution for eliminating such artifacts is teight only the detail co-
efficients WY and W} based on the similarity measuremeTtitand leave the diagonal
coefficientsiV” unchanged. As expected, this avoids artifacts in the ieguinages,
but, unfortunately, noise included in the diagonal coedfits is not removed, leading to a

CZ(X) =

, (4.17)
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(a) artifacts (b) difference, artifacts (c) no artifacts (d) difference, no arti-
facts

Figure 4.5: Artifacts due to weighting down correlated diagl coefficients with the gra-
dient approximation method - (a) four detailed regions shgvartifacts, (b) difference
between noise suppressed and original image regions sp@iifiacts, (c) same image
regions without visible artifacts, (d) differences withausible artifact after appropriate
weighting of diagonal detail coefficients.

lower signal-to-noise ratio in the denoised images. Equa#.17) shows that the similar-
ity value is computed only frorfil’,¥ andW}*. The diagonal coefficients do not influence
Cy. In order to avoid artifacts while still reducing noise iretdiagonal coefficients, the
detail coefficientsV,Y and W/ are weighted depending on the similarity measurement
computed from Equatiod (4.117). The diagonal detail coeffits are then treated sepa-
rately. The new weighting function for the diagonal coe#fids is based on the following
correlation analysis betweé#i)y, andVp ;:

2W£l (X)Wg,z(x> '
(WR(x))" + (WB,(x)*

CM(x) =

l (4.18)

Using this extension for a separate weighting of diagonaffaents, denoising results
without visible artifacts are obtained(see Figure 4]5(d))

Note that, equations(4[7, 4117, 4.18) are only defined farzero denominators. How-
ever, in all three cases it can be assumed that no relevantreiguency details are present
if the denominator is 0 and, therefore, the similarity vakiset to 0.

4.3.3 Weighting of Coefficients

The result of the correlation analysis is a set of similantygesC; with values in the
range[—1; 1]. The closer the values are to 1, the higher the probabildy structure is
present. Consequently, the detail coefficient at the cooredipg position should remain.
The lower the similarity value, the higher the probabilihat the corresponding detalil
coefficient includes only noise and, therefore, should Ippsessed. We now have to define
a weighting functionw(Cj(x)), that maps the values in the similarity images to weights
in the rangel0; 1]. If a linear reconstruction method is used, the weights aiatwise
multiplied to the averaged detail coefficients of the twouhimnages:

WR,Z(X) = % (WA,Z(X> + WB’Z(X)) . w(C’l(x)), Vil e [1, lmax], (4.19)
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obtaining the detail coefficientd’z; of the output image:. The approximation images of
the two input images are only averaged:

R (3) = 5 (A () + B (). (4.20)

Otherwise, instead of averaging the wavelet coefficientd a@ind B, the wavelet coeffi-
cients of the image reconstructed from the complete setapegtions are used.

The simplest possible method for a weighting function is $e a thresholding ap-
proach. If the similarity valu€’, at a certain position is above a defined value the weight is
1 and the detail coefficient is kept unchanged, otherwisesét to zero. Generally, the use
of continuous weighting functions, where no hard decisibaut keeping or discarding
coefficients is required, leads to better results. In pplecone can use any continuous,
monotonically decreasing function with rang@e1], such that 1 maps to similarity values
close to 1. We use the weighting function

w(Cy(x)) = (% (Cy(x) + 1))p € [0,1], (4.21)

which has a simple geometric interpretation. In the casdefgradient approximation
method, the similarity values correspond to the cosine efahgle between the gradient
vectors. In the case of the correlation coefficients, thelaiity value can be interpreted
as the cosine of the angle between thdimensional vectors of pixel values taken from
pixel regions of4; and B, (both zero-mean normalized within the pixel region). Here,

is the number of pixels if2,. Eq.[4.21), therefore, leads to a simple cosine weighting,
shifted and scaled to the intervidl 1], where the powep € R controls the amount of
noise suppression. With increasipgalues the function goes to 0 more rapidly, but still
leads to weights close to 1 for similarity values close to 1.

All different steps of the noise reduction method, as shawfig[4.1, are now de-
scribed: the generation of the input imagésand B, different possibilities for wavelet de-
composition were pointed out, a new similarity measure betwthe wavelet coefficients
of the input images based on correlation analysis, an etdifae extension to gradient-
based approximations of correlation analysis, and a tegcienior weighting the averaged
details. The final step is to reconstruct the noise suppdagselt imager by an inverse
wavelet transformation from the averaged and weighted l@tgeefficients.

4.4 Experimental Evaluation

For the evaluation of the described methods, experimerntsdyophantom and clinically-
acquired data were performed.

4.4.1 Noise and Resolution

In order to evaluate the performance of the noise reductiethods, mainly two aspects
are of interest: the amount of noise reduction and, even mguertantly, the preservation
of anatomical structures.
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(a) no noisel0 HU (b) noisy,10 HU (c) no noise 100 HU (d) noisy,100 HU

Figure 4.6: Reconstructed simulated phantom images usi@d¢&8el.
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Figure 4.7: MTFs of different reconstruction kernels.

Phantom

For the experiments reconstructions from a simulated dyilial water phantomr( =

15 cm), with an embedded, quartered cylinder=£ 6 cm) were used. The contrast of the
embedded object in comparison to water varied between 10@MEU. The dose of radia-
tion (100 mAs/1160 projections) was kept constant for all simulations, leading to a nearly
constant pixel noise in the homogeneous area of the watedeyl All simulations were
performed with theDRASIMsoftware package provided by Siemens Health¢are [Stie 02].
The advantage of simulations is that in addition to noisygutions (with Poisson distribu-
ted noise according to quantum statistics), ideal, naise-flata can also be produced and
we have ground truth data. All slices were of size@ x 512 and were reconstructed within

a field of view of20 cm using: a) a sharp Shepp-Logan (S80) filtering kernel, leatbra
pixel noise of approximately.6 HU in the homogeneous image region in the reconstruc-
tion from the complete set of projections; and b) a smootbhdylkernel (B40), leading to a
pixel noise of approximately.2 HU. For noise-resolution measurements some additional
typical body kernels were utilized. The MTFs of all used ldsnare shown in Fig. 4.7.
The standard deviation of noise in the separately recartstiimages is about2 times
higher (see EqL(4.4)). Two examples (10 and 100 HU) are showig.[4.6. For both
contrast levels, one of the noisy input images and the qooreting noise-free images are
shown.
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MTF Computation

First, the capability of the noise reduction algorithm tdet¢ edges of a given contrast
in the presence of noise was investigated. The local maduol&ansfer function (MTF),
measured at an edge, for detecting changes due to the wgjgiftwavelet coefficients
during noise suppression. As described in Sedfion2.5i8, pbssible to determine the
MTF directly from the edge in an image. For this purpose, afpegion of20 x 125 pixels
around an edge (with a slope of approx. 4 degrees) was sgldRtdiable measurements
of the MTF from this edge technique can only be achieved ifciatrast of the edge is
much higher than the pixel noise in the images [Cunn 92]. Igeahe should measure
MTF on noise-free images. However, measuring the qualigdge preservation based on
the contrast of the edge in the presence of noise is of inteess.

The impact of the weighting in the wavelet domain during a@isppression to the ideal
signal should be measured. For that purpose, in additiodmetmoisy input images, which
are a superposition of ideal signal and noise, an ideal imfage of noise, is simulated
and reconstructed. The noise-free image is also decompatgeitis wavelet coefficients.
The weighting image is generated from the similarity comapans from the wavelet coef-
ficients of the noisy input images, as explained in the prev&gection. In order to measure
the impact of the weighting to the ideal signal, the detadfticients of the noise-free im-
age were point-wise multiplied with the computed weightfie Tmage gained from the
inverse wavelet transformation of the weighted coeffigaitthe noise-free image shows
the influence of the noise suppression method on structirestlg. Edges, which were
detected as correlated structures, are preserved. If anvealg not detected correctly, the
edge gets blurred, which influences the MTF.

Evaluation of Edge-Preservation

In the first test, the influence of the noise suppression naetbhdhe MTF was evaluated
with regard to the contrast of the edge. Phantom images vea@, @s described above,
reconstructed with the S80 kernel, with varying contrastseedge (10, 20, 40, 60, 80 and
100 HU). The noise suppression method was performed for the finsé ttlecomposition
levels using a CDF9/7 wavelet. In all cases a continuous wiegfunction was utilized,
as presented in Eq.(4]21). The MTF was computed for the nedidifdise-free images and
compared to the MTF of the ideal image, without modificatjaegonstructed from the
complete set of projections. The results of this test austitated in Fid. 418, allowing a
comparison of the different wavelet transformation methadd theCorr and Grad ap-
proaches for similarity computation. Ideally, the noisguetion methods do not influence
the MTF in any respect. Specifically, the edge is not bluriédhe corresponding MTF
falls below the original ideal curve, this indicates that #dge is smoothed. Alternatively,
the MTF raises if some frequencies are amplified. As seengnZ8 theCorr method
leads to better edge detection in comparison td3red approach for all cases.

This can be explained by the better statistical propertfehe similarity evaluation
based on correlation coefficients between pixel regionsreMalues are included in the
correlation computations and, therefore, the results aeeneliable. As expected, the
approximated gradients are more sensitive to noise. Fanethods it can be seen that
decreasing edge contrast results in decreasing MTF. Ta&lglshows that decreasing
CNR lowers the probability that the edge can be perfectlyaete However, one can see
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Figure 4.8: MTF for varying contrast at the edge using the GDR&velet. Comparison of
correlation coefficient approach (Corr) and gradient appnakon (Grad) in combination
with different wavelet transformations.
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that with increasing contrast, the MTF gets closer to thaliTF. In the case of th€orr
method the difference to the ideal MTF, even for a contra&0HU, is very small. The
Grad approach, in contrast, does not reach the ideal MTF evemfedge contrast of 100
HU. One can also observe that the performances for the tiffeeett wavelet computation
methods are quite similar. The two nonreducing transfaonatgive slightly better results
in case of theCorr method, at least for higher contrasts. In combination withGrad
method, ATR and SWT slightly outperform DWT. The redundanbinfation included
in nonreducing wavelet transformations, such as ATR and S®&0s to an additional
smoothing. The similarity is evaluated for all coefficieniBhe reconstruction from the
weighted redundant data, therefore, leads to smoothedtseson the other hand, the
additional lowpass filtering orthogonal to the highpaseriittg direction, in the case of
DWT and SWT, improves the edge detection results. Altogetherexplains why SWT,
which combines both positive aspects, gives best results.

An even better comparison of the results can be obtaineddieggtheps, values. This
is the resolution for which the MTF reaches a valué.6f In Fig.[4.9,p5, is plotted against
the contrast of the edge for the different methods. This tihmee different wavelets (Haar,
Db2 and CDF9/7) are compared. Two different convolution &=1(S80 and B40) were
used for image reconstruction (see MTFs in Eigl 4.7). Usisgaothing kernel changes
the image resolution, as well as the noise characterigticen Fig[4.9 it can be seen that
the resolution in the original image using the B40 kernelvgdothan for the S80 kernel. In
addition to that, the noise level is also lower (see nextgrazh on noise evaluation) using
the B40 kernel. Due to the better signal-to-noise-level itiput images the edges can be
better preserved when using B40. All other effects are sirfolaboth cases. First of all, it
can be seen that the clear differences betweetre andGrad methods decrease when
using the Db2 and the Haar wavelet. The results of@Gnad approach get better with
decreasing length of the wavelet filters. More specificdahg better the highpass filter
of the wavelet is in spatially localizing edges, the better tesults of thé&srad method.
For the Haar wavelet, we can see thaf even exceeds they, value of the ideal image.
This can be attributed to the discontinuity of the waveldtjol can lead to rising higher
frequencies during noise suppression.

Evaluation of Noise Reduction

The same phantom images were used for evaluating the naisetien rate. The use of
simulations has the advantage that an ideal, noise-fregansaavailable. Therefore, noise
in the images can be clearly separated from the informatyoronputing the differences
from the ideal image. The effect of the noise reduction algor can be evaluated by
comparing the standard deviation of noise in the noiset®gsed images to that in the
average of the input images. Two different regions, el@thx 100 pixels, were used and
the standard deviation of the pixel values in the differentages were evaluated. The first
region was taken from a homogeneous area. Here, the acl@evabe reduction rate of the
different approaches can be measured. The second regiochwssn at an edge because
the performance near the edges differs for the various appes. Sometimes a lower
noise reduction rate is achieved near higher contrast eddesefore, it is interesting to
compare the noise reduction rates close to edges for diffeantrasts. Furthermore, the
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Figure 4.9: The;, values in dependence on contrast at the edge for differetiade and
wavelets.
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Table 4.1: Percentage noise reduction in a homogeneouiregmn.

Grad Corr
S80 ATR DWT SWT | ATR DWT SWT
Haar 26.9 22.9 26.0| 421 39.2 40.7
Db2 27.4 22.9 26.3| 46.2 44.9 45.7

CDF9/7 || 27.6  23.2 26.5| 48.2 479 48.1

B40 ATR DWT SWT | ATR DWT SWT
Haar 26.6 22.0 25.4| 38.9 36.3 38.3
Db2 26.1 22.5 25.9| 435 42.2 43.2

CDF9/7 || 27.0 22.7 26.2| 455 44.9 45.4

noise reduction rates were evaluated for the two differeodmstruction kernels (S80 and
B40).

In the homogeneous image region, no noticeable changedseeved when the con-
trast of the objects is changed. Therefore, the measursenrentses of 100, 60 and 20
HU are averaged. Tdb. 4.1 presents the noise reduction(petientage values) measured
in the homogeneous image region. The first clear observetithrat the noise suppression
for the Corr method is much higher than that for tkead method. The computation of
correlation coefficients between pixel regions taken framdpproximation images leads
to smoother similarity measurements. This is also notiesagarding the weighting ma-
trices in FigL4.# in comparison to Flg. 4.3.

An interesting observation is that, for ti&rad method, the noise reduction rates do
not vary for the different wavelets. In contrast to that, whesing theCorr approach,
slightly increased noise suppression can be achievedrigeloreaching wavelets. By in-
creasing the length of the wavelet filters, larger pixel oegiare used for the similarity
computations. This avoids the case where noisy homogerexeisregions are acciden-
tally detected as correlated. In contrast, the fact thataph@oximated gradient vectors
in noisy homogeneous pixel regions can sometimes pointtedime direction cannot be
reduced by using longer reaching wavelets. The comparicthedhree wavelet transfor-
mation methods shows that DWT again has the lowest noise essgipn capability, while
SWT and ATR perform comparably. This shows that nonreduciagglet transformations
are better for noise suppression due to their inherent ciahoy. All these observations
can be made for both convolution kernels. The differenctng,in the images with lower
noise level, due to the reconstruction with a smoothing éelike the B40, the noise re-
duction rate is approximately 3 percent points in the caseed€orr method and less than
1 percent point in the case of tké&¥ad method below the noise reduction rate in the more
noisy images reconstructed with the S80.

Tablel4.2 lists the noise reduction rates achieved in the eslgjon, again using the two
different convolution kernels. Here, the results are camgbdor three different contrasts
at the edge. Most of the observations for the homogeneougeimegion are also valid
for the edge region. Th€orr approach clearly outperforms ti&rad method. The DWT
shows the lowest noise suppression, whereas ATR and SWT angacable. In the case
of the Grad method, it can be observed that there is nearly no diffeehesdween the
different wavelets. Generally, with decreasing contragt@edge, more noise in the local
neighborhood of the edge can be removed. The reason fostthatithe lower the contrast,
the lower the influence of the edge to the correlation anslysiowever, one difference
between the two similarity computation methods becomearcléor theGrad approach
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Table 4.2: Percentage noise reduction rates in an edgenregio

Grad Corr
S80 ATR DWT SWT | ATR DWT SWT
Haar 25.4 21.2 24.1| 38.4 35.3 37.0
100HU Db2 25.2 21.6 24.1| 40.0 39.0 39.6
CDF9/7 || 25.9 215 245| 36.0 35.6 36.0
Haar 265 221 25.2| 401 37.9 38.9
60HU  Db2 26.6 21.6 24.8| 42.1 41.1 41.8
CDF9/7 || 27.0 21.7 25.4| 39.0 38.0 38.9
Haar 26.6 217 25.1| 40.7 38.1 39.4
20HU Db2 26.6 22.1 25.4| 43.8 42.3 43.3

CDF9/7 || 27.1 224 25.4| 432 425 43.1

B40 ATR DWT SWT | ATR DWT SWT
Haar 22.9 19.8 224 330 311 32.6

100HU Db2 21.8 19.3 22.0| 348 341 34.7
CDF9/7 || 22.3 19.2 222 29.4 288 29.7

Haar 253 21.2 24.0| 358 33.6 35.0

60HU  Db2 24.4 19.6 23.1| 37.7 36.5 374
CDF9/7 || 25.3 19.9 23.7| 327 317 32.6

Haar 251 203 24.0| 36.0 341 35.4

20HU  Db2 248 203 24.2| 39.0 37.1 38.8

CDF9/7 || 25.7 21.0 2441 36.9 35.7 36.9

the increment in noise suppression with decreasing cdrdtalise edge is quite similar for
all wavelets. This does not hold for ti@orr approach. With increasing spatial extension
of the wavelet filters, the difference between the noisectou rate at 100 HU increases
in comparison to 20 HU increases. This means that for higbetrast, more noise close
to edges remains in the image if longer reaching filters dlieed. The reason for this is
that the size of the pixel regions used for the correlatiommatations are adapted to the
filter lengths of the wavelets. This is needed in order to enthat all coefficients, which
include information of an edge, are included in the simiyagdomputations, as already
mentioned during the discussion of Hig.l4.3. The effect & #dges with contrast highly
above the noise level dominate the correlation computatieriong as they occur within
the pixel region. As a result, nearly no noise is removed iwithband around the edge.
The width of the stripe obviously depends on the spatialresiten of the wavelet filters.

Noise-Resolution-Tradeoff

Within the last two sections a very detailed, contrast ddpahevaluation of noise and
resolution was presented. For easier comparison of therediff denoising approaches,
noise-resolution-tradeoff curves are plotted in Fig. £a}0The phantom described in Sec-
tion[4.4.1 with an edge-contrast of 100 HU, reconstructeith wie S80 kernel, was used
for the experiment. The;, values are plotted against the standard deviation of noisea;
sured within a homogeneous image region. Twer and Grad method in combination
with DWT, SWT and ATR are compared, all using the Db2 wavelet Zudgcomposition
levels. The powep within the weighting function (Eql{4.21)) was used for viagythe
amount of noise suppression. The 10 points within each ctowespond to the powers
p € {5.0,4.5,4.0,3.5,3.0,2.5,2.0,1.5,1.0,0.5} from left to right. In summary the follow-
ing observations can be made:

 SWT and DWT show better edge-preservation than ATR at the samse reduction
rate in combination with th&rad method.
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Figure 4.10: Left: Noise-Resolution-Tradeoff: Comparisbhigh-contrast resolution and
standard deviation of noise in homogeneous image regiodifferent denoising methods
using Db2 wavelet. The powerwithin the weighting function[{4.21) is used for varying
the amount of noise suppression. Right: Noise-Resolutiaadoff: p5, polotted against
CNR for different reconstruction kernels. Denoising configion: 3 level SWT with
CDF9/7 wavelet an€orr method.

» TheCorr method clearly outperforms ti@rad method in all cases.

» There is nearly no difference between the different wavednsformations if the
Corr approach is used.

In a second test, the influence of the reconstruction kemé¢heé noise-resolution-
tradeoff was evaluated. Different reconstruction kerroas be selected in CT, always
leading to a noise-resolution-tradeoff. Smoothing retraicsion kernels imply lower noise
power, but also lower image resolution. As already seemduthe discussion of noise
and resolution in the last two sections the reconstructemnéd also influences the results
of the denoising method. Therefore, the noise-resolutiadeoff is compared for differ-
ent reconstruction kernels (see FFigl4.7) with and withbatdpplication of the proposed
denoising method. We used again the phantom images des$dnitigection4.4]1 with
varying contrastg, reconstructed with B10, B20, B30 and B40 kernel. The contrast-t
noise ratio CNR = ¢/o) and resolution 45,) of the original and denoised images were
then compared. A 3 level SWT with CDF9/7 wavelet and @wr method was used for
the comparison shown in F[g. 4.10(b). The dashed lines spored to the original and the
solid lines to the denoised images. Each line consists opaimts corresponding to the
contrasts (10, 20, 40, 60, 80 ahd0 HU) divided by the respective standard deviation of
noisec measured in a homogeneous image region. ldeally the daggsbcedure would
only increase the CNR without lowering resolution. This wbolean that the solid lines
are just shifted to the right in comparison tho the corregpandashed lines. The observed
behavior, however, is more complex and corroborates thétsggresented in the previous
sections:

» The sharper the kernel (high resolution, low CNR), the higherimprovement in
CNR that can be achieved by applying the proposed method.
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(a) no noise (b) noisy (c) denoised

Figure 4.11: Low-contrast-phantom (LCP) used for humanmesetudy: (a) ideal noise-
free, (b) one noisy example and (c) corresponding denomade using 3 levels of SWT,
CDF9/7 wavelet and th€orr method. Display options: = 5,w = 12.

» The smoother the kernel (low resolution, high CNR), the Ibdtte edge-detection
and thus the preservation of resolution in the denoisedémnag

The new insight gained from this analysis is that betterltesan be achieved with respect
to image resolution and CNR using a sharper reconstructiomeké combination with
the proposed method than using a smoother reconstructimelkeFor example, higher
resolution and higher CNR is obtained for the same input dlteeisharper B30 kernel is
used in combination with the proposed filter than using theather B10 kernel without
denoising.

4.4.2 Low-Contrast-Detectability

In addition to the quantitative evaluation of noise and hesan a human observer study
was performed. This allows to test, how the low-contrasectability is influenced by the
application of the proposed method.

Data and Experiment

For the experiments reconstructions from a simulated dyilial water phantomr( =
14.5 c¢m), with four blocks of embedded cylindrical objects withfdient contrasts (10,
5, 3,1 HU) and different sizes1f,12,9,7, 5,4, 3,2 mm diameter) were used. A recon-
structed slice from this phantom is shown in Hig. 4.1]1(a). nb@y realizations of this
phantom were simulated and reconstructed, all at the saseeleeel 0 mAs), leading to
an average pixel noise in the homogeneous water region-ofl.3 HU. One noisy exam-
ple slice is shown in Fi§. 4.11(b). In addition to this, 20syophantoms were simulated,
where some (95 in sum) of the embedded objects were missirggsdme scanning and re-
construction parameters were used for all 30 datasets.lIRRf) enages the corresponding
denoised images (with approX4% noise reduction, leading t® = 2.4 HU in average)
were computed. 3 decomposition levels of SWT in combinatigh @DF9/7 wavelet to-
gether with theCorr method were used. As an example, in Fig. 4.11(c) the denoiszagke

of Fig.[4.11(b) can be seen.
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Figure 4.12: Comparison of true-positive rates for différ@nects of noisy (original) and
denoised LCP.

For easier accomplishment and evaluation of the experimgmoprietary evaluation
tool for low-contrast-detectability was developed. Thisltshows the images from a list
in randomized order to the human observer. The observermtaeto select which objects
he can detect by mouse click. All 47 observers (most of theb $tbdents in the field of
medical image processing) evaluated 40 images, 10 origoigy images where all objects
were present, the 10 corresponding denoised, 10 noisy snabere some objects were
missing, and again the 10 corresponding denoised.

Results and Discussion

In a first step the average true-positive rate (TPR) achiesetht different objects was
evaluated. The performance of detecting objects of diffeseze and contrast was com-
pared between the noisy and denoised images. The averaged$€mputed for all 32
objects from all noisy images and all observers and comparéte average from all de-
noised images and all observers. In Eig. #.12 the TPR isguldtir all objects of different
contrasts and sizes. The closer the TPR is to 1 the bettebjaetavas correctly judged to
be visible in average. The clear result is that all objecteevigdged to be as well or even
better visible in the denoised images in comparison to thi®yrariginals. The correspond-
ing false-positive rates (FPR) are all below 0.03 and in ayeteelow 0.005 for both noisy
and denoised images. In Hig. 4.12(a) the TPR forithHU objects can be seen, where no
clear difference between the noisy and denoised objectsiides In case of thé HU and

3 HU objects (see Fi§. 4.12(b) ahd 4.12(c)) a clear differenoebesseen. If objects with a
TPR above 0.5 are said to be detectable, two more objgély (3 mm and3 HU, 5 mm)
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Figure 4.13: ROC curves resulting from human observer stddynparison between noisy
(original) and denoised results.

are detectable in the denoised images than in the noisy ®hesTPR of the3 HU, 4 mm
object is also very close to 0.5. TRéHU objects are nearly never detected in the noisy
images, but in the denoised at least the 15 &hdnm objects are detected correctly in
more than 20% of the cases.

In a second step, receiver operating characteristic (RO@)esufor the noisy and
denoised cases based on a thresholding approach were eminpatdescribed in detail
in [Fawc 06]. Firstly, the average detection rate (numbepagitive votes that object is
visible / number of overall votes for this object) was congalifor each single image and
object from all observers. Then, a sliding threshold wadiegfor the noisy and denoised
cases separately. All objects with a detection rate abowstain threshold were set to be
detected and then the corresponding FPR and TPR was caltuleading to the curves
shown in FigL4.1B. In addition to the curves the area undectiive (AUC) was computed
for the noisy and denoised case. The AUC improved from 0.882@se of the noisy to
0.8637 in case of the denoised samples.

4.4.3 Comparison with Adaptive Filtering of Projections
Data and Description

Fig.[4.14 shows a comparison of the proposed method to agiiajebased adaptive fil-
tering, which is used in clinical practice [Brud01]. The 2piajections are filtered with
a linear filter of fixed spatial extension. Then, a weightewh s the filtered and original
noisy projections is computed based on the attenuationeseective position. The higher
the attenuation, the higher the noise power and, theretfoeestronger the smoothing be-
ing performed. This method, like most other noise reducti@ihods based on filtering
the projections, has the goal to reach nearly constant nais&nce over all projections in
order to reduce directed noise.

For the comparison reconstructions from two simulategtstial phantoms were used,
one homogeneous water phantom=f 10 cm) and one eccentric water phantom £
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Figure 4.14: Comparison of proposed method to adaptiveifijesf projections. The re-
construction without noise suppression are displayed)iargd (d). The proposed wavelet
based noise reduction method was applied in (b) and (e) anddaptive filtering of the
projections is shown in (c) and (f). Image resolution of thterfed images is compared at
the same noise reduction rates. In (g) and (h) the correspgndrtical lineplots through
the center of the two phantoms are compared between thefneeseadaptive-filtered and
wavelet denoised images. Display options: 200 andw = 1000.
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15 em andb = 7.5 cm). In the center of both phantoms a line-pattern witlp /cm is
embedded at a contrast 8800 HU. In the eccentric phantom two additional cylindrical
objects { = 2 cm) are embedded. All reconstructions to a pixel gricbo2 x 512 with
FOV of 25 cm were performed using the B40 kernel. In [fig. 4.T4(a) and[Figl@) the
original noisy phantoms reconstructed from the completefsgrojections are shown. The
standard deviation of noise was measured in homogeneoimnseig north, south, west
and east direction around the center resulting in an average ofc = 11.1 HU in the
homogeneous, and= 19.0 HU in the eccentric water phantom. Both denoising methods
were applied to achieve the same average noise reducteneatling tax = 6.0 HU in

the homogeneous amd= 10.2 HU in the eccentric case, and resolution is compared. For
the proposed method, 3 levels of SWT together with the CDF9Afelsaand theCorr
method was used.

Results and Discussion

Fig.[4.14(f) shows that directed noise pointing out the aiom of highest attenuation is
reduced. A remarkable noise suppression can be achievedipyively filtering the pro-
jections. However, it can also be seen by visual inspechiahdtructures orthogonal to the
direction of highest attenuation lose spatial resolutiitmcomparison to this the wavelet
based filtering method preserves structures much betterbliNang effects are visible.
This can be seen well in the detailed vertical lineplots tigtothe line-pattern, shown in
Fig.[4.14(g). Although the same average noise reducti@nisaibtained, the noise streaks
are not completely removed using the wavelet approach.igthe strength of the adaptive
filtering method. In contrast to this, the adaptive filtermgthod does not perform well if
rotationally symmetric objects are present. The goal otittegptive filtering of the projec-
tions is to achieve nearly constant noise variance overajeptions. If the noise variance
is already very similar in all projections, the adaptivesfilhg does nothing at all, or loses
resolution in all directions. This can be seen well in Fid44c). Here, the wavelet based
method, as shown in Fig. 4.14|b), can again achieve a higlemeduction rate without loss
of resolution. The detailed vertical lineplots are agaiovehin Fig[4.14(H). Nevertheless,
it should be emphasized that the noise suppression basedjestjpn is a pre-processing
step, i. e. prior to reconstruction, while the proposed meik a post-processing step, thus
making the combination of the two methods possible.

4.4.4 Clinically Acquired Data
Data and Experiment

In order to test the noise reduction method with respectstpiiaictical usability, the ap-
plication of the algorithm on clinically acquired data idispensable. Noise reduction
methods are particularly critical in their application el contrast images. Thus, images
predominantly including soft tissue are well suited forfpanance assessment. Theoreti-
cally, as already discussed, the higher the contrast ofsedye higher the probability that
the edge can be detected and preserved. If the applicatite ofiethod with specific pa-
rameter settings leads to good results in slices with ssdti, the use for higher contrast
regions will not be critical. Therefore, a thoraco-abdorsean (see examples in Hig. 4.16),
acquired with a Siemens Sensation CT-scanner, was usedefatitical evaluation. The
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reconstruction of slices at a FOV 88 cm with a thickness o8 mm was performed with
a B40 kernel, which is one of the standard kernels for this bredion.

For the clinical experiment, 12 noise-suppressed images egmputed from the same
input images with different configurations. Three diffdraravelet transformation meth-
ods (ATR, DWT and SWT) in combination with two different wavelétiaar and CDF9/7)
were utilized. Furthermore, these configurations togethtr the Corr and Grad meth-
ods for similarity computation were compared. The resgltoise-reduced images and
the average of the input images, which corresponds to trenstéiction from all pro-
jections, were compared by a radiologist. All images cqoesl to the same dose level.
For simple comparison, a proprietary evaluation tool wasehliped. A randomized list
of comparisons between image pairs can be performed wihtabi. Within each com-
parison, an image pair is shown to the radiologist. Theahpgbsition of the two images
is also randomized. However, the positions of the two imagesbe easily switched by
the radiologist, in order to facilitate the detection of ewery small differences between
the images. The radiologist decides if there is one predémage (clear winner) or both
images are judged of equal quality with respect to the fahowevaluation criteria.

Three different quality criteria were evaluated sepayatethree consecutive tests:

* detectability of anatomical structures,
* noise in homogeneous image regions,
* noise in edge regions.

In each test, all possible image pairs were compared to ébeh é\ltogether3 x 78 com-
parisons were performed. The outcome of these tests is simoig.[4.15. The dark bars
show the number of clear winners, normalized to the numbpedbrmed comparisons for
one image. The corresponding light bars are the resultsajra system. Three points are
gained by a winning image and one point if two images are jddgée of equal quality.
This value is again normalized, this time to the number of imaly reachable points, if
the image won all comparisons.

Results and Discussion

In the first test (Fid. 4.I5(R)), the detectability of anaitcathstructures was examined. Only
in one case the anatomical structures were judged to be Hetexted in the original image
than in the noise suppressed image. In all other direct casgues of noise reduced images
to the average of inputimages (here denoted as originalpribcessed images were chosen
to be favorable. This shows that the anatomical structwessvall preserved by the noise
suppression method. The separation of information ancensiurther improved because
of the better signal-to-noise ratio. The comparison betwibe different configurations
shows that theCorr method gives better edge detection results tharGitasl approach.
There is no clearly preferred wavelet basis or wavelet foansation.

In the second test (Fif. 4.15[b)), the treatment of nois@mdgeneous image regions
was analyzed. Here again, t®rr method gives much better visual results in all cases.
There is nearly no difference between the Haar and the CDF&vélet.

In the final test (Fig. 4.15(F)), the noise in regions arouddes was compared. This
test reflects the results of the quantitative evaluatioh pitantom data. It shows that nearly
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Figure 4.15: Results of the clinical evaluation - (a) Detbitity of anatomical structures;

(b) noise in homogeneous regions and (c) noise in edge regiere compared for different

configurations.
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(c) difference

(d) original (e) denoised (f) difference

Figure 4.16: Noise suppression in clinical images from tidoanen (a)-(c) and thorax (d)-
(f). Configuration: SWT, Haar wavelet,,.. = 3, p = 1, Corr method. Display options:
¢ =50, w = 400 for CT-images and = 0,w = 50 for difference images.

no noise is removed in regions of edges if long reaching vetsere used in combination
with the Corr method. The results of the Haar wavelet are still judgedebétr theCorr
method in comparison to therad approach.

The Corr method is clearly preferred considering the results ofraité tests together.
However, longer reaching wavelets lead to lower noise realu@round higher contrast
edges. Therefore, a tradeoff between smoothness andldpedility of the wavelet must
be resolved.

4.45 Example Images

Two examples of noise suppression on clinically acquireih @ae shown in Fi§. 4.16.
Zoomed-in images from the abdomén (4.1(a)-4.16(c)) andain(4.16(d]-4.16(f)) are
displayed. For denoising, 3 levels of a Haar wavelet decaitipa (SWT) in combination
with the Corr method were used. The original images, which corresporftetostconstruc-
tion from the complete set of projections, are compared ¢onihise suppressed images.
Additionally, the differences between the original andalsed images are shown. Notice-
ably, noise in homogeneous image regions is removed, winiletares are well preserved.

In Fig.[4.1T two examples of a thorax-abdomen phantom aeduit a Siemens Def-
inition dual-source CT (DSCT) scanner are shown. We used the stan protocol
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(&) 100mAs, 0 = 18.3HU (b) 100mAs denoised, o
10.4 HU

(d) 100mAs, 0 =17.0HU (e) 100mAs denoised,c = () 500mAs, o0 =8.3HU
9.8HU

Figure 4.17: Application of proposed method to dual-so@Tealata: abdomen (a)-(c) and
thorax (d)-(f). Configuration: SWT, Db2 waveléf,.. = 3, p = 1, Corr method. Display
options:c = 50, w = 300.
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(100 mAs, 120kV, slice-thickness 1.2 mm) and reconstruction parameters (FO\85 cm,
kernel = B30) for both source-detector systems. The imagmsticted from projections
acquired at the first detector is denoted/Aand the image from the second detector is
denoted as3. The FOV @6 cm) of the second detector is smaller than that of the first
detector. Therefore, the projections of the B-system arenebed at the outer borders with
data from the A-system, as explained in detailin [Brud 06]th#his technique two images
can be reconstructed at the full FOV. Inside #6e-m-FOV independent acquisitions from
the two detectors are available. Consequently, noise wiki@se regions can be assumed
to be uncorrelated between the two images. Outside the FQ¥ ofn only parts of the
projections derive from independent measurements dueetpdtding. Therefore, noise
in this outer region is no longer perfectly uncorrelatedaldating the correlation during
the Corr method or comparing the angle between the approximatedegtadectors in
the Grad method still works in this outer region. However, only a loweise reduction
can be achieved because of the increasing correlation betwend B with increasing
distance from the&6 cm radius. In Fig[4.17(&) and Fig.4.17|(d) the average imades o
A and B are shown for two examples. Th& and B images are then used as input to
the proposed noise reduction method (3 levels SWT with DbZleaandCorr method).
The corresponding denoised results are shown i Fig. 4|Bn@ Fig[4.17(¢). For better
comparison high-dose scari$)( mAs) are shown in Fig. 4.17(c) and Fjg.4.17(f). Within
the overlapping FOV, where data from both detectors has aeguired, a noise reduction
rate of approximately 43% was achieved. Due to the sinogedension of the B-system
with data from A, noise outside the FOV 86 cm is no longer perfectly uncorrelated.
Therefore, only a lower noise reduction of approximatelys2&an be achieved in regions
outside the overlapping FOV.

4.5 Conclusions

In this chapter a robust and efficacious wavelet domain dergiechnique for the suppres-
sion of pixel noise in CT-images was introduced. The sepaeatanstruction from disjoint
subsets of projections allows the generation of imagestwbidy differ with respect to
image noise but include the same information. A correlasinalysis based on the detail
coefficients of thé-trous wavelet decomposition of the input images, as tcproposed
by Tischenko, allows the separation of structures and naitleout assuming or estimating
the underlying noise distribution. An extension of Tisck&s approach for the applicabil-
ity with DWT and SWT was described. The quantitative and gatah¢ evaluation showed
that comparable edge preservation, with only slightly loweise reduction, can also be
achieved with DWT at lower computational costs. Best resuits vespect to noise and
resolution evaluation can be obtained using the non-reahin@8WT. More importantly, a
second similarity measurement was introduced which masesicorrelation coefficients.
Weighting of wavelet coefficients according to the corielatcoefficient based similarity
measurement shows improved results with respect to edgemetion and noise sup-
pression for all wavelet transformations. In addition te dontrast dependent noise and
resolution evaluation, human observer tests were periforeevaluating the low contrast
detectability. The performed human-observer study shawatthe detectability of small
low-contrast objects could be improved by applying the psgal method. In comparison
to a commonly applied projection based algorithm, the psegdanethod achieved higher
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resolution at the same noise suppression. The evaluatiatirocally-acquired CT data
proves the practical usability of the methods.
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Chapter 5

Noise Estimation in the Wavelet Domain
for Anisotropic Noise Reduction

The approaches proposed in the last chapter automatiaidiyt dhemselves to the local
noise in the image because of the local correlation analysi@een two separately re-
constructed images. Especially in homogeneous imageneigh noise reduction rates
of about 45% can be achieved. It is a problem that noise vaegedo edges sometimes
visibly remains. Further, if images with strongly directedise due to high absorption
along certain directions are processed, a compromise batweise reduction and edge-
preservation must be found. No anisotropic noise reductorbe performed, where noise
along edges is removed without smoothing across the eddes.rehson for this can be
found in weighting all three blocks of detail coefficientsbd on the same weighting im-
age. In this section another wavelet based noise redugtimmoach is presented, which has
partially been published in[Bors 08d]. The method is basedavelet thresholding, as it
has first been proposed by Donoho and Johnsfone [Dono 94]idéheof wavelet thresh-
olding is to erase insignificant detail coefficients belowedirted threshold and preserve
those with larger values. The noise suppressed image iseltay an inverse wavelet
transformation from the modified coefficients. The diffigul$ to find a proper thresh-
old, especially for noise of spatially varying power andedied noise, which is commonly
present in CT-images. Choosing a very high threshold may eatsible loss of image
structures, but the effect of noise suppression may befiomut, if the chosen threshold
was too low. Therefore, a reliable estimation of noise foeshold determination is one of
the main issues.

The main contributions presented in this chapter can be suimed as follows: The
method is again based on two separately reconstructed C$etiataThis time the two
datasets are used for local noise estimation. The coheseftiee noise variance between
different linear combinations of separately reconstmigteages is described. Based on
the difference between the two input datasets the variaihgeise in the input images and
in the mean image can be estimated. Due to the linearity oivtheslet transformation,
the same theory can be applied: The noise variance of theetaeefficients can be esti-
mated from the difference of the wavelet coefficients of tifut images. Noise adaptive
thresholds are computed for detecting insufficient detafficients and suppressing them
by hard thresholding.

65
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5.1 Methodology Overview

An overview of the proposed noise reduction method is shawrig[5.1. First, two im-
agesA andB are generated, which only differ with respect to image noi$e generation
of two input images, which only differ with respect to noibas already been described
in Section[4.2. Each of the images is then decomposed by a itwendional wavelet
transformation. The redundancy included in the statiomayelet transformation (SWT)
is advantageous for reducing noise [Coif 95]. Also the ingesion in Chaptell4 showed
best noise reduction in CT in combination with SWT. Therefdhe, discussion in this
section is restricted to SWT. The computation of the diffeemnbetween the detail coef-
ficients of the two input imaged and B shows just the noise in the respective frequency
band and orientation. These noise images can be used fostihgagon of the position
and orientation dependent noise varianced isnd B. From these estimates, a threshold-
ing mask is computed and applied to the wavelet coefficiehtseoimage reconstructed
from the complete set of projections. In case of a linear @bmstruction method the
thresholds are directly applied to the averaged detailficosits of the input images. The
computation of the inverse wavelet transformation usiegtiodified coefficients results in
a noise-suppressed image. This again corresponds to thestaection from the complete
set of projections but with improved signal-to-noise ratio

5.2 Noise Estimation for Adaptive Thresholding

In this section the theoretical background for the noisaregion is described. First, the
variance of noise in a linear combination of the input imaigasvestigated. The coher-
ence between noise in the difference image and the mean inuglgs the basis for noise
estimation in the wavelet domain. The second part introslbogy the noise estimation can
be used for computing local, frequency and orientation ddeet thresholds and how to
apply those to the detail coefficients of the wavelet reprieg®n of the input images.

5.2.1 Noise Estimation from Difference Image

Two imagesA and B are reconstructed from disjoint subsets of projectionsthénfol-
lowing, we assume that the sampling theorem is fulfilled fothbsubsets of projections.
Noise between the projections can be assumed to be untedalcrosstalk at the detec-
tor is negligibly small. Consequently, and B only differ with respect to image noise, but
include the same ideal noise-free signal:

A=S+ N4, B=S+Ng, (5.1)

whereS = £(A) = £(B) represents the ideal noise-free image (the statisticaatapon
£)andN, # Np zero-mean noise€(N4) = £(Np) = 0) included in imageA and B,
respectively. Noise in both images is non-stationary, amsequently the noise variance
depends on the local position = (x,y)”. The variances at a given pixel position are
approximately the same in both images:

o4 (x) ~ 0%5(x), (5.2)



5.2. Noise Estimation for Adaptive Thresholding

A

CT-Reconstruction
from PI

Wavelet
Decomposition

.

®)

Noise
Estimation

A

A

CT-Reconstruction
from P2

Averaging
And Thresholding

A\ 4
Wavelet
Reconstruction

Wavelet
Decomposition

-

Figure 5.1: Block diagram of the noise reduction method.

67



68 Chapter 5. Noise Estimation in the Wavelet Domain for Anigpit Noise Reduction

(a) AverageM (b) DifferenceD

(c) Thresholdr{! (d) ThresholdrY (e) Threshold-?

Figure 5.2: Example of orientation and position dependaishold at the first decompo-
sition level for thoracic image with strongly directed rmi§ he average of input images is
shown in (@) and their difference in (b). The threshold insagenorizontal (c), vertical (d)
and diagonal (e) directions were computed with- 1.0 ands = 4. The color-mapping is
shown in (f).

because on average the same number of contributing quamtaecassumed. Noise be-
tween the projectionB1 andP2 is uncorrelated and accordingly noise between the sepa-
rately reconstructed images is uncorrelated, too, leatitige following covariance:

Cov(Ng4, Ng) = 0. (5.3)
The linear combinatiod. of A and B is defined as:
L =g A+ gD, (5.4)

with weightsg,, go € R. For the variance of a linear combination of random varistie

following holds [Bron 00]:

ai = gfdi + ggoé + 29192CoV(A, B). (5.5)
It can be shown that
Cov(A,B) = E((A—=E(A))(B—-E(B))) (5.6)
= E((A-9)(B-29)
= &(Na- Np)
= COV(Ny4, Np) — E(N4)E(Np)
= 0.

Using Eq.[(5.2) and EJ.(5.6), EQ.(5.5) results in:

oL =1/93+gs04. (5.7)
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First of all, Eq.[5.Y) shows why the noise levelinand B is increased by a factor of
V2 in comparison to the reconstruction from the complete sptajections or the average
of the two input images\/ = %(A + B). Furthermore, it can be used for estimating
noise inA and B and consequently i/ from the difference of the input images. By the
computation of the difference image

D=A—-B=N,— Ng, (5.8)

a noise-image free of structures is obtained. Based ol &}, {Be standard deviations,
andop of noise can be approximated from the standard deviatioherdifference image

op by:

0D
g = 0 = —. 5.9
a=os="p (5.9)
Thus, the standard deviation of noise in the average imégesults in:
0A Op
M= =5 (5.10)

5.2.2 Adaptive Thresholding

In order to compute a level and orientation dependent totdstr denoising in the wavelet
domain, noise in the different frequency bands and oriemtatshould be estimated sepa-
rately. Due to the known linearity of the wavelet transfotima, the differences between
the detail coefficients can also be directly used for noisenasion. At each decomposition
levell the difference images

Dil(x) = Wii(x) = Wg,(x), (5.11)
DZV(X) = WX,Z(X)_WI\?/,I(X)? (5.12)
DP(x) = W2i(x) - Wg(x) (5.13)

between the detail coefficients are computed, where theegptsA and B correspond to
the respective image artd, V andD again denote the horizontal, vertical and diagonal
directions. These difference images are then used for thmeatin of noise in the respec-
tive frequency band and orientation. In CT-images, the npgseer is spatially varying.
Therefore, noise estimation should be position dependért . standard deviation of noise
is evaluated in quadratic local neighborhoods of given sizée difference images. Av-
eraging over local neighborhoods always implies an erggydassumption, which is not
fulfilled in case of CT, but is necessary for getting more t#éanoise estimates from the
difference images. We estimate the standard deviatfoat decomposition levelin the
directiond € {H, V, D} according to:

ol(x) = \/Iﬁl | Z(Dld(x))z, (5.14)
* e,

The local square pixel regio), centered around the current positien= (z,y)” is de-
fined as:

Qx—{>~<| |x—az|s3A|y—grsS}, (5.15)
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where the constant defines the size of the quadratic pixel region. The numbeixaip
used for the local noise estimation is denoted{ag. Analogously, the noise estimates
for the vertical and diagonal directions are computed. Ftoenthree standard deviation
imageso}!, o) andopP, for all decomposition levels, orientation and positiopeiedent
thresholds are determined according to:

(x) = i Q(X) (5.16)
o) (%)

TlV<X) =k 5

D UP (x)

7 (x) =k 5

The constank controls the amount of noise suppression. With increaitige thresholds
are increased. Consequently, more coefficients are setdamermore noise is removed.
In Fig.[5.2(c)F5.2(8) the thresholds computed witk- 4 for the first decomposition level
in the horizontal, vertical and diagonal directions arevgor a thorax-slice (see average
of input images in Fig. 5.2(p) with strongly directed noised difference of input images
in Fig.[5.2(b)).

The computed thresholds from Eg.(5.16) are then appliede@veraged wavelet co-
efficients of the input images:

W0 = SR G0+ Wh (), (5.17)

W00 = S(VX00) + W (),

1
Win(x) = W2i(x) + Wgi(x)).
We perform ahard thresholding, meaning that all averaged coefficients witlalsolute
value below the threshold are set to zero and values abovepteinchanged. The high

frequency detail coefficients of the result image are coexpas:

Wi (), i Wi, ()] > 7(x),

5.18
0, else ( )

sz,l(x) = {
for all directionsd € {H,V, D} and decomposition levels= 1...1,... The approxima-
tion coefficients4,_ ., andB; , of A andB at the maximum decomposition levgl., are
simply averaged:

R () = 5 (At (3) + B (). (5.19)

The final noise suppressed image is computed by an inverselevaransformation from
the averaged and weighted wavelet coefficients of the inpages.

5.3 Experimental Evaluation

The evaluation section consists of two parts. In the first, pae noise estimation method
based on the difference between two separately recorstkr@X images is evaluated. The
second part concentrates on the performance evaluatiomegbroposed wavelet based
noise reduction method.
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(a) Thorax (b) DifferenceA — B

(c) Estimateds = 21 (d) Monte Carlo

Figure 5.3: Thorax phantom used for evaluation of noiseredton accuracy, recon-
structed with Sim50 (30 cm FQV, display: w=50,c=400), tbgetwith analytical noise
estimates and estimates from 10000 noisy realizationss@N\Display: w=25,c=50).

5.3.1 Accuracy of Noise Estimates

The estimation of the local standard deviation of noise aonstructed CT images might
also be of interest for other post-processing applicati@ssdes the here proposed adaptive
filtering method. Therefore, in this section the noise eatiom based on the difference be-
tween two separately reconstructed CT images is evaluatedhiS purpose, two standard
phantoms were simulated and reconstructed:

* The FORBILD thorax phantom, in the following denoted as thopaantom, is
shown in Fig[ 5.3(&), reconstructed at a FOV of 41 cm, of gtiositioned at: =
0 cm.

» The FORBILD head phantom with ears is shown in Fig.5]4(a)omstucted at a
FOV of 25 cm, of slice positioned at= 0 cm.

For both phantoms, noise-free fan-beam projections wenellated using 1160 projec-
tion, 672 detector channels and quarter detector offsee folowing physical parame-
ters were selected for the simulation: focus wifth mm, anode angle-82°, delta beta
360/4640 mm, sub delta beta 25, 80 kV. For the experiments three reaarin kernels,
a smooth (Sim10), a medium sharp (Sim30) and sharp (Sim5f)were used. For the
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(a) Head (b) DifferenceA — B

(c) Estimateds = 10 (d) Monte Carlo

Figure 5.4: Head phantom used for evaluation of noise ettimaccuracy, reconstructed
with Sim50 (25 cm FOV, display: w=50,c=900), together wittalytical noise estimates
and estimates from 10000 noisy realizations (Noise displeab0,c=150).
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noise estimation based on the proposed method, two noifieateans were generated.
Poisson-distributed noise was added to the projectiormtimcases using half of the over-
all dose. The reconstructions from the two noise realinatwere then used for the com-
putation of the difference image that served as a basis éondise estimation within local
neighborhoods of different sizes £ 4, 6, 8, 10). The standard deviation image computed
according to the proposed method is denoted,&<). In order to generate a gold standard
of the standard deviation image, Monte-Carlo simulatiorhwit;c = 10000 CT images
was performed. For each image Poisson-distributed noiseadded to the projections,
this time using the overall dose. Pixel-wise noise compangtom theN, - reconstructed
images gives,(x) the gold standard to compare with.

Examples for the computed standard deviation images andamée-Carlo results are
presented in Fi¢. 5.3 and Fig. b.4. For a better comparistiteaioise estimates, horizontal
and vertical lineplots through the standard deviation iesagf the gold standard and the
computed estimates with different sizes of pixel regisrse presented in Fig.3.5. From
the lineplots it can already be seen that for large FOVs, ehie sampling theorem is no
longer fulfilled, the sampling-artifacts influence the moéstimation results. Aliasing arti-
facts or sampling-artifacts appear in both separatelynstcocted images and are usually
not uncorrelated, leading to high values in the differemcages. If artifacts are dominant
compared to the noise level in the image, the standard d&viat noise might be strongly
over-estimated. This is clearly noticeable in the lineplatesented in Fig. 3.5 at the outer
borders of the large FOV used in case of the thorax phantorthelfollowing, the quan-
titative evaluation is restricted to the inner FOV (here:c&(), where sampling-artifacts
are not noticeable. This part of the image domain is in thieiohg denoted a$); and
N; = |©;] denotes the number of image pixels insidélf The pixelwise relative error is
defined as:

04(x) — op(x)
ob(x)
The noise propagation method is precise if the relativelywise errors are small inside;.

Therefore, the average relative error

ra(x) = (5.20)

1
xEQ;
and its variance .
oty =77 2L (rax) —7a) (5.22)
v XEQZ'

over the different image pixels is computed. The averagar,aiormalized on a per-pixel
basis is defined as:

s = \/Ni s = a4 o, 529
g x€EQ; !

Tab[5.1 summarizes the results achieved for the two phantdihe average pixel noise
valuesa, in HU are listed for the two phantoms and three reconstrandtiernels. The
quantitative evaluation shows that pixelwise relativeriddtm errors between 11.6% and
20.7% are achieved with the proposed method for the two phatinder investigation.
A noise estimation based on just two measurements, thusatiolys a rough estimation




74 Chapter 5. Noise Estimation in the Wavelet Domain for Anigpit Noise Reduction

12r

-
I

—— Monte Carlo
——s=4
——s=6

=
o
[N
N

standard deviation of noise in HU
standard deviation of noise in HU

—22(50 —150 —160 —Sb 6 50 160 150 260 —0260 —léO —160 —50 6 50 160 1éO 260
X y
(a) Thorax - horizontal - Sim10 (b) Thorax - vertical - Sim10
40

35
30t
251
20

15

standard deviation of noise in HU
standard deviation of noise in HU

10f

—5260 —1.%0 —160 —E;O 6 ’:';0 160 léO 260 —5260 —15;0 —160 —5;0 6 50 160 1&‘30 260
X y
(c) Thorax - horizontal - Sim50 (d) Thorax - vertical - SIm50
351 351

301

25F

20F

—— Monte Carlo
——s=4

151

standard deviation of noise in HU
standard deviation of noise in HU

A ——s=6
10 W -~ s=8
—s=10
-100 -50 0 50 100 -100 -50 0 50 100
X y

(e) Head - horizontal - Sim10

standard deviation of noise in HU
standard deviation of noise in HU

50 100 -100 -50 0 50 100

ol

-100 -50

X y
(g) Head - horizontal - Sim50 (h) Head - vertical - Sim50

Figure 5.5: Horizontal and vertical cuts through standa&dation images for thorax phan-
tom and head phantom - comparison of Monte-Carlo results igerestimation results
within different sizes of neighborhoods for two differeatonstruction kernels.
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Table 5.1: Evaluation of the error of the noise estimatiortho@ within a 20cm FOV.
Errors are quoted in percent}.

Thorax - Sim10 s=4 s=6 s=28 s =10
ap 19.4 19.4 19.4 19.4
TA -5.1+17.4 -4.5+13.9 -4.2£12.0 -4.0:10.9
SA 18.1 14.6 12.7 11.6
Thorax - Sim30 s=4 s=06 s =38 s =10
ap 31.6 31.6 31.6 31.6
TA -7.9+16.0 -7.3:13.0 -7.0:11.5 -6.8£10.7
SA 17.8 14.9 13.5 12.7
Thorax - Sim50 s=4 s=06 s=38 s =10
ap 64.8 64.8 64.8 64.8
A -9.9+12.6 -9.6-11.2 -9.4+11.2 -9.4-10.5
SA 18.6 16.0 14.8 14.1
Head - Sim10 s=4 s=6 s=28 s =10
ap 18.8 18.8 18.8 18.8
TA -9.3+18.4 -8.5+13.9 -8.2£11.5 -8.0:9.9
SA 20.7 16.3 14.1 12.8
Head - Sim30 s=4 s=6 s=28 s =10
ap 31.0 31.0 31.0 31.0
TA -11.2£15.2  -10.#412.1 -10.5£10.5  -10.4:9.7
SA 18.9 16.1 14.9 14.2
Head - Sim50 s=4 s=06 s =38 s =10
ap 74.7 74.7 74.7 74.7
A -11.1+14.0 -10.8:11.9 -10.7410.8 -10.6:10.0
SA 17.9 16.6 15.2 14.6

of the pixelwise standard deviation of noise. In order to entlie noise estimates more
reliable, the standard deviation is computed in local neighoods of certain sizes With
increasing size of the pixel regions used for evaluatingdbeal standard deviation in the
difference image, the results get smoother, but also |lesd,las expected. For the relative
error, it can be seen that only a slight improvement is nabézwith increasing size of the
pixel regionss. It is of course important to notice that with this averagowgr a certain
neighborhood, ergodicity is assumed. Ergodicity implies faveraging over a certain spa-
tial region has the same effect as averaging over a certanteauof realizations. Even if
noise in the reconstructed CT image varies slowly over tHergifit pixel regions, noise in
the reconstructed CT images is not uncorrelated, which mileesoise estimation based
on the evaluation within local neighborhoods less reliablee effect of averaging over the
neigborhood is also influenced by the size of the noise giainemparison to the size of
the pixel region. The more uncorrelated values can be agdrdlge more reliable gets the
noise estimate. Generally, one would expect that with sheyateconstruction kernels the
number of correlated values within a fixed sized pixel regrarease and thus the noise
estimate gets worse. The comparison between the diffeeennstruction kernels shows
that this effect is only noticable for smaller pixel regioR®r s = 4 the noise estimates im-
prove the sharper the reconstruction kernel is. On the bidwed with increasing sharpness
of the reconstruction kernel noise changes faster betwiemnemt pixels. Therefore, the
non-local noise estimation due to averaging over a pixebrelgas a more severe influence,
when sharp reconstruction kernels are used. If the L2-nerarseare compared between
the differen reconstruction kernels, using= 10, the noise estimates get less reliable on
a per-pixel basis if sharper kernels are used. Further,ddgtiieasing FOV the number of
correlated pixels within a fixed size region increase, als&ing the noise estimates less
reliable. This effect is noticeable comparing the resultthe thorax phantom and head
phantom. The head phantom was reconstructed at a smallerrE&\ting in a smaller
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pixel size. Consequently, more pixels withnin a certain figeed pixel region are corre-
lated in case of the head phantom compared to the thoraxgharnithe noise estimates
achieved for the head phantom at the same size of pixel regidthe same reconstruction
kernel are thus less reliable.

The noise estimation based on the difference between twaratey reconstructed
noise realizations is not very reliable and is sometimescédd by reconstruction artifacts.
However, the big advantage of the proposed method is thatfésit, easy to implement
and that it can also be extended to be used for estimating moithe wavelet domain
of the images. The evaluation in the next section will shoat this much better to use
the proposed rough noise estimation for the computatioogl) frequency and orienta-
tion dependent thresholds than using standard waveleirfdt@pproaches, where global
frequency dependent thresholds are estimated.

5.3.2 Noise and Resolution

The second part of the evaluation section considers theopeapwavelet based noise re-
duction method. In evaluating the performance of the nogskiction method, mainly
two aspects are of interest: the amount of noise reductidnesen more importantly, the
preservation of anatomical structures. Therefore, theenite of the noise suppression
method to the standard deviation of noise and image resalutas investigated.

For the experiments reconstructions from a simulatedtelipwater phantomdx =
20 cm, dy = 10 cm), with an embedded, quartered cylinder= 6 cm) with a contrast of
100 HU were used. The projections P1 and P2 were simulated indep#wndcorrespond-
ing to two consecutive scans or the acquisition with a doakse-scanner. The advantage
of simulations is that in addition to noisy projections (wRoisson distributed noise ac-
cording to quantum statistics), ideal, noise-free dataatsmbe produced. All slices are of
size512 x 512 and were reconstructed using the indirect filtered baclkptmn reconstruc-
tion described in Sectidn 2.2.2 within a field of viewaifcm using a sharp Shepp-Logan
filtering kernel. This results in an average pixel noise gbragimately22.4 HU in the
homogeneous image region in the reconstruction from theteimset of projections. The
standard deviation of noise in the separately reconstlictages is abouy’2 times higher.

All images were denoised with the proposed thresholdindnotetip to the fourth de-
composition level of a Haar-SWT. The size of the pixel regiefirted in Eq.[(5.15) was
set fixed tos = 4. Different values ofc € {1, 1.5,2,2.5,3} were used for regulating the
amount of noise suppression. The proposed method was cethfzaa standard wavelet
thresholding approach implemented in the Matlab Waveletbax[Wave 06]. For de-
noising in Matlab, we used Balance Sparsity-Norrhard thresholding method with a
non-white-noise model and again four levels of a Haar-SWiithew, the proposed thresh-
olding approach was compared to the edge-preserving nedtetion method presented
in the last chapter Chapter 4, where the weights at each dexsition level were gained
from a correlation analysis between the approximation esayg the previous decomposi-
tion level. Again four decomposition levels of a Haar-SWT evesed the correlations were
computed within neighborhoods 6fx 5 pixels around the corresponding position. The
amount of noise suppression was controlled by the powernmwitie weighting function
Eq.(4.21), denoted by parameterc {1,1.5,2,2.5,3}. In the following we use the ab-
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(a) Original noisy phantom (b) ANESWTwith & = 1.0 (c) ANESWTwith k£ = 1.5
(k=0)

(d) ANESWTwith & = 2.0 (e) ANESWTwith k = 2.5 (f) ANESWTwith k = 3.0

Figure 5.6: Phantom used for noise and resolution evaluate) Original noisy phantom,
where regions used for noise evaluation are marked. (l)gpised images achieved with
proposed methoddNESW7 with different values of parametércontrolling the amount
of noise suppression. Center and window settings used fplagisg CT-images: ¢=50,

w=200.

(a) STSWT (b) CASWTwith p = 1.0 (c) CASWTwith p = 2.0 (d) CASWTwith p = 3.0

Figure 5.7: Denoising results achieved with standard veavéresholding $TSWY (a)
and correlation analysis based wavelet denoising (CASWFjdpfor different values of
parametep controlling the amount of noise suppression. Center andewrgkttings used

for displaying CT-images: ¢=50, w=200.
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Figure 5.8: Noise evaluation fé&dNESWTin different pixel regions marked in Fig.5.6(a).
(a) Comparison of standard deviation of noise in differerépiegions for different values

of k. (b) Mean standard deviation of noise of all pixel regiongetiher with standard

deviation between different pixel regions for differentues ofk.

breviationSTSWTor the standard thresholdinGASWTior the correlation analysis based
denoising method, anNESWTfor the proposed adaptive noise estimation based method.

In Fig.[5.8 the used noisy phantom together with the dendiseges achieved with
ANESWTtor different values of: is shown. Due to the eccentricity of the used phantom,
directed noise is clearly visible, pointing out in the diten of highest attenuation. This
can be seen in the original noisy image in Fig.5]6(a). Farebebmparison, the denois-
ing results achieved witbTSWTand CASWTfor different values ofp are presented in
Fig.[5.7. In order to compare the noise homogeneity befodeadter denoising, the stan-
dard deviations of noise were evaluated in 24 homogeneaagamegions of0 x 40 pixels
as marked in Fig.5.6(g). The standard deviations of noitledlifferent pixel regions are
plotted in Fig[5.8(a) for the original and the denoised irg®gsingANESWT The pixel
regions are numbered incrementally according to theirdstahdeviation of noise in the
original image. It can be seen that with increasirgironger noise suppression is achieved,
as expected. Furthermore, it can be seen that, with incrgasihnoise between the differ-
ent evaluation regions becomes more homogeneous. Thieisaearer in Fig.5.8(b),
where the average standard deviations of noise from alliatiah regions are plotted for
the different values ok (k = 0 denotes the original image), together with the standard
deviations between the 24 evaluation regions. As[Fig. J&{bws, with increasing not
only the average noise in the image is reduced, but alsodheatd deviation between the
pixel regions is decreased.

Fig.[5.9(c) shows the noise evaluation ®F SWTIn all pixel regions the standard de-
viation of noise was decreased. However, it can be seenhi@atgorithm does not adapt
to the noise level in the image. Regions with a higher noisellave not stronger de-
noised. Fig.5.9(&) shows the noise evaluationJ&SWT The average standard deviation
of noise together with the standard deviation between tfierdnt pixel regions is shown
in Fig.[5.9(b). With increasing parameter stronger noise suppression is achieved. The
direct comparison of the standard deviations of noise irdiffierent pixel regions between
ANESWTand CASWTshows that a comparable noise suppression in pixel regidis 1



5.3. Experimental Evaluation 79

35 u 35
—original
|| —— p:l_o |
30 _ p=15 30
—*—p=2.0
25 p=2.5 251
- - -p=3.0

20F

15f 15f

standard deviation of noise
standard deviation of noise

10f 10f
5l T 5
0 . - - ’ 0 . . . . . . .
0 5 10 15 20 25 -0.5 0 0.5 1 15 2 25 3 35
evaluation region k

(a) Standard deviation of noisc€ASWT  (b) Mean noise and standard deviation between re-
gions -CASWT

35

—original
|| — simple thresholding

w
o

[y [ N N
(=] ul (=] Ul

standard deviation of noise

a1

(=]

5 10 15 20 25
evaluation region

(c) Standard deviation of noisS€&STSWT

o

Figure 5.9: Noise evaluation faEASWT(a) and (b) andSTSWT(c). The same pixel
regions were used, as marked in Fig.5J6(a). (a) Comparisstanélard deviation of noise
in different pixel regions for different values pf (b) Mean standard deviation of noise
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Figure 5.10: Evaluation of image resolution ®INESWTMTFs of vertical (c) and hori-
zontal (d) edge are compared for different values.of
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Figure 5.11: Evaluation of image resolution ©ASWTMTFs of vertical (c) and horizon-
tal (d) edge are compared for different values of

Is e.g. achieved fok = 2.0 andp = 2.0. In contrast to that, the average noise sup-
pression in pixel regions 13-24 achieved with= 2.0 approximately corresponds to that
achieved withp = 2.5. ANESWTreduces more noise in regions with strong directed noise.
Consequently, a lower standard deviation between the drftqrixel regions is achieved.

For evaluating image resolution the local modulation transinction (MTF) was again
evaluated at an edge. In order to achieve reliable measuatsntee MTF was again eval-
uated in the modified noise-free images. The computed tbigslat each decomposition
level are applied to the wavelet coefficients of the ideakadree image followed by an
inverse wavelet transformation. This has the effect of mgkine influence of the weight-
ing to the real signal directly visible. The local MTF cantthige computed at the edge
in the processed noise-free image. In Eig. .10 MTFs condpinten the horizontal and
vertical edge can be seen. In Fig. 5.ID(a) it can be seertihaettical edge was very well
preserved. Image resolution at the vertical edge could beemproved. The increment
in resolution, when using the Haar wavelet, has already dessuissed in the last chapter
in Section 4.4. In contrast to the high resolution at theigaktedge, a slight blurring is
noticeable at the horizontal edge, as can be seef Fig. . 10(lFig.[5.11 the resolution
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evaluations performed f@ASWTare shown. Here, it can be observed that there is nearly
no difference with respect to edge-preservation for th&zbatal and vertical edge.

5.3.3 Example Images

In Fig.[5.12(d) and Fig.5.12(f), zoomed-in noise-suppedseesults from the proposed
method applied to a thoracic image (see [Fig.5]2(a)) are sHomtwo different settings
of k. The two input datasetd and B were generated by separate reconstructions from
even and odd numbered projections. The difference imadge$E2(€)[ 5.12(¢)) between
the denoised and average of input images (Fig.5.]12(a))lsoedésplayed. The images
are compared to the denoising result achieved wittBWA" De-noising 2-Mool from the
Matlab wavelet toolbox [Wave 06] (see Hig.5.12(b) &nd =J)2(All computations were
performed using a Haar wavelet decomposition up to the iadetomposition level. For
denoising in Matlab, we usedBalance Sparsity-Norrhard thresholding method with a
non-white-noise model.

The difference image in Fif.5.12[c) shows that standarceleathresolding methods
reduce noise in the images, but also blur edges. The reasdhigois that no reliable
noise estimation is possible if just one CT-image is ava@abbh contrast, the proposed
method adapts itself to the spatially varying noise powehendifferent frequency bands
and orientations and, therefore, performs much bettercesein images with directed
noise.

5.4 Conclusions

In this chapter an anisotropic wavelet domain denoisingrigpie for the suppression of
pixel noise in CT-images was proposed. The separate reaotistrs from disjoint sub-
sets of projections allows the generation of images whidy differ with respect to image
noise but include the same ideal noise-free signal. A newoaah for estimating noise in
the different frequency bands and orientations of the veavehnsformation, based on the
difference between the wavelet coefficients of the two s@paeconstructions, was pro-
posed. With this technique, position and orientation adegphresholds can be computed
at each decomposition level for noise reduction.

The experiments show that standard denoising technigkeS$TSWTlead to uncon-
vincing results if they are applied to CT images. The reasoithis can be found in the
difficult noise properties in CT. The noise distribution afteconstruction is not known,
noise is non-stationary and directed noise may be preséig.nfakes the distinction be-
tween real structures and noise more complicated. Theqesexamples, whe@TSWT
was applied to CT slices with directed noise, clearly showatlin regions of higher noise
level noise still remains in the image, while other regiolneady get blurred.

The CASWT another wavelet based method for noise suppression on G [lat-
sented in Chaptél 4, showed that an adaptation to the nosladenerformed. The method
adapts itself to the noise level of the input data by computire local correlations be-
tween the wavelet representations of two separately réwmted CT images. At each
decomposition level, one weighting image is computed. Eépplied equally to the dif-
ferent directions. Therefore, this method does not alloisaropic denoising. In images
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(a) Original (c) Matlab, difference

(d) Denoisedk = 1.0 (e) Differencek = 1.0

e

(f) Denoisedk = 1.5 =15

Figure 5.12: Denoising result of the proposed method {dy(tomparison to standard
wavelet thresholding method from the Matlab wavelet torlfm) in pixel region taken
from a thorax-slice with strongly directed noise (a). Theresponding difference images
to the original (a) are displayed in (c),(e) and (g). Centat window settings used for
displaying CT-images: ¢=50, w=400. Center and window settinged for displaying
difference images: center=0, window=30.
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with strong directed noise, a higher noise suppressionyalivdluences the resolution in
horizontal and vertical direction in the same way.

The proposed thresholding method adapts itself to the kn@lorientation dependent
noise power in CT. In contrast tLASWT the proposedNESWTperforms an anisotropic
noise reduction. Noise is estimated separately within ifferdnt frequency bands and
orientations of the wavelet decomposition. The threshokixl for denoising are chosen
in adaptation to the local noise estimates. Consequentg|ovarying and also directed
noise can be removed efficiently. The evaluation of noiseffarént pixel regions showed
that stronger denoising is performed where stronger @iceobise is present. This has
the effect that not only the overall noise power is reduced gtso the standard deviation
between the different evaluation regions is decreased.s,Time homogeneity of noise
within the image is improved. The anisotropic behavior efpnoposed method can also be
observed in the evaluation of resolution. WRNESWT stronger smoothing is performed
orthogonal to the direction of the directed noise. This & ason why with increasing
k stronger blurring is visible at the horizontal than at thetical edge. In comparison to
CASWTthe blurring at the horizontal edge is slightly increasedwigver, the vertical edge
is nearly perfectly preserved, also at high noise reduatides. The anisotropic behavior
is beneficial, especially in cases where directed noiseahbgh attenuation along certain
directions is present.

The experiments performed on clinical data showed thattdicenoise could be re-
moved without noticeable loss of resolution with the newalsing approach. Especially,
the difference images between the original and denoisegemshow that nearly no struc-
ture was removed. Further, it can be seen that noise alorgsentgld also be removed.
The comparison t& TSWTapplied to clinical data again showed that no reliable estiion
of locally-varying and directed noise can be achieved if arse input image is available.
In the example shown, noise was strongly over-estimatadtigg in noticeable blurring
at the edges.

The proposed method is computationally efficient. The amstdconstructing the two
datasetsd and B separately corresponds a reconstruction from the comgéetef projec-
tions. Two reconstructions each with only half the numbepmiections are needed, if
only the even or odd numbered projections are used resphctitherwise, if the object
is scanned twice or a dual-source-scanner is used two ctenmpleonstructions are needed.
The denoising process can be computed efficiently. Therevarevavelet decompositions
and one inverse wavelet transformation to be computed. dheplexity of the SWT is
linear with the number of pixels. All computations neededvieighting the coefficients
are performed within local neighborhoods. Thus, the meibadell suited for parallel
computation.
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Chapter 6

Multiple CT-Reconstructions for 3-D
Anisotropic Wavelet Denoising

Two different approaches for noise reduction in the wavetehain based on two input
datasets have been proposed in the last two chapters. Iebasshown that the two input
datasets and respectively their wavelet representatembe utilized for local correlation
analysis and noise estimation. This chapter presents awagpthat combines the both
previous methods and has partially been publisheld in [Bdisf 07
The main contributions in this chapter can be summarizealésafs: A correlation

analysis between the approximation coefficients of the twpaii datasets, combined with
an orientation and position dependent noise estimatiorad tor differentiating between
structure and noise. Furthermore, the extension of theaddth3-D is investigated, which
additionally leads to a more reliable correlation analgsid noise estimation.

6.1 Methodology Overview

An overview of the methodology can be found in Figl6.1. Fivad volumesA and B
are reconstructed from disjoint subsets of projectionse Glneration of two datasets,
which only differ with respect to noise, but include the saneal noise-free signal, has
already been described in Sectlon]4.2. Also the noise piiepen CT and in separately
reconstructed datasets has been discussed in detail iinSE®. These properties are
considered during the denoising process proposed herehwhin be applied either to the
2-D slices or the 3-D volumes. Both datasets are decomposed?bp or 3-D discrete
dyadic wavelet transformation. After this linear transfation, for example of the input
datasetd = A, four two-dimensional or eight three-dimensional blocksaefficients
are available at each decomposition lelzethe lowpass filtered approximatias;, and
the highpass filtered detail’, whered describes the direction in space. For the 2-D
case, e.g.¢d can be the horizontal, vertical or diagonal direction. Tle¢ad coefficients
include high frequency structures together with noise m rispective frequency bands
and orientations. In the following the wavelet represeaist of the two input datasets
are used for differentiating between detail coefficientt thelong to structure and noise,
and to compute weighting coefficients accordingly. Thesighte consist of two parts: a
correlation coefficient based weight and a significancegiteiwhich are both described
more in detail in the following section. The computed wegghte then applied to the

85
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Figure 6.1: Block diagram of the noise reduction method.
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wavelet coefficients of the reconstruction from the congbedt of projections. In case of
a linear reconstruction method, this corresponds to theageel wavelet coefficients of the
input datasets. Itis, thus, ensured that the entire aadjdaa is used for the final resutt,
which is computed by an inverse wavelet transformation ftleenmodified coefficients.

6.2 3-D Wavelet Transformation

The computation of higher-dimensional wavelet transfdioms is a straight forward ex-
tension of the one-dimensional case. As explained in Seid.1 the one dimensional
transformation is successively applied in all dimensiovisat is called separable wavelet
transformation. The separable extension can be appligektOWT as well as to the SWT.
Working with volumes, however, makes the whole processiogermomplicated due to the
increased memory consumption. If CT volumes with nearlyrggmt resolution in all three
spatial dimensions are generated, several hundreds oflitwensional slices are usually
computed. In most cases, the two complete separately regotexl volumes do not fit
completely into the main memory. Therefore, the compledeksbf images is split into
smaller blocks that are large enough for the computatioh@fsavelet transformation up
to the maximum decomposition level but fit into the main memoknother considera-
tion that is also closely related to the memory problem iséstriction of the 3-D case to
DWT. Although, it has been shown before that the redundant S#$Tsbme advantages
with respect to denoising purposes compared to the DWT, tragt complexity is very
high for the 3-D-SWT. All eight blocks of 3-D detail coefficiesrthat are computed at each
decomposition level have the same size as the original v@hkaonbe decomposed. If, e. g.,
lwax levels of a SWT are computed in 3-D, the number of wavelet aneffts are factor
8lmax + 1 larger than the number of samples in the original volumes T$not practicable
for the large volumes considered in case of CT. In the follgnohthis chapter the wavelet
decomposition is, therefore, restricted to the DWT.

6.3 Anisotropic Denoising Using Correlation Analysis

The detail coefficients of the two input datasets contauncsiire and noise in the respective
frequency bands and orientations. The goal is to detecficesits that represent structure
and keep them. Other noisy coefficients should be suppreddsal distinction between
structures and noise is here, based on a local correlatalgsasiand noise estimation.

6.3.1 Correlation Analysis

At each decomposition level, a local correlation analysisvMeen the approximation coef-
ficients of A and B is performed. This leads to one block of correlation coedfits having
the same size as the detalil coefficients at the respectiwergessition level.

A very close connection between the detail coefficients haabrrelation analysis can
be obtained if the approximation coefficients of the presioecomposition level — 1
are used for correlation analysis at levellThe detail coefficients at levélare computed
from the approximation coefficients at level 1 and these values are also used for cor-
relation analysis at the respective position. For the tatiosn based weight:{°" (x), the
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empirical correlation coefficientt;(x) is computed according to EQ.(4.7). Approximation
coefficientsA,_; and B,_; within a local neighborhoo€, around the corresponding po-
sition in the approximation are used. The correlation vauben mapped to the interval
[0, 1]. Altogether, the correlation base weight at the posittois computed according to

Eq. (4.19):

Geo(x) = = (Cy(x) + 1) € [0, 1] (6.1)

N —

6.3.2 Noise Estimation

Additionally, for each orientation a local noise estimatie computed in order to assess
the significance of each detail coefficient versus the neise! |

The differenceD = A— B = N,— N between the two input datasets shows just noise.
Due to the linearity of the wavelet transformation the d#fece of the wavelet coefficients
can be used for estimating the local and orientation deperstendard deviation of noise
in the different frequency bands of the wavelet decompmsitas described in Chapfér 5.
The differences between the detail coefficients are condpioteall decomposition levels
[ =1,..., .. and all orientationd.:

Wg,l (x) = Wg,z(") - Wg,l (x). (6.2)

From these differences the corresponding standard densat!(x) are locally computed
for all positionsx according to:

7o) = [ S (W) (6.3

xENx
From this estimation, significance-weights are compute@&ch detail coefficient:

1’ i |W](\i/[,l<x>‘ = kffii(x),

Gied(x) = ¢ (1_ <w£“<x> : (6.4)
e

kcr;l (x)

))
, otherwise

wherek € R,k > 0 is a weighting factor. Averaged detail coefficienits); (x) with
absolute value above the local, noise dependent threshoitk) are kept unchanged,
values below are attenuated according to their differeadbé threshold. The parameter
k controls the amount of noise suppression in relation to theenpower. The higher the
value ofk, the more noise is removed. With increasing parameterR the significance
weight tends more and more to an adaptive hard thresholthraur experiments we used
r = 10.

6.3.3 Weighting of Detail Coefficients

Altogether, the averaged detail coefficients/ofind B are weighted with the product of
correlation based weight and significance-weight:

Wi (%) = Wiy, (x) - G7®(x) - G5 (x) (6.5)
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for all directionsd and all decomposition levels= 1, ..., ... The approximation coef-
ficients at the maximum decomposition levgl, are just averaged:
1
leax (X) = é(Almax (X) + Blmax (X)) (6'6)

The noise suppressed resHlis obtained by an inverse discrete wavelet transformation o
the averaged and weighted coefficients.

6.4 Experimental Evaluation

For the evaluation of the combined wavelet based filtering@gch, experiments on sim-
ulated and measured data were performed. In the first paheoévaluation, noise and
resolution were investigated based on simulated data. iffoaiat of noise reduction and
capability of preserving edges was compared for differenfigurations of the algorithm.
Furthermore, a quantitative comparison between 2-D andd&ibising was performed.
In the second part of the evaluation, example images aremexs and a qualitative com-
parison of 2-D and 3-D results is performed.

6.4.1 Noise and Resolution

The proposed noise reduction method takes into accounvtlaénoise variance, the noise
anisotropy and orientation. It is, therefore, importanttfee evaluation to use a phantom
that on the one hand has enough variation in the local norsenae, but also shows clearly
anisotropic noise characteristics. Reconstructions framallated elliptical water phan-
tom (40 cm, 20 cm), with an embedded cylinder (radius 2.5 cmgad 10 cm off-center)
were used for the noise and resolution analysis. With thespdm, on the one hand, the
average standard deviation of noise within a certain regfonterest can be evaluated. On
the other hand, the circular object can be used for compthmgverage modulation trans-
fer function on the edge of the circular inlay, as describe8ectiori 2.5J2. Like for most
adaptive nonlinear methods, the performance of the prabalgerithm with respect to the
detection and preservation of real structures in the poesehnoise, depends on the local
contrast-to-noise level. Therefore, the contrast of théedded object in comparison to
water was varied (20, 60, 100 and 1000 HU), while the dosedvatian was kept constant,
leading to different contrast-to-noise levels at the edgb@inlay. The dose of radiation,
meaning the number of photons at the source, was chosentsmtchdtandard deviation of
noise in the image close to the cylinder of about 20 HU wasioéth Fan-beam projec-
tions with 672 channels and 1160 projections per full rotatvere simulated. Noise-free
projections were simulated first. For all contrast-to-edeyels 16 noisy realizations were
generated by adding Poisson distributed noise to the piojec TheA and B images
were computed from the full number of projections each aftiting Poisson distributed
noise of half the overall dose to the projections. The gdiraf the input datasets, there-
fore, corresponds to acquiring the same object twice, angus dual-source CT scanner
under ideal conditions. With ideal conditions we mean tlwhpthe A- and B-system of
the DSCT scanner cover the complete FOV. Furthermore, sffigetphoton scattering are
neglected. All images were reconstructed at a FOV of 30 crh thi¢ indirect fan-beam
FBP method described in Sectionl2.2 using a medium sharpstaction kernel (Sim30).
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The problem of evaluating the resolution in an image is thatdontrast of the edge
compared to the noise level must be high enough in order tieweksmooth MTF curves.
The noise reduction method, however, behaves differeotlywérying contrast-to-noise
levels, what makes a contrast dependent analysis necebsarger to still achieve smooth
MTF curves, the computed weights were again applied to theerfoee reconstructed
image, as described in the previous two chapters. By weiglitie wavelet coefficients of
the noise-free reconstructed image, according to the wsemgdmputed from a certain pair
of noisy A and B images, the influence of the processing to the ideal sigmabeamade
visible. The results computed from weighting based on 1fediht pairs of noisy input
datasetsA and B were additionally averaged before computing the MTF on thaular
inlay. It should be reminded here that the computed MTF framcanstructed CT image
is not a modulation transfer function in the sense that itdess a linear shift-invariant
system. Itis more to be seen as a local average measuremtd fesolution in the image.
Especially, if the MTF is computed on the edge of the circultay, it is the average MTF
of all the points on the circle surface and, additionallyaaarage over the certain different
directions, because the profile of the edge is circularlyayed. In case of a linear system
the MTF directly can be used for also determining the effédhe linear system on the
standard deviation of noise. However, in case of an adapligeng and the computation
of local MTFs it is necessary to evaluate the noise propediehe filter based on another
figure of merit.

Of course, the figure of merit that describes, how well thehmetis reducing noise
in the image should not be done completely without considgiage resolution. A fair
comparison of algorithms can only be achieved, if the nasellis compared for the same
resolution, or the other way round. It is however, very difficespecially for nonlinear
adaptive methods, to tune the parameters such that exhetlyaime image resolution is
achieved after filtering. Therefore, a new evaluation sgais proposed here, that tries to
do the noise evaluation under consideration of the local MiEasured from the image.

From the MTF measured on the edge of the circle a correspgtidear shift-invariant
filter can be computed that leads to the same average smgathhe image as the adaptive
filter achieved in average on the edge of the circular inldyethe standard deviation of
noise after adaptive filtering in comparison to standardaden of noise after application
of the linear filter that leads to the same average resolatidime inlay can be investigated.
The frequency response of the one-dimensional linear ﬁ[t;@(rp) Is computed from the
quotient of the MTF ¥ TF .5 (p)) measured in the processed image and the original MTF
(MTFig(p)) that is computed in a noise-free reconstruction of the faran

MTForig (p)

. (6.7)
1 otherwise

. MIFailel jf MTF,51(p) < MTFrig(p) @ndMTF o5 (p) # 0
his(p) = :
The MTF in the adaptively filtered image is here bounded byotiginal MTF. An incre-
ment of resolution at the edge is not accounted here. In doadachieve a linear shift-
invariant and rotationally symmetrical filtering in twordensions, the reconstruction ker-
nel is modified, by multiplying its frequency resporis(ga) with the frequency response of
the linear filter: X o

kmod(p) = k(p)hia(p)- (6.8)
The image corresponding to the linearly filtered version nbey image is obtained from
another indirect fan-beam FBP reconstruction, but usingrtbeified kernek,,oq(p).



6.4. Experimental Evaluation 91

(a) Original noisy image with ROIs used
for noise evaluation.

(b) 2-D filteringp =1, £ = 0. (c) 2-Dfilteringp = 1, k = 1.5.

(d) 3-Dfilteringp =1, £ = 0. (e) 3-Dfilteringp =1, k = 1.5.

Figure 6.2: Elliptical water phantom with circular inlaye(fe with contrast of 100 HU) used
for noise and resolution analysis. The regions used foren@aluation are marked in the
original noisy image (a). The results of filtering in 2-D wotlt (b) and with consideration
of significance weights (c) are compared to the filtering ltesthieved in 3-D without (d)
and with significance weights (e). Display: ¢=50, w=200.
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The standard deviation of noise is then evaluated in 12 hemagus circular regions
of the elliptical phantom, as displayed in Hig.6.2(a). Thendard deviation of noise is
computed separately for all 12 regions for the original yamsage ¢..i,), the image fil-
tered with the adaptive filtero(s) and the image reconstructed with the linear filter that
leads to the average same smoothing at the edge of the cintlala (015). The mean and
the standard deviation of the noise standard deviations ttreedifferent image regions
can thus be considered. For all image regions, the noisetieduate achieved with the

adaptive filter is defined as:
Tafil

NRR =1 — : (6.9)
Oorig
The noise reduction rate alone does, however, not considehiange in resolution. There-
fore, a new figure of merit, the SNR-gain is introduced hersets into relation the stan-
dard deviation of noise in the adaptively filtered and liheéitered image:

O afil

SNRG =1 — 2=, (6.10)
O1fil

Both quantities are again evaluated for the 12 ROIs sepgraiéle mean and standard
deviation of both quantities over the different image regiare then computed. The mean
values of the two quantities together can be interpretedlbsving:

* NNR and SNRG are approximately the same: This means thattyiee filter has
caused nearly no smoothing at the edge. Consequently, therveESured in the
original and adaptively filtered images are nearly equiviadend the resulting linear
filter has nearly no effect being applied to the noisy imagee NRR thus reflects
the real gain in SNR.

* NRR is larger than the SNRG: This is the usual case if the edgenatperfectly
preserved. If the edge got smoothed, the MTF from the adaptiitered image
falls below the original MTF. The resulting linear filter liag to the same average
smoothing at the edge is a lowpass or bandpass filter. Tharlyngltered image
shows a reduced noise level, too. The real gain of the adsafitier compared to the
linear filter is thus given by the SNRG.

Further, the standard deviations of both quantities shawrhach variation in the achieved
noise reduction and SNR-gain is obtained. If a high noiseatolu rate is achieved in
average, but a high variation between the different regismsesent, this shows that the
method works fine in some regions, but bad in other regionss i§ta clear hint that the
noise reduction method does not adapt to the local noisespiep.

This evaluation strategy is now used for comparing diffecemfigurations of the pre-
sented noise reduction method in 2-D and 3-D. A comparisacheMTFs computed for
the four examples presented in Fig.l6.2 is shown in[Eig. 6h@ MTF in the original noise-
free image is compared to the MTFs computed from filtered esaddaptive filters lead
to different amounts of smoothing for different contrastibise ratios at the edge of the
circular object. Therefore, the MTFs are plotted for thdedént contrasts (1000, 100,
60 and 20 HU). Additionally, the MTFs resulting from only ieg the lowpass filtered
approximation coefficients at the maximum decompositiorllg, .. and setting all detail
coefficients to zero is shown. This gives the lower limit th&Mmay reach if no structure
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Figure 6.3: Local average MTF computed at the circular inithe elliptical phantom for
different contrasts at the edge. Comparison of four configanma of the proposed filter in

2-D and 3-D.
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(a) 2-D filtering. (b) 3-D filtering.
Figure 6.4: Noise-resolution-tradeoff - Comparison of NRRdifferent values op with
(k = 1.5) and without & = 0.0) significance weights in 2-D and 3-D.

was detected and all computed weights were zero and is tetetbas maxfilter in the
following.

The MTFs in figure Fid. 613 show that for high CNR at the edge ef#ylinder, the edge
can be preserved perfectly. With decreasing CNR the edgempedion is reduced and the
edges get smoothed. It is, however, noticeable that eveasa of a CNR of 1, which
corresponds to the contrast of 20 HU at the edge, the MTFligmatich better than the
MTF of the maxfilter. Of course, with increasing strengthta aipplied filtering, e. g. with
increasingk the ability to detect low contrast edges also reduces. Coestly, the MTF
decreases more drastically for low contrasts,ig increased. Comparing the results of the
2-D and 3-D filtering, it can be seen that for higher contradbetter edge preservation is
achieved. For very low contrasts, like here the case of 20tH&)smoothing at the edge
is even slightly increased. As already mentioned aboves, litowever important to look
at the noise-resolution-tradeoff and not just at noise soltgion separately. Therefore,
the NRR is plotted against SNRG/NRR in Fig.J6.4. The performarfi@enoise reduction
method is better the higher the NRR and the closer the ratwdsst SNRG and NRR is to
1. If the ratio between SNRG and NRR rate is 1, the edge was plgrfgeserved and the
complete NRR can be counted as a gain. In reality, howeverrahio falls below 1 if the
edge was not perfectly preserved, e.g. for a lower CNR at tge.edihis ratio can even
become negative, if the linear filter, reaching the samesmeesmoothing at the edge, leads
to a overall stronger smoothing in the homogeneous imagengghan the noise adaptive
filter. In Fig.[6.4 each line represents a single configuratibthe noise reduction method,
where the four points of the line show the results achievethidifferent CNR levels that
were tested at the edge.

In Fig.[6.4 the noise-resolution-tradeoff is compared fdfecent values ofp with
(k = 1.5) and without £ = 0) significance weighting in 2-D and 3-D. First of all it can be
seen that with increasinga stronger noise reduction can be achieved. If the signifiean
weights are additionally used for the weighting of the caoedfits, a higher noise reduction
can be achieved for the samelt is, however, noticeable that for low CNR the significance
weights lead to increased smoothing at the edges. For higirrasts at the edges, the sig-
nificance weights show no negative influence on the resoljist a positive effect on the
noise reduction. In all cases it is noticeable, by compaFigd6.4(a) and Fig. 6.4(pb) that
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much better results with respect to noise reduction and pdggervation can be achieved
in 3-D.

6.4.2 Example Images

In Fig.[6.3 an example slice, taken from a thoracic scan, @veh The original slice
(Fig.[6.5(a)) as well as the difference between the sepaeatenstructions (Fifj. 6.5(b))
show directed noise due to high attenuation along the hatd@airection. An edge-
detection is performed by correlation analysis betweerafiggroximation images, as can
be seen in the weighting image at the first decompositior ie\&g.[6.5(€). In Figl 6.5(f)-
[6.5(h) the combinations of correlation based weight anehtation dependent significance
weights are shown for the horizontal, vertical and diagal@ctions. This combination
allows an adaptive, anisotropic denoising. The noise sgged result image (3 levels of
2-D-Haar-DWT, denoised with = 1.0, k£ = 1.5) is shown in Fig. 6.5(¢), together with the
difference to the original in Fi§. 6.5(d). It can be seen thegcted noise is reduced also in
regions close to edges without noticeably affecting imagelution.

In Fig.[6.6 results are presented for a thin reconstructed §.8 mm) taken from a
CTA of aliver (see also difference images). The original psige is shown in Fig. 6.6(h).
In Fig.[6.6(C) the denoising result of the proposed methddnis presented(= 1.0, k =
1.5). Noticeably, the method adapts itself to the noise powah@&image and removes
noise more uniformly. In average, a reduction of pixel ngsggandard deviation of noise in
homogeneous region) of approximately 45% was achieveddn[2evertheless, the over-
all image appearance is not very natural with respect toasiemal noise power spectrum.
The reason for this is that we used only a small neighborhddd>o 5 pixels for corre-
lation computation. Therefore, the correlation analysisat very reliable and some false
correlations lead to noise remaining in the image. In coispar the denoising in 3-D
with 5 x 5 x 5 neighborhoods and same parameter settings, shown in &{g}6is more
effective. Noise is removed very well (up to 60%) in homogmreeareas and also close
to edges. Even at lower contrasts, edges are still preseR@dexample, the contrasted
vessels in the liver are better visible in the noise suppgnage in comparison to the
original.

6.5 Conclusions

In this chapter the combination of the two previously introeld wavelet based noise re-
duction methods was presented. The correlation analysigeba approximation coeffi-
cients of the wavelet representation of two images was coedbivith an orientation and
frequency dependent noise estimation. In addition to threetadion based weight, sig-
nificance weights were introduced, which suppress codffisien dependence on the esti-
mated noise level of the wavelet coefficient. By combiningabeelation and significance
weight, the wavelet coefficients are treated differently oraly depending on their posi-
tion and the respective frequency band, but also for therdifft orientations. The result is
that an anisotropic noise suppression becomes possibieh whtomatically adapts to the
locally varying noise power. The anisotropic behavior igexsally beneficial for datasets
with directed noise, like in the hips or shoulder. Furthereahe filtering approach was
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54t ST G

(a) original (A + B)/2) (b) (A—B)/

(9) vertical weight (h) diagonal weight

Figure 6.5: Denoising results for a thoracic slice, dispthyvithc = 50 andw = 400.
Difference images are displayed with= 0 andw = 100. The corresponding correlation
based weight and the combinations with orientation dep@nsignificance weights are
shown for the first decomposition level (O corresponds takyla corresponds to white).
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(a) original (A + B)/2)

(c) 2-D denoised (d) 2-D denoised- original

(e) 3-D denoised (f) 3-D denoised- original

Figure 6.6: Denoising results of different approaches fGTA of a liver, displayed with
¢ = 200 andw = 700. The corresponding difference images are displayed aith) and
w = 200.
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extended to 3-D. The application of the proposed methodns®owed higher noise re-
duction, up to 60%, and even improved edge-preservation.



Chapter 7

Noise Propagation Through Indirect
Fan-Beam FPB Reconstruction

In CT, post-processing techniques are often applied to ttenstructed images. Depend-
ing on the application, which can vary from diagnostic taskiseatment assessment prob-
lems, these techniques include, for example, edge-priegdiltering segmentation or im-
age registration. It is a known fact that most standard postessing techniques require a
model for the noise in the reconstructed images. Frequentiyite Gaussian noise model
based on a single, coarsely estimated parameter is assonted fmages. However, such
a choice is suboptimal because the noise in CT images is atiorsiry and object depen-
dent. This chapter focuses on the problem of estimatingdbal Inoise variance in CT
images. Having access to the image variance offers the fuadtemsignificantly improve
the performance and outcome of post-processing techni@seis has already been dis-
cussed in Chaptét 5 and Chapter 6. For instance, it has been ghattaking into account
the local noise variance for wavelet denoising [Bors 08d]iffusion filtering [Maye 07]

of CT reconstructions improves the noise suppression ared giore homogeneous results
over the whole image domain.

The noise estimation in [Bors 08d] and [Maye 07] is obtainedlividing the measure-

ments into two complete subsets yielding two images thaheagly independent in terms
of noise, as it has been discussed in detail in Chapter 5 and€pThe experiments,
however, showed that such an approach does not provide gkaple noise estimates.
Also, the averaging step makes the variance estimateg fairi-local, whereas pixelwise
estimates are desired.

A review of the literature shows that the image variance khpreferably be computed
using the knowledge that the noise in each individual imagel 5 a direct result from the
noise in the projections. In other words, the image variaacebe obtained by propagating
the noise in the data through the reconstruction pipelinech&n approach is described
in [Kak 01,[Buzu 04] for FBP reconstruction from parallel-bedata, as it has been briefly
summarized in Sectidn 2.4.2. It is also used[in [Pan 99, PAWa®g 05 Wund 08] for
direct fan-beam FBP reconstruction. All these referencesras that the measurements
are uncorrelated and that their variance is known. Moreakiey do not consider parallel-
beam FBP reconstructions applied to rebinned fan-beam Batadering to parallel-beam
projections is favored by many CT manufacturers for reasbesmputational efficiency

99
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Fan-Beam Projections
Reconstructed Image

Indirect Fan-Beam
FBP Reconstruction
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In Projections Scaling e.g. Filtering
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In Reconstructed Image

Analytical Noise
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Figure 7.1: Overview of noise propagation method.

and ease in handling special scanning features such asdhegdetector offset or redun-
dant data.

The main contribution of this chapter, which has partiaib published i [Bors 08a]
can be summarized as follows: In this chapter a new methothéocomputation of the
image variance in indirect fan-beam FBP reconstructionsiti®duced, where the data
is first rebinned to parallel-beam geometry. The method¥al the noise propagation
scheme discussed above but has to deal with the difficultythigarebinning step corre-
lates the measurements together. To propagate the noieeofte reconstruction step to
the next, a modular technique is introduced that relies salt of linear system theory
to compute any covariance terms that result from these.sfBpis technique makes the
proposed method approximate but allows an easy implememtand efficient computa-
tions. Regarding the noise in the measurements, we also aghatmoise is uncorrelated,
as in [Kak 01/ Buzu 04, PanB9, Pan 03, Wang 05, Wund 08]. Theogezpmethodology
is validated with three different phantoms, using compsatemulated data of known vari-
ance. Given that the ultimate goal is to obtain the imageamag map in addition to the
reconstruction, the statistical error in image variandeuation that results from estimat-
ing the variance in the data from a single measurement igiaddily evaluated based on
simulated and real data.
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7.1 Methodology Overview

An overview of the here presented approach can be seen iZ.Bigln addition to the
reconstructed CT image, an estimate of the pixel-wise ehaulsl be computed. The local
noise estimate can then be used for several post-proceassitngds that are performed on
the reconstructed CT image. Noise reduction methods caextomple, be adapted to the
local noise statistics.

Every step of the reconstruction pipeline needs to be maldifieorder to reconstruct
noise variances. Starting with the noise estimates in théo&am projections, the noise
variance and correlation are subsequently propagateddtepto step through the recon-
struction pipeline that is structured as follows:

» Rebinning from fan-beam projections to equidistantly splgarallel projections.

» Convolution of the rebinned projections with the recondian kernel.

» Backprojection of the filtered projections.

» Hounsfield-scaling of reconstructed attenuation coeifits to normalized CT-values.

A detailed description of the reconstruction method caroo@d in Sectioh 2.212. We rely
strongly on the fact that all individual steps of the recamsion pipeline (interpolations,
convolution and backprojection) can be expressed as a lomgabination of noisy data or
random variables. For the variance of a linear combinatfaarmdom variables taken from
the random signat(t) the following holds[[Weis]:

Var (Z aﬂ(h)) =D _aNar(e(t) + 3 ) aq;Cov(a(t), a(t;),  (7.2)

T

with a; defining the weights, e. g., taken from a finite impulse respaffrIR) filter. As
can be seen from Eq.(7.1), in addition to the local varianéesz(t;)), the covariances
Cov(z(t;), z(t;)) are needed to compute the noise variance of the linear catidninof
random variables. Additionally, for the exact computatadrihe noise variance after ap-
plying several linear filters in series, the propagatiorheft¢ovariance matrix from step to
step would be needed. This makes the whole processing amatgai and often computa-
tionally inefficient. Here, an original approximate methegroposed that estimates the
covariance terms based on linear system theory.

When the variances, Var(t)), are available, it is known that the covariance between
the values of the random signa(t¢) at two positiong; and¢, can be computed using the
autocorrelation coefficient function (ACCPp)..(t1, t2) and the local variances, as

Cov(x(t1), a(t2)) = v/Var(a(t))Var(z(t2)) pu (1, t2). (7.2)

However, the above equation still does not facilitate theleh@nd implementation be-
cause it requires the computation of the local autocoicglaiefficients. The propagation
of the variances and correlations from step to step would behneasier and could be
performed using linear system theory if wide-sense statp(WSS) signals could be as-
sumed. The requirement for wide-sense stationarity isttteatnean and autocorrelation
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are shift-invariant. In CT projections, noise is additivedazan be assumed to be zero-
mean. Hence the assumption that the mean is shift-invasdalfilled. If the correlation
lengths are small and the linear combinations are only peeéd on coefficients concen-
trated around a given sample, it is a good approximationgarae that the ACCF is shift-
invariant. In the following the random signal at any stepssuaned to be a WSS signal
in the sense that the ACCF can be estimated as a function of thenpterr = ¢, — t;.
Eq. (Z.2) can then be rewritten as

Cov(x(t), z(t2)) = /Var(z(t:))Var(z(t2)) pue (7). (7.3)
The ACCF can be expressed as the normalized autocorrelatiotido:

where the autocorrelation function (ACK),.(7), of a zero-mean WSS signal is:

aa(T) = Pua(tr, 1 + T) = Qaa(ts, t2) = E{z(t1)z(t2) }- (7.5)

In the ideal case of perfectly uncorrelated data, the ACCFstsgulelta function, which
is zero everywhere except far= 0. The application of a linear shift-invariant filtéxt)
to a random signat(¢) changes its autocorrelation and thus also its autocooelabef-
ficient function. Even if a perfectly uncorrelated signathie input to a pipeline of several
linear operations, the outputs at the intermediate stepps@longer perfectly uncorrelated.
Therefore, the amount of correlation after performing adinoperation needs to be mod-
eled as well. The response of linear shift-invariant (L§B5tem to the random signalt)
is computed by convolution:

y(t) = x(t) = h(t). (7.6)

The output signal(¢) is still a random process. For the mean of the output sigftalthe
following holds:

py(t) = EQy(6)} = E{x(t)} * h(t) = pa(t)  h(L), (7.7)

wherey,. () is the mean of the input. Consequently, filtering a zero-méegmasresults in
zero-mean output. If the input signalt) is a WSS signal, then the autocorrelation function
of the outputy(¢) also only depends onand can be written a5 [Oppe|96, Gird 01]:

Pyy(T) = aa(T) * Onn(T). (7.8)

This means the ACF of the output signal can be computed by dangahe ACF of the
input signal with the ACF of the filter. The ACF of the filter is givas[[Oppe 96, Giro 01]:

©nn(T) = h(71) * h*(—71), (7.9

whereh*(7) is the complex conjugate @f(7). The ACCF, as defined in Eq.(T.4), is just
a normalized version of the ACF. Thus, it is valid to directiyngolve the ACCF of the
input, p....(7), with the filter ACCF,p;,,(7), to compute the ACCF at the output:

_ Pyy(T)
Pl = G0

With  py, (T) = pua(T) * prn(7T). (7.10)
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The methodology used for noise propagation can be sumndaaizéollowing: In or-
der to compute a pixel-wise estimate of the noise variantleameconstructed image, the
noise variance estimates and the correlation within tha idgiropagated from step to step
through the reconstruction pipeline. The starting pointhef noise propagation method is
an estimate of the noise variance and noise correlationgratiguired fan-beam projec-
tions. For simplicity, we assume here that noise in the faanip projections is perfectly
uncorrelated, which is valid as long as crosstalk at theatl@teafterglow and tube-current
variations are negligibly small. Consequently, the ACCF ofrtbise in the fan-beam pro-
jections is assumed to be a delta function. For each stadee oétonstruction pipeline the
variance and ACCF are updated as follows:

1. The variance of the linear combination of random varialdecomputed according
to Eq.[Z.1). The covariances needed for Eql(7.1) are apped&d using the ACCF
and the local variances of the input to the current stageagbifeline, as described in
Eq. (Z.3). Note again that only the ACCF is modeled under a walese stationarity
assumption. By using the local variances for the computatloa non-stationarity
of noise is taken into account.

2. The current pipeline stage changes the correlation nvite data. Therefore, the
ACCEF that is used for the next processing step needs to be gpddies is done by
modeling interpolation and filtering steps to be represkhtea linear shift-invariant
filter. The ACCF corresponding to the output of the filtered alga computed ac-

cording to Eq.[(Z.10).

7.2 Noise Propagation Through Indirect Fan-Beam FBP
Reconstruction

The estimates of the noise variances in the fan-beam piajscare the input to the algo-
rithm for noise propagation. These estimates can be baitent en repeated measurements
of the same object, or just one single measurement and aatalibnoise model. In the
following, a detailed description is presented, on how theva introduced methodology
can be applied to all single steps of the reconstructionlipipe

7.2.1 Rebinning

Starting with the noise variances, V&t3"), and ACCF,0™"(«a, 3), of the acquired fan-
beam projections, the first step of the reconstruction pipak the rebinning to parallel-
beam projections. First, during azimuthal rebinning, EdqLQ) is applied to obtain hybrid
projections depending on the parallel projection agdend the fan anglg. For interpo-
lating the noise variances EQ.(7.1) is applied to Eq.(2.4®)ng:

N27‘rf
Var(Py) = > (h* () — o)) *Var( P+
k=1

N27rf N27‘rf ) .
Z Z haZI(de N Oék)ham(dm,l _ af{)COV<Plfin7 Pl{,aln) (711)

k=1 k=1
k#k
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The covariances are computed based on[Ed. (7.3) as

Cov( Pl Pf) = \/Var(Pgin)Var(PI{aln) P (g — g, 0) (7.12)

As already mentioned before, noise in the fan-beam projestis assumed to be perfectly
uncorrelated. Thus, the ACCF of noise in the fan-beam prajestis a delta function, i. e.
P (e — ag, B — B1) = p (i — ag, 0) = 0. Consequently, the covariances in Eq.(7.11)
are all zero.

After that the complementary rebinning is performed. Twifedént cases need to be
distinguished here, too. If the quarter-detector-offsetsed, two projections with an offset
of m are interleaved in order to increase the resolution withia projection. This step does
not influence the single variance values. They are alsontestieaved:

Var(Pg,) = Var(P}"), and VafP3") = Var(Py ). (7.13)

i+ N, Np+1-1

If no quarter detector offset is used, redundant measuresnaee averaged together. For
the variances again EQ.(7.1) is applied:

il

1 1
Var(Pi) = - (Var(Pi®™) +Var( PN, 10))+5COMPE" PIX 5, 100)- (7:24)

The covariances again cancel out if noise in the fan-beamidassumed to be uncorre-
lated. The azimuthal and complementary interpolations @toiniroduce correlations to
the hybrid projections irg direction. Thus, for the last rebinning step the data cdh sti
be assumed to be uncorrelated. After this interpolatiorctreesponding noise variances
Var(P(0,t)) for every discrete parallel projection is obtained by:

Ne

Var(Pi) =) (h*4(Ba — 5)))PVar(P™)+

=1

ZZhrad B8R (By — B)COV(P™, PE™). (7.15)
j=1 j=1
J#i
With the same reasoning as above, the covariances are fzaénopirrelated fan-beam pro-
jections are assumed.

After rebinning, noise in the parallel projections and begw neighboring views is
no longer uncorrelated. The interpolation filter functised for azimuthal rebinning is
denoted a%:* and the radial interpolation filter 5™, Based on these two filters the
autocorrelation coefficient function is computed that déss the amount of correlation
introduced to the data during the rebinning process. Theptatm interpolation filter is
modeled as a separable 2-D-filter:

RPN G, 1) = h*7(0) - hT(2), (7.16)

which is an approximation since tlé, t)-coordinates are not orthogonal relative to the
(o, B)-coordinates. Therefore, the ACGP°(t) corresponding to the 2-D interpolation
filter is:

pPUO,1) = h(0.1)/h(0,0), h(0,1) = K0, 8) % +hPN0,1),  (7.17)
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Figure 7.2: Example for linear interpolation weights appeaduring azimuthal rebinning.
The continuous interpolation function is sampled only at p@sitions.

where xx denotes a 2-D convolution. Because of the assumption of gigrfencorre-

lated noise in the fan-beam projections, the updated ACCF rafiénning is equivalent to
p™°L(t). The convolution according to E@.(7]10) with the ACCF of the-Eeeam projec-
tions, which is a delta function, has no effect.

The approximation of the correlation introduced to the dhteng rebinning by the
continuous interpolation functions, as described ab@veoi the best solution when work-
ing with discrete data. The resampling during azimutharipblation usually leads to a
very regular interpolation pattern, as illustrated in fi¢(a). Therefore, the interpolation
function is repeatedly evaluated at few positions only. &gjing on how the two grids lie
to each other the continuous approximation might under-verastimate the correlation
within the data. The continuous case assumes that all posibetween the discrete grid
points are interpolated with the same frequency, which ighecase during the rebinning
procedure described above. The problem can be easily uadérmegarding one simple
example. If linear interpolation is used for computing sésphat are placed perfectly in
the center between the original samples, the maximum oéladion is introduced to the
data. Two neighboring samples were computed by one half thensame original noisy
data placed between them. The other extreme would be thaigpiols are perfectly lying
on each other. Then no further correlation is introducedé&data at all. This example
already shows the importance of taking into account theaelissampling of the data.

The average functions corresponding to the sampled azahaitid radial interpolation
functions are computed taking into account the weightsrety appear during interpo-
lation, which is basically a sampled version of the contumiterpolation function, as
shown in Fig[ 7.2(B). The function corresponding to the aghal rebinning is computed

as.:
Nozp Np Nogg

7 () = B (0)5(0 — Sml Mk A gy 7.18
(6) m§:j 12_) kX_j (0)6(0 — == —A0) (7.18)
During radial rebinning an interpolation from a non-unifoto a uniform grid is per-
formed. This means that the distances between neighbaaimgles varies within a pro-
jection. The relative distance between neighboring sasmnlthin a projection is plotted
in Fig.[7.3(@). This has the effect that interpolation wésgare not used with the same
frequency, as can be seen in [Fig. 7.3(c). The distributiolinefr interpolation weights
depends on the channel number, as shown i Fig.7.3(b). Frnplot it can be seen
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quite clearly that close to the center ray the two grids areenoo less lying onto each
other, because weights close to 0 and 1 appear. At the outgerisahe weights seem to
be more randomly arranged. In practice this means that émnsgructions within a small
FQOV around the iso-center nearly no correlations are inited to the data during radial
rebinning. If a large FOV is reconstructed, the outer rags@eded for the reconstruction,
too. Thus stronger correlated data is used. This shouldkea tato account in estimating
the amount of correlation within the data after rebinningne@pproach is to compute the
average sampled interpolation function that correspoadadial rebinning. Here, only
those channelsy(€ [nmin, max]) Within the projection are taken into account that are used
for the reconstruction of the current FOV:

Nmax

B OESY Z W6 (t — Ba + ). (7.19)

n= nrﬂlﬂ -] 1

Instead of working with the real continuous interpolationdtions, the averaged sampled
versions presented in EG.(7118) and Eq.(7.19) are usezhithdt Eq.[(7.76).

7.2.2 Convolution

The next step in the reconstruction pipeline is the coniatudf the parallel projections
P(0,t) with the kernel functiork(t) along the row direction, as described in Eq._(Z118).
The noise variance in the filtered projections a9, t)) can thus be computed based on
Eq. (7.1).

Basically, the noise propagation through the convolutiom foa split into two parts:
the convolution with the squared filtering kernel and thesideration of the covariances.
The convolution of the noise variances in the parallel prigas with the squared fil-
tering kernel has also been considered in the theoreti@ysin presented in_[Buzu04]
and [Kak01]. However, the experiments will show that theaz@nce terms of the data
within the same projections are essential for getting bédianoise estimates. Altogether,
the noise variance in the filtered projections can be conapateording to:

Np p P
Var(Py) = At? [ > PRty — ) + Y Y Cov(PR, PP )k(ty — to)k(ty — 1)

IS7
s=1 s=1 r=1
T#S

(7.20)
The covariance between two channels within one parallgéption can be approximated
using the autocorrelation coefficient function in Eq.(J:17

IS’

Cov(PP™, PP \/Var PP Var( PR pol 0, ts — t.). (7.21)
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Figure 7.4: Autocorrelation coefficient functions afteneolution for two different recon-
struction kernels.

The projections are sampled with the sampling distakteConsequently, EJ_(7.21) can
be reformulated such that the distance betwgesndt, in discrete steps of sizAt is

included:

NP Jmax
Var(Pil) = At? (Z (b — ta) PP )~ p7(0, qAt)
s=1 q=1

NP
3 (\/Var<PPaf)Var(zap;{q)k( o — L)kt — o — QAL+

s=1

\/Var(PPar)Var(PPar Ve(ty — ts)k(tn—ts+th)>>. (7.22)

i,s—q

The covariance parts are consequently implemented byiaalitconvolutions. The pa-
rameterq,,.x controls how many neighboring channels are taken into atdow covari-
ance computation. Usually, the autocorrelation funciéd'(,t) very rapidly goes to
zero. This means that only channels in a small neighborhoodarelated. Therefore, the
maximum distance between the channels that need to be eoedidnd thus,,,.. can be
chosen in dependence of the ACCF:

Umax = argmax,y {pipol(()’ QAt> > 6} . (723)

Thoseq for which the correlation coefficient atA¢ is below a certain small threshoéd
are neglected in EJ.(7Z.R2). Typical values éare in the range of 0.01.

The convolution process inside the reconstruction pipelnroduces further correla-
tions within the parallel projections. In order to modelstifior the next step, the ACCF
after filtering needs to be computed. The filter ACCF is compbtzked on Eql(7.4) and

Eq.(Z.9) as
Or(t)
ork(0)

prrlt) = With @i (t) = k(1) * K (~t). (7.24)
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The correlation inside the data after convolution is désatiby convolution of the ACCF
after rebinning with the filter ACCF along the directionidbllowed by normalization, as
described in Eq{7.10):

ﬁcon(Q’ t)

con 9’2(: = — ,
p ( ) pcon(()? 0)

P (0,1) = pPl0, 1) * pra(t). (7.25)

Two examples for different convolution kernels are showRim[7.4.

7.2.3 Backprojection

After the filtering with the convolution kernel the next sieghe reconstruction pipeline is
the backprojection into image plane. For each image pixéle sum over alN ., parallel
projection angle$ € [0, 7| is computed according to E.(2120). The noise varianceef th
reconstructed attenuation coefficients (Ydt)) then amounts to:

N 7rp 7rp

Var(u(x)) = A§? Z Var(P(x)) + > ) " Cov(Pf(x), P(x)) | ~

i=1 i=1 j=1
j#i

NT"P N‘pr Jm'1x
~ AH? <Z Var(P(x)) + 3~ 3 (Cov(Pf(x), Pl (x)) + Cov( P (x), P, (x)))) :

i=1 j=1

(7.26)

During the reconstruction algorithm only the azimuthalineing introduces a correlation
between directly neighboring projections. Thus, only theaciances between few neigh-
boring projections need to be taken into account. It is agassible to determing,,.
based on the ACCF after convolution in directiorfof

Jmax = argmax;cy {p"(JAH,0) > €} . (7.27)

For getting the projection valugdi!(x) an interpolation is necessary, as described in
Eq. (2.21). Consequently, the covariances in Eq.{7.26) earomputed by:

Cov(P(x), PM(x iihbm — ta)RPPI(f(x) — tm)COV(P, PR, (7.28)

iny+ jm
n=1 m=1
with
ti(x) = wsin6; — y cos b;. (7.29)

Accordingly, the variance can be computed as a special gase b

Var(PA(x)) = 3 (HP((x) — 1)) Var(PlL) +
S ) — R () — ) COUREL, PAL). (7.30)

n=1 m=1
m#n
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The covariances are approximated based on the ACCF given {{E§):

i,n» Jrn

Cov(PfL, PiL,) ~ Var(PE)Var(PL) o (6; — 0, to — ). (7.31)

On the first glance, it seems that Hq. (7.28) and [Eq.{7.3Q)ireq large number of com-
putations because of the included double sums. Howevemthgpolation functions are
different from zero only for a few neighboring channels. ilfelar interpolation is used,
as defined in Eq(2.23), e.g. only two neighboring channefkinvone projection are
considered and consequently, only four summands are ezbniEq.[(7.2B).

7.2.4 Hounsfield Scaling

The reconstructed attenuation coefficients are usuallypatized to Hounsfield-Units. This
is done as described in EQ.(2.22). In order to estimate tieeno the normalized recon-
structed data, the following equation needs to be used:

Var(f(x)) = Var(u(x)) (1220) HU?. (7.32)

Consequently, the standard deviation of naige) in the reconstructed and normalized
image can be computed by

o(x) = VVar(f(x)). (7.33)

7.2.5 Covariance Between Reconstructed Hounsfield Values

The above presented theory can be extended to compute thdasme between recon-
structed Hounsfield values. Therefore, the correlatioweeh neighboring pixels can be
determined analytically, too. The covariance between taronalized reconstructed pixel
values at two arbitrary positions andx, can be computed as:

1000
fhw

2
Cov(f(xy), f(x2)) = ( ) Cov(p(xy), u(xz)) HU?. (7.34)
This equation can be used for computing the complete cowaianatrix of an image.
According to the variance computation in Hqg. (7.26), whishust a special case of the
covariance, the covariance amounts to:

Norp Nop

Cov(pu(x1), i(xz)) = AG? Z Z Cov(P(x1), P (x2)) =

Nﬂ'p jmax

~APY T Y CovP(xy), Plli(x2)). (7.35)

i=1 j:_jmax

Here, again the approximation is used that only few neighlggsrojections are correlated
because of the azimuthal rebinning. The number of neighgrtojections is determined
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based on the ACCF as given in Hq.(4.27). The covariance betiméenpolated values
taken out of two parallel projections is computed very samib Eq.[(7.2B):

Ny Np
Cov( P (x1), PR (x2)) = 3 > WPI(Ei(x1) — ha)hPPI (5 (%) — L) COV(PSL, P,
n=1 m=1
(7.36)
where
fi(Xl) = xy8inf; — Y1 COS 01, and %(XQ) = X9 sin QJ' — Y2 COS Qj. (737)

Finally, the same approximation that is used for the vaeatmmputation can be applied
here:

in’ Jm

Cov(Pil, pil ) \/Var PEVar( P )5 (6, — 6;, £y — L). (7.38)

The correlation coefficient between two image pixels can tieecomputed using Eq.(7]134)
and the local variances from EQ.(7132):

COV(f( 1), f(x2))

P x) = VVar(f(x;))Var(f(xz))

(7.39)

7.3 Experimental Evaluation

The analytic model presented in the previous section mase®iisome assumptions and
approximations, leading to a systematic error of the methodddition, the method uses
noisy projection data as input to the noise estimation. Tegads to an additional intrinsic

statistical uncertainty. To quantify systematic and statal uncertainty of the presented
method, Monte-Carlo simulations were carried out.

7.3.1 Simulation
Three analytical phantoms were used for the evaluationeohdise propagation method:

* The FORBILD thorax phantom, in the following denoted as thopaantom, is
shown in Fig[ 7.5(@). It is reconstructed at a FOV of 41 cm diee is positioned at
z =0 cm.

» A modified version of the FORBILD thorax phantom, in the foliog denoted as
shoulder phantom, is shown in Hig. 7.3(d). It is reconsedait a FOV of 51 cm,
the slice is positioned at = 14 cm. One of the lungs was translatéd’5 cm in
z-direction in order to achieve more antisymmetry.

» The FORBILD head phantom with ears is shown in Fig. 7]5(g} teconstructed at
a FOV of 25 cm, the slice is positionedat= 0 cm.

For all three phantoms, noise-free fan-beam projectione winulated using 1160 pro-
jections, 672 detector channels and a quarter detect@tofithe following physical pa-
rameters were selected for the simulation: focus widthmm, anode angle-82°, delta
betaAS = 360/4640 mm, 80kV. The indirect fan-beam FBP reconstruction was per-
formed in combination with four different reconstructioerkels. The MTFs of the kernels
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are displayed in Fi§. 716. For the noise propagation methecoarametes = 0.01 was
used in Eql(7.23) and EQ.(7]27). The parametgts andj,... are thus equal to 1 for all
experiments.

7.3.2 Accuracy of the Noise Propagation
CT-image noise estimates were built according to the folowhree procedures:

a) Noise free projections were used for a Poisson-distribntese estimation. The prop-
agation through the analytical model yieldgx).

b) Monte-Carlo simulations af,;c = 10000 CT images were generated. For each image,
Poisson-distributed noise was added to the projectiongl-Riise noise computation
from theNyc reconstructed images givesg(x).

c) In parallel, for each of th&,;c images the noisy projections were used for Poisson-
distributed noise estimation. The propagation throughathaytical model yields
o.(x) and Va(o.(x)).

Procedure a) provides the expectation value for the CT image raccording to the pro-
posed method. The standard deviation computed in b) yie&lgdld standard to compare
with. The standard deviation images(x) ando,,(x) are used to determine the systematic
error of the proposed method on a per-pixel basis. The pigelvelative error is defined
as:
0a(X) — 03(x)
op(X)
The noise propagation method is precise if the relativelpige errors are small on the
complete image domain. Therefore, the average relatiee err

A (X) = (740)

N
1
a = gy 2oral) (7.41)
and its variance N
1 i
or, = ~N_1 > (ra(xi) —7a), (7.42)

i=1
over the different image pixels is computed, whéfas the number of image pixels and
ra(x;) is the relative error at pixel positia. The average quadratic error, normalized on
a per-pixel basis is defined as:

N
SA = %Z(TA(xi))Q — \/(FA)Q 4 N]\; 103A_ (7.43)

Measuring the variance of the noise prediction during place c) exhibits its intrinsic
statistical uncertainty for a given dose and object. Thienalte goal of the here presented
noise propagation method is to get a variance map in addidi@nreconstructed image,
using one single measurement. Then the input to the noigggadion is no longer the
exact noise variance in the projections, but a noisy estimiaach of the\y;c = 10000
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(a) Thorax (b) Analytical (c) Monte-Carlo

(d) Shoulder (e) Analytical (f) Monte-Carlo

(g) Head (h) Analytical (i) Monte-Carlo

Figure 7.5: Phantoms used for evaluation reconstructed 850 (Thorax: 30cm FOV,
display: w=50, c=400, Shoulder: 51 cm FOV, display: w=509@&, Head: 25cm FOV,
display: w=50, c=900), together with analytical noiserasties and estimates from 10000
noisy realizations (Thorax noise display: w=25, ¢c=50, Stieuand Head noise display:
w=50, c=150).
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el —— Sim50
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Figure 7.6: MTFs of kernels used for the experiments.
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noisy projections are used for estimating the noise vaeamthe projections respectively
and are then separately propagated through the recomstratgorithm givingNy,c stan-
dard deviation images, ,,(x) with m = 1, ..., Ny;c. From the stack of standard deviation
images the pixelwise mean(x) and variance Vafo.(x)) can be computed as:

F.(x) = N D oem(x), (7.44)
Var (o,(x)) = ﬁ S (Cem() = Gom(x))?. (7.45)

The pixelwise standard deviation of the standard deviat@yesr (0.(x)) = /Var(o.(x))
Is a measure for how stable the noise variances can be req@odising different noise re-
alizations. For all three phantoms the values in(dafx)) were well below 0.1%.

Table 7.1: Evaluation of the systematic error of the methogpsed. Numbers are quoted
in percent {).

Thorax Sim10 Sim30 Sim50 Sim0
ap 3.7 5.8 13.2 10.2
A1 -22.3+8.5  -11.0k9.8 5.5+11.2 3.3t9.7
SA 23.9 14.8 12.5 10.2
TAL2 -18.4+£8.9  -8.0£10.1  5.8:11.2 3.49.7
SA 20.4 12.9 12.6 10.4
A3 -16.4+7.4 -5.9-7.7 8.3:8.9 6.17.1
SA 18.0 9.7 12.2 9.4
TAL4 -3.6t£3.6 -1.6:3.3 1.2+2.4 0.7#2.2
SA 5.3 3.9 2.8 2.3
Shoulder Sim10 Sim30 Sim50 Sim0
ap 10.7 17.0 35.4 27.1
A1 -18.7+9.4  -10.1#9.3 -1.4t11.1 -3.5+9.7
SA 20.9 13.8 111 10.4
TAL2 -13.0£10.0  -5.8:9.8 0.4£11.3  -1.2:10.0
SA 16.5 114 11.3 10.1
TA3 -11.8+8.4 -4.4:7.7 1.9+9.8 0.3:8.2
SA 145 8.9 10.0 8.2
TAL4 -1.8+4.0 -0.4-3.5 0.6+2.8 0.3£2.8
SA 4.4 35 2.8 2.8
Head Sim10 Sim30 Sim50 Sim0
ap 16.1 26.1 62.0 58.3
AL -29.2£3.7 -19.9:6.9 4.9:13.8 20.9:11.1
SA 29.5 21.0 14.6 23.7
A2 -27.86+£3.8  -18.8:7.0 4.8:13.8  19.4:11.0
SA 28.0 20.0 14.6 22.3
TAL3 -23.7+3.3  -14.4:4.3  10.2:9.2 25.746.0
SA 23.9 15.0 13.7 26.4
A4 -6.3+2.1 -4.1.7 0.2:2.0 3.0-2.4
SA 6.7 5.0 2.0 3.9

Tab[7.1 summarizes the results of the systematic erronatrah achieved for the three
phantoms. The average pixel noise valag$ HU are listed for the different phantoms
and reconstruction kernels. This average pixel noise wesrdeed by averaging over
the standard deviation image achieved from the Monte-Carlalation. In addition, the
relative systematic errors are listed for four differersest

1. All covariances are neglected, giving; andsa ;.

2. The covariances during backprojection are neglecteth@ia » andsa o.
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3. The covariances between neighboring projections dinaagprojection are neglected,
giving ra 3 andsa 3.

4. All covariances proposed in the method presented hetalegr into account, giving
TA4 andSAA.

The relative systematic errors are averaged over the winalge domain and quoted in per-
cent, together with their standard deviations. Additibndhe L2-norm errors are quoted
as well.

For better judging the results the standard deviation imaipained from the analytic
noise propagation and from the Monte-Carlo can be compar&igify.5. Additionally,
horizontal and vertical lineplots through the center of stendard deviation images are
displayed in Fid. 7]7, Fi§. 7.8, and Fig.I7.9. The accuracyheffour different configu-
rations of the algorithm can here be compared visually fer different phantoms and
reconstruction kernels.

It is evident, that good results over the full range of contioh kernels can only be
achieved by considering the covariances during the cotisoland backprojection pro-
cesses. This can be seen from the quantitative evaluatiovebi@s from the lineplots
through the standard deviation images. Without considettie correlations introduced
to the data during the processing, the noise is under- orestigrated, sometimes up to
more than 40%. This estimation error cannot be adjusted lyrr@ation factor or shift,
because the deviation of the errors within the image stsovalies. The consideration of
the correlations introduced during rebinning for the cdation process only leads to im-
provements for smoother reconstruction kernels. It candely seen from the lineplots,
that especially for Sim50 and Sim0 nearly no changes areata@ (regarding the magenta
and cyan curves). The reason is that the smoother kernetsehender spatial extension
and, therefore, the correlations within the neighborhdw& more influence. Taking into
account the correlation between neighboring channelsguhie interpolation performed
within the backprojections improves the noise estimatiomll cases (regarding the red
curve in the lineplots). The additional consideration afretations between neighboring
projections, when summing up the contributions from akdiions to the local noise vari-
ance in the backprojection, has again a larger impact if sheveeconstruction kernels are
used. Another observation is that the influence is highetatiler the distance of the pixel
to the iso-center. This can be understood regarding the ACC#H& emooth Sim10 and
sharp SimO kernel plotted in FIg. 7.4. The larger the distasfche currently reconstructed
pixel to the iso-center, the larger is the distance betwkerchannels of two neighboring
projections contributing to that pixel. While the ACCF is stitht O for a smooth kernel,
there is no noticeable correlation between these samptasanof a sharp kernel. If all the
correlations are taken into account for the noise propagdltie method shows good accu-
racy with an average relative error below 6.3% for the heaahfim and even below 2%
for the shoulder phantom. The L2-norm errors are in abousémee range between 6.7%
for very smooth reconstruction kernels and close to 2% fargheconstruction kernels.

7.3.3 Real Data

In addition to the evaluation based on simulated data, soperienents with data acquired
at a Siemens Definition CT scanner were performed. For estigyapise in the projections
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Figure 7.7: Horizontal and vertical cuts through standa&sdation images for thorax phan-
tom - comparison of Monte-Carlo results to four differentesaef analytical noise propa-
gation for four different reconstruction kernels.
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tom - comparison of Monte-Carlo results to four differentesaef analytical noise propa-
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(a) Abdomen: Noisy Image (b) Abdomen: Analytical Noise Estimate

y

_—|

(c) Thorax: Noisy Image (d) Thorax: Analytical Noise Estimate

Figure 7.10: Experiments with real data acquired at a Sisni@zfinition CT scanner
(300mm FQV, B40f, display: w=50, c=400), together with atiaBl noise estimates (dis-
play: w=50, c=80). The pixel regions used for evaluationamfal standard deviations in
noisy image and average standard deviation from analyigengropagation are shown
with their respective numbers.
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of scanned CT data, a physical noise model for the projectaa deeds to be calibrated
in advance. As already mentioned in Secfion 2.4.1, the systeecific parametersand
o2 can be determined by measuring noise and signal strengériats fluxes. Especially,
if the CT scanner is equipped with a bowtie-filter, each detecltannel has an individual
set of parameters. Eccentric positioned water cylindemdifedrent diameters were used
for the calibration measurements performed at 120 kV andh®890At the same scanner
two different anatomical phantoms were scanned again ak\lZhd 300 mA. The im-
ages reconstructed at a FOV of 25 cm with a medium sharp baugké40f) are shown
in Fig.[Z.10. The standard deviation of noise was measurdd idifferent homogeneous
image regions and was compared to the average standardiaiewhnoise from the ana-
lytical noise propagation, averaged over the same pix@bmeg

Table 7.2: Comparison of standard deviation of noise evatlat homogeneous image

regions of reconstructed noisy CT imagdg and mean standard deviation in this pixel
region of the analytic noise propagatién.. The standard deviations are given in HU, the
relative error, Is given in percent.

Abdomen 1 2 3 4 5 6 7 8 9 10
Oref 348 384 36.1 445 522 329 578 409 508 456
Orec 345 386 36.3 46.2 47.0 331 540 424 499 417
N -1.0 0.5 -1.1 3.9 -10 0.5 -6.5 3.8 -1.8 -8p
Thorax 1 2 3 4 5 6 7 8 9 10
Gref 39.1 414 427 465 439 553 473 67.7 505 479
Orec 376 384 393 451 425 506 460 59.7 478 471
TA,r -39 -7r2 81 -29 -33 -84 -27 -11.8 54 -17

The standard deviation of noise evaluated in local neighimals of about 600 pixels is
here denoted as..;. These reference noise values are compared to the starelaatiah
of noise from the analytic noise propagation, respectiagbraged over the different local
neighborhoods, and is denotedas. The maximum standard deviation of the computed
standard deviation values within the small pixel regions waall cases below 2HU in
case of the abdomen image and below 1 HU for the thorax imageorparison of the
standard deviations is presented in Tab.7.2. In additiothéostandard deviations the
relative deviation of the reference noise and the compusettiard deviations is computed
for the different image regions:
5rec - 5'ref

TA,r = (746)

Oref

It can be seen that the noise estimate from the analytic mog@agation fits well to the

standard deviation evaluated in homogeneous image regidresaverage relative devia-
tion is about -2.3% in case of the abdomen image and -5.5%sk chthe thorax image.

The maximum relative deviation was about -12%. In most ofddses the local standard
deviation of noise is slightly underestimated.

7.4 Conclusions

In this chapter, a fast method for noise-propagation thinandirect fan-beam FBP recon-
struction with rebinning to parallel-beam geometry wasppsed. Due to the fact that
the rebinning step and all further processing steps caeréte input data, approximative
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models based on linear shift-invariant systems were dpeeldor estimating the covari-
ance terms needed for the variance computations. The mdpusthodology has been
validated by Monte-Carlo and demonstrates good accuradyamitaverage relative error
below 6.6%. It was observed that with increasing sharpnésiseoused reconstruction
kernels a lower systematic error of about 2% can be obtaii®&e. main limiting factor
is seen in the approximation in the covariance terms. Theetbspatially concentrated
the involved operations work, the better the wide-senagestarity assumptions for the
ACCF computation holds, which explains the better resultsi@arper kernels. Due to the
fact that the ultimate goal is to compute a standard-dernatnage for post-processing
purposes, the method was additionally tested with respestatistical errors. Even if the
noise variance in the fan-beam projections was estimated froisy projections of a sin-
gle noise realization, only negligible differences belad® were observed, compared to
the case of perfectly known variance in the projections. efxpents with real accquired
CT data showed that in combination with a calibrated physiosée model the proposed
analytic noise propagation can be used for estimating tb& ktandard deviation in the
reconstructed image. The relative deviation between tingpated local standard devia-
tion of noise and the standard deviation of noise evaluatesiviall homogeneous image
regions is below 12% for all image regions evaluated for we#l scans under investiga-
tion. Furthermore, the introduced approximations allovast ind easy implementation.
Especially for the focus of application, the adaptation o$tgrocessing methods to the
special noise, properties in CT, the presented noise prtipagaethod is precise enough
and shows stable results also for estimated variances prafections from a single noisy
measurement. The computational performance of the nogggpation is comparable to
another reconstruction.

Of course, some simplifying approximations for the noisedeion the fan-beam pro-
jections were used for the simulations and in the physicaenmodel. First of all, monochro-
matic X-ray beams were assumed, which is unrealistic fartmal systems. It is, however,
very common to approximate the polyenergetic X-rays meskat the detector by only
considering an effective energy and an average number dabpsowhich is again very
close to the simple model used here. Furthermore, elecsomise was neglected for the
simulations. In real systems, electronics noise is uswalty small compared to quantum
noise, if the X-ray flux is high enough. Consequently, onlyviery low doses electronics
noise plays a role. In the physical noise model that was usethé real data electronics
noise was considered. Obviously electronics noise, wisiclsially modeled as a Gaussian
noise floor does not severely influence the accuracy of treepted method. Further, noise
in the fan-beam projections was considered to be perfeattpmuelated. This assumption
only holds as long as tube-current variations, cross-tatkedetector and afterglow are
negligibly small. In real systems the noise in the measuregeptions is usually very
small, but there are small correlations between neighgarirannels and projections. Al-
though, these correlations were neglected in case of thecaas, the noise estimates are
still reliable enough for the desired post-processingiappbn. For future investigations,
it is also possible to include the correlation of the inputadiato the proposed method-
ology. As long as these correlations can be modeled by arlisi@é-invariant system,
the proposed methodology can still be applied with onlelithanges. The ACCF of the
fan-beam projections is then no longer a delta functionctis used for the covariance
computation during the rebinning and thus the covariancetonger cancel out in the
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first processing step. Consequently, the ACCF needs to be upalt¢e the intermediate
rebinning steps, too.



Chapter 8

Orientation Dependent Noise
Propagation for Adaptive Anisotropic
Filtering

As already indicated in the last chapter, precise knowleafgéhe local noise variance
would help in adapting various post-processing methodsdamon-stationary noise in CT.
Noise reduction methods can for example make use of thisiaddi knowledge and adapt
to the local contrast-to-noise ratio. Ideally, post-pssieg methods should also account
for the local correlation of noise. Improved noise suppmssan be obtained knowing the
correlation of noise within the local neighborhoods tha&t ased for filtering. Averaging
uncorrelated values leads to a stronger noise suppressonalveraging values that are
strongly correlated. The computation of image covariahessbeen investigated for direct
fan-beam reconstruction in [Wund08]. It is also possiblepproximate the covariances
in images reconstructed with indirect fan-beam FBP usingaghygoximation presented
in Chaptei_Z.Z]5. Nevertheless, such computations are iragydonsuming if they are
performed pixel-wise for the whole image domain and, thosuseful for image denoising
purposes in practice. Therefore, this chapter presentstanson of the analytic noise
propagation presented in the last chapter that additipigalies some information about
the correlation of noise without computing covariancesdifidnally, the adaptation of a
bilateral filter to the non-stationary, correlated noisenestigated.

In a preliminary approach [Bors 08b], the local noise vargwas split up into its hor-
izontal and vertical contributions. The estimated noiseav&es in the projections are
weighted with sine-/cosine-squares of the respectivellph@ojection angles and sepa-
rately propagated through the indirect fan-beam recoctsbn, as described in Chapféer 7.
The overall local noise variance is the sum of horizontahgertical variance contributions.
The ratio between horizontal and vertical contributionh® focal variance is then used for
adapting the bilateral filter. The Gaussian range filter eag,, be stretched or suppressed
along thez /y-direction. The remaining problem is that diagonally diegtnoise grains
evenly split up into its horizontal and vertical contrilars according to this orientation
separation based on just the horizontal and vertical dinest As a result the filter in these
special cases remains an isotropic filter and the desiredtajéts lost.

The idea of the improved approach, presented here, is: Rerthe direction is deter-
mined that mostly contributes to the local noise variandeis Ts the direction for which

123
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the X-ray had to travel through most or densest material.illtbe shown that this is at
the same time closely related to the direction of highestetation within a local neigh-
borhood. Instead of determining just the horizontal andcercontribution to the overall
local noise variance, the contribution in direction of thghest correlation and orthogonal
to it is computed. This means that for each pixel a specifiaisgn into two directions
is performed. Based on these noise contributions and thesmwnding angle pointing
out the orientation of the noise grain at a certain positeomoise adaptive filtering can
be performed that takes into account the noise correlatibhne filter is adapted such that
strongest filtering is applied orthogonal to the directibhighest correlation. The concept
of bilateral filtering, a simple and widely used techniqueused here as a basis for noise
adaptive edge-preserving filtering.

8.1 Methodology Overview

The flowchart of the methodology is presented in Fig. 8. ludiclg intermediate results for
an example slice of a real scan. The method splits up intoaolfening parts:

1. The CT image is reconstructed using indirect fan-beam FB&hstruction.

2. The noise variance in the fan-beam projections is estidnatcording to a calibrated
physical noise model, as described in Sedfion 2.4.1.

3. The local noise variance is computed based on the analgise propagation for
indirect fan-beam FBP, as described in Chalpter 7. At the sameettie direction of
strongest correlation is determined for each image pixel.

4. Based on the computed direction of strongest correlatipixelwise separation of
the overall noise variance into the direction of strongestetation and orthogonal
to that is computed. The separation is obtained by a modifeésernpropagation
method where sine-/cosine-square weights are used dinertggickprojection of the
variances.

5. The orientation dependent noise estimates in the imageiticand the image point-
ing out the direction of highest correlation are used fortyprecessing of the re-
constructed CT image. Here, a noise adaptive bilateralifijes proposed as an
example application.

In the following the determination of the direction of stgast correlation and the locally
dependent separation of the noise variance to the contibaliong the direction of highest
correlation and orthogonal to it are described more in degdter that the adaptation of
the bilateral filter to the non-stationary and non-isotcapvise in the CT image will show
how this additional information can be used for improving #ignal-to-noise ratio in the
image.

8.2 Orientation Dependent Noise Propagation

In Chaptefl an algorithm for the computation of local noiseareces has been provided.
Given the noisy projection values, a simple (calibratedy@onodel can be used for esti-
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Figure 8.1: Methodology overview.
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(a) Nlustration of covariance contributiongb) Angle pointing out the direction of strongest
correlation.

Figure 8.2: lllustration of covariance computation anded®ination of direction of
strongest correlation.

mating noise in the projections. Starting from this, theseorariance can be propagated
through the complete reconstruction pipeline.

In addition to the local variance, the correlation of nosaow analyzed. The compu-
tation of covariances is possible, as explained in SeLiidB7However, this computation
is rather time consuming. In this section, another possilbfior getting information about
the noise correlation, without computation of covarianedkbe described. In a first step,
it will be shown that for each pixel in the image the directafrstrongest correlation can
be easily determined. With this direction the first printigeis of the local noise grain is
obtained.

The second part of this section then describes a methodgaratng the local variance
into two noise contributions. This separation can be peréat uniformly for the whole im-
age, e. g., into a horizontal and vertical contribution. keady mentioned above, this has
the drawback that in some cases no information about the @moisotropy can be gained.
Therefore, an extended approach where a pixel specific agpainto the direction of
strongest correlation and orthogonal to that is computétrisduced.

8.2.1 Direction of Strongest Correlation

The non-isotropic noise property in reconstructed CT imagesbe mainly derived from
the non-stationary noise in the projections. As explaimedhapter Chaptéq 7, the vari-
ances in the projections are backprojected for computieddbal noise variances in the
reconstructed images, according to [Eq. (I7.26), which cemlaé written as:

Nop

Var(u(x)) = A0* > " v(6;, x). (8.1)

i=1
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For each pixel positiow, the variance contributions

N'/rp jmax

v(h,x) = Var(P(x)) + 3 3 (Cov P (x), P (x)) + Cou P (x), P (x)) . (8.2)

i=1 j=1

coming from the parallel-beam projections at differentj@cton angleg); are collected,
or summed up, as illustrated in Fig.8.2(a). The variance Réfx)) and covariances
Cov(Pf!(x), Pf!(x)) in Eq. (8.2) are computed according to Eg.(7.30) and[Eq8j7 Re-
cause of this backprojection process, all image pixelsdhatplaced along the backpro-
jection line L(6, t) receive the same contribution from the projection at afgl€he cor-
relations between neighboring projections (in directiért)oand within a projection (in
direction oft) are rather small. Examples of estimated auto correlatosifficient func-
tions of noise in the projections after rebinning and couatroh were shown in the previous
chapter in Fig. 7}4. Because of the small spatial extensicgheo@ACCF most of the con-
tributing variances to the overall variance at a pixel poséd atx; and another pixel at,
are uncorrelated, except for the variance backprojectmagathe straight line defined by
x1 andx,. The correlation between the two pixels is stronger thedrigie backprojected
variance along this straight line is. If different pixelgwihe same distance to the reference
pixel are considered, it becomes clear that the directi@trohgest correlation is given by
the direction from which the strongest contribution to threrall variance is collected dur-
ing backprojection of the projection variances. This mehasduring the computation of
the local noise variance, the projection angle with thengfest contribution to the noise
variance of the actual pixel can be determined:

Omaz(X) = argmaxy {v(6;,x)} . (8.3)
From the determined angtg,,..(x) in the range of0, 7| the direction vector

Ormaz(X) = (€OS(Omaz (X)), SN (maz (%)) (8.4)

points in the direction of strongest correlation. It poiatg the first principal axis of the
noise grain, meaning the direction in which the noise gramits largest spatial extension.
In case of an isotropic noise gra@nm(x) can be an arbitrary direction. An example for
the pixel-wise determined direction of strongest corretats displayed in Fig. 8.2(b) for
the ellipse shown in Fi§. 8.2(a). The andlg...(x) is displayed color-coded.

8.2.2 Orthogonal Separation of Noise Variance

With the above presented analysis, the direction of streingmrelation can be computed
from the noise estimates in the projections. There is, hewew information given, if the
noise grain is really anisotropic or if the contributionsrfr all directions are the same. In
order to obtain information about the noise anisotropyxalpiise separation of the noise
variance into its contributions from two orthogonal diiens is computed.

The idea of the presented approach is based on the obsertadicthe noise variance
in the parallel projection at anglemainly contributes to the noise variance in the image
orthogonal to the backprojection direction. This means thténe projection at anglé
is very noisy and is backprojected, any line orthogonal ®lhckprojection line is very
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(a) Noisy ellipse  (b) Standard deviation dt) Standard deviation fl) Overall standard di-
noise in horizontal direcroise in vertical direcviation of noise.
tion. tion.

Figure 8.3: Example of horizontal and vertical noise cdmittions for elliptical water phan-
tom.

noisy, too. Any line that is parallel to the backprojectiorel on the other hand, is inferred
by the same error from the current projection and thus shoemnatant error along this
line with respect to this projection direction. The themat basis for this observation
builds the Fourier-Slice-Theorem, as described in Se@idn If only one parallel-beam
projection is considered the one-dimensional Fouriersfiamation of the projection at
angled is equivalent to the two-dimensional Fourier transfororatf the reconstructed
function along the line through the origin in direction of= 6 — 7/2. As discussed
before, the noise in CT can be assumed to be additive and zemo-mBecause of the
linearity of the FBP, noise can be considered separatehhelfparallel-beam projection
acquired at anglé just consists of noise, the reconstruction shows noiseamtthogonal
direction ofy = 6 — 7/2, because the two-dimensional Fourier Transformation ef th
reconstruction is only non-zero along this one line. Thisaylsation is useful for separating
the overall noise variance into its contributions to certirections, e. g. the horizontal and
vertical directions[[Bors 08b]. As described above, thegutipns withd close to 0 mainly
contribute to the noise in vertical direction in the imaged{section) and projections with
0 close tor /2 to noise in horizontal direction (x-direction). By weightitthe variance in
the projections with sine- and cosine-squares of the dnalbjection angle, the overall
noise variance can be split up into two parts:

Nﬂ—p N7rp
Var(pu(x)) = Af? Z v(0;,x) = AG? Z:(sin2 0; + cos? 0;) v(6;,x) =

i=1 i=1

Nﬂp N7rp
= A#? Z sin? 0; v(6;,x) + AG? Z cos® 0; v(6;,x) . (8.5)
i=1 i=1
VAl (u(x0) Vary (u(x)

The variance contribution Vafu(x)) to the horizontal direction is computed by applying
sine-square weights depending on the parallel projectigheaduring the backprojection
process. Accordingly, the vertical variance contributiar, (1.(x)) is obtained by using
cosine-square weights for the backprojection. Based ondhedntal and vertical vari-
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ances for the reconstructed attenuation values, orientaképendent variance images of
the reconstructed Hounsfield values can be computed, based.§7.32) and Eq.(Z.83):

o) = vanu(u) (2 v 56)

and ,
o} 0 = Vary () (1 1) 87)
Clearly, these noise estimates depend on the local positidnnoise estimation vector:
5(x) = (ou(x),ov(x))" (8.8)

is now given for every pixel positior. By construction, the noise variance in the recon-
structed CT image can be expressed as:

0?(x) = of(x) + ov(x). (8.9)

This means that at positiax the standard deviation of noig€x) is given by the norm
of the noise vector defined in EG.(B.8). An example for suchmagation into horizontal
and vertical noise contribution is shown in Hig.l8.3. It candeen clearly that noise in
horizontal direction is much lower than noise in verticakegtion for the elliptical water
phantom.

The above presented theory allows the separation of the maisance into two or-
thogonal directions. The drawback, however, is that naiseetimes equally contributes
to both directions, e.g. in case of perfectly diagonalledied noise grains. Thus, no in-
formation about the anisotropy of noise can be gained angmoherefore, an extended
method for noise separation is described here. The locaén@riance is split up into its
contribution in direction of strongest noise correlatiohe local position and orthogonal
to that. Hence, the separation is done specifically for eadlespixel position. The idea
of the extended method is as following: In a first step the alV/&cal noise variance?(x)
is computed as described in Chajifer 7. The direction of séstrgprrelatiort,,..(x) can
be determined simultaneously to the computation of theatMercal noise variance?(x),
as described in Sectign 8.2.1. Then a pixelwise separafitiledocal variance into the
contribution orthogonal and along the direction of stratg®rrelation is computed.

The variance contribution orthogonal to the direction @bisgest correlation is ob-
tained using pixelwise backprojection weights dependingh® sum of the parallel pro-
jection angled and the angle pointing out the direction of strongest cati@h6,),,.(x) at
positionx:

2 Nrp
ol (x) = (AQ% HU) Z cos? (05 + Opaz (X)) v(6;, %). (8.10)
v i=1

Analogously, the variance contribution in direction ofstgest correlation is given by:

2 Nrp
of(x) = (Mmoo HU) > " sin®(6; + Opnas (%)) 0(6;,%). (8.11)
Fw i=1
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The overall noise variance can again be expressed as psenswim of the two noise con-
tributions:

o’(x) = o1 (x) + ofl (x). (8.12)

If the overall noise variance has already been computed, @amé¢ additional weighted
backprojection of the variances is necessary for gettiagqithise separation.

8.3 Noise Adaptive Bilateral Filtering

For the adaptation of anisotropic edge-preserving filgenrethods to the noise character-
istics in CT, two things are of main interest. The local noiggance should be considered,
because noise in CT is non-stationary. Secondly, the locsémorrelation should be taken

into account, because noise is non-isotropic. Here, a @oiaptive method that is mainly

based on the idea of bilateral filtering [Toma 98], a simple aidely used edge-preserving

noise reduction approach, will be discussed.

In case of bilateral filtering, the imag&x) is smoothed by non-linear averaging in
local neighborhoods. During averaging, in addition to tkeemetric closeness of image
pixels, also the photometric similarity between the pixalbes is taken into consideration.
The filtered imagég(x) is computed as follows:

F(x) = % S e X)s(F(x), FX)), (8.13)

wheren(x) is needed for normalization and is given by:

n(x) =Y e(x,x)s(f(x), f(x)). (8.14)

X

The functione(x, x'), also called domain filter, takes into account the geomeloseness
of the actual pixel at positior and a neighboring pixet'. The functions(f(x), f(x’)), in
the following called range filter, brings in the edge-preseg characteristic of the filter. It
takes into account the photometric closeness of the imaggspiluring averaging. In the
standard approach both, the range and domain filter, arélyushasen as simple Gaussian
filters [Toma 98]. The domain filter decreases with incregu&nclidean distance between
the neighboring pixels and the range filter decreases watieasing difference between the
pixel values. The standard deviations of these filters aretierable parameters that con-
trol the amount of noise reduction on the one hand, but alsedge-preservation capabil-
ity on the other hand. The direct application of the standéederal filter to reconstructed
CT images shows unconvincing results in most cases. Due tothstationarity of noise,
the selection of a global parameter for the range filter ibl@matic. The noise amplitude
varies in different image regions, and, thus, image regiatislower noise level might be
smoothed well, while noise is visibly remaining in othericets. The range filter should be
adapted to the local contrast-to-noise level. Furtheraseoof strongly anisotropic noise
grains, the filter should try to stretch and rotate, suchah@agher number of uncorrelated
values are used for averaging.
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8.3.1 Domain Filtering

Taking the anisotropy of noise in reconstructed CT imagesadnnsideration, the domain
filter is chosen as a multivariate Gaussian filter. It adjtesthe orientation of maximal cor-

relation at the local position and takes into account thallocientation dependent noise
variancesr? (x) andaﬁ(x). The filter is stretch and compressed such that strongest filt
ing is performed orthogonal to the direction of strongestalation. The noise adaptive
domain filter is defined as:

o(x, %) = e 2 X E ) (8.15)

The covariance matriX, controls the degree of anisotropy and the orientation ofiliee.
It can be written as

¥y = RID,R,, (8.16)
whereR,, is a rotation matrix:
COS(’YmaX(X ) Sin(VmaX(X)) )
R, = ) 8.17
( — 5in(max (X)) C0S(7hmax(X)) (8.17)

andD, is a diagonal matrix:

D, — ( ”18") Ug?}() ) . (8.18)

The decomposition in Eq.(8.116) is the singular value deamsitipn of the covariance
matrix >. The principal axes are given by the row-vector®of Here it can be seen that
the first principal axis is rotated such that it points ortbiogl to the direction of strongest
correlation. The extension of the filter in direction of stgest correlation and orthogonal
to it is steered by the singular values in the diagonal majx The singular value, (x)
controls the spatial extension of the filter orthogonal eodhrection of strongest correlation
andu,y(x) in direction of strongest correlation. These two valuesusthbe chosen based
on the orientation dependent variance contributiehéx) and aﬁ(x). If both parts are
equivalent an isotropic Gaussian filter is desired. Thengieothe two components differ
from each other the stronger the filter should be stretchetirection orthogonal to the
direction of strongest correlation. We define the singuldues based on the ratio of the
orientation dependent local variances and the overall i@r@ance:

EEN
v (x) = q(2 ) &2, (8.19)

and

()
w(x)=q\ 7% &2 (8.20)

with parameterg € N andd € R. If the two variances? (x) andaﬁ(x) are equivalent, an
isotropic Gaussian filter with standard deviatidis obtained. Otherwise, the paramejer
controls the degree of maximum anisotropy of the filter. Tipetial extension of the filter
orthogonal to the direction of strongest correlation is mmafly factorq times higher than
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along the direction of highest correlation. The above dédiniof v, (x) andi,(x) ensures
that the area under the filter is constant:

//eé(xx/)TExl(x)(’)dx dy . const, (8.21)

because the determinant of the mafrix! is constant, independently from the distribu-
tion of the overall variance to the contributions into thetarthogonal directions. The
determinant is computed as:

det (S¢!) =det (By) ' = ———~ = — (8.22)

and consequently ensures the requirement.

8.3.2 Range Filtering

The second part of the bilateral filter is the range filter,chtis the edge-preserving com-
ponent. It takes into account the photometric similaritynefghboring pixels. The larger
the difference between the pixel values compared to theneigl, the lower is the impact
to the averaging result. With the knowledge of the localasaces, the difference between
pixel values can be set into relation to the respective st@hdeviation of the two pixel
values. The variance of the difference of the two pixel valc@n be computed as:

Var(f(x) — f(x')) = o*(x) + o*(x') + 2Cov(f (x), f (x)). (8.23)

However, the covariance between the pixels is not known. hasedescribed above, the
computation of the covariance matrix is avoided becauseofpuitational performance
reasons. The correlation of noise has already been incgzbm the design of the domain
filter. Therefore, the covariance in EQ.(8.23) is neglectdue range filter is then defined
as a Gaussian filter that decreases with increasing locélasttio-noise ratio:

1 (Fe=fe)?
s(f(x), f(x)) = e 2 EToteZenz, (8.24)

The parameter € R, r > 0 is used for controlling the amount of noise suppressionhWit
increasing- the range filter allows to take pixels with a larger intensiifference to the
reference pixels more into account during averaging. Adargthus leads to stronger
smoothing, but also to lower edge-preservation.

8.4 Experimental Evaluation

For the evaluation of the presented noise reduction methgreriments on simulated and
measured data were performed. In this section the propasse adaptive filtering method
(NABF) is compared to the standard bilateral filtering (SBRrapch with respect to noise
and resolution. In a second part of the evaluation sectixamele images from simulated
and measured data are presented.
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8.4.1 Noise and Resolution

For the experiments we used the same simulated data andgoalstrategy as already de-
scribed in Section 6.4.1. In order to achieve smooth MTFesirgeveral noisy realizations
are averaged and the MTF is computed in the averaged imagémmary experiments
showed, that a contrast-to-noise ratio of about 100 HU isssary for getting reliable MTF
measurements for the phantom used here. Based on that dizsetiia number of images
N, that need to be averaged for the different contrast-toerleigels can be computed:

N Kmoc. ac> w | (8.25)

whereo,. is the standard deviation of noise and the contrast of the inlay compared to
water, both given in HU. Because of the fact that the noise énitiege also changes if
the contrast of the inlay strongly varies, the standardat®sn of noiser,. was evaluated in
one noisy realization within an ROI inside the cylinder wetintrast: for determining the
number of images based on Hq.(8.25).

The noise reduction method under investigation was theheapi all the V. images
at a certain contrast The MTF was evaluated on the average of all filtered images of
the same contrast. From the MTF measured on the edge of ttle aircorresponding
linear shift-invariant filter can be computed that lead$i®game average smoothing in the
image as the adaptive filter achieved in average on the edge cfrcular inlay, according
to Eq.[6.T). Then the standard deviation of noise after tgafiltering in comparison
to standard deviation of noise after application of thedmfiter that leads to the same
average resolution at the inlay can be investigated.

The NRR (see Eq.(6.9)) and SNRG (see Eq.(6.10)) are then cethpatween the
SBF and NABF. The SBF simply uses a Gaussian range and domainvittere the stan-
dard deviations for both are the input parameters to therithgpo. These two parameters
are constant over the whole image domain. The NABF introdatede turns into a SBF,
if the standard deviations for the two orthogonal directigiven for every image point
are equivalent and constant over the whole image domainn T angle pointing out
the direction of strongest correlation has no effect to theriing result, because the same
isotropic domain filter is computed for every image pixel.r Betermining a reasonable
parameter for the range filter, the average noise variaﬁggwithin the elliptical phantom
was computed. The standard deviation images were then debrge of constant value
01 (x) = 07(X) = 307,, for the whole image domain. The SBF with parameters-(2,

d = 3, r = 2) was then compared to two configurations of the proposeceraiaptive
bilateral filter ¢ = 2, d = 3, r = 1 andr = 2). Examples of filtered images are shown in
Fig.[8.4.

A comparison of the MTFs computed for SBF and NABF is shown in[Ef. The
MTF in the original noise-free image is compared to the MTBmputed from filtered
images. Adaptive filters lead to different amounts of smimgttior different contrast-to-
noise ratios at the edge of the circular object. Therefdre,MTFs are plotted for the
different contrasts (1000, 100, 60 and 20 HU). Additionatlhe MTF resulting from the
application of an isotropic Gaussian filter with= 3 is shown. This gives the lower limit
the MTF may reach if the range filter does not show any effeet:(co) and the bilateral
filter turns into a simple Gaussian domain filter. For all éhoases it can be clearly seen
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(a) Original noisy image with ROIs used for noise (b) Standard bilateral filtering.
evaluation.

(c) Noise adaptive bilateral filtering= 1. (d) Noise adaptive bilateral filtering= 2.

Figure 8.4: Elliptical water phantom with circular inlaygffe with contrast of 100 HU)
used for noise and resolution analysis. The regions usedldige evaluation are marked
in the original noisy image (a). The image after applicatb standard bilateral filter is
shown in (b). Filtering results from two configurations of fhoroposed noise adaptive filter
are shown in (c) and (d).
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Figure 8.5: Comparison of MTF computed in the averaged filteneages at different
contrasts. The standard bilateral filter is compared to tardigurations of the proposed
method.

that for a very high contrast-to-noise ratio the edge is nma&hed and the MTF is close to
the original one. With decreasing contrast, the edges cdonger be perfectly preserved
and the edges become smoothed. With increasing param#tersmoothing at the edge
is increased for lower contrast levels. The loss of resmtuéit the edges in case of the
standard bilateral filter, shown in Fjg. 8.5(a), is sligtgtyonger than for the noise adaptive
bilateral filterr = 1, shown in Fig 8.5(B). Although the input parameterd andr are
the same for Fig. 8.5(g), and Hig.8.5(c). It should, howelerreminded that the nice
statistical interpretation of the range filter does not holdthe standard bilateral filter.
The local variances are not taken into account and, thexetbe parameter does not
mean that an averaging over pixels that have an intensitgredifce of more than times
the local standard deviation is avoided. The standard tlemialose to the circular object
is underestimated by using the constant noise estiﬁ‘ﬁ,ﬁg for the whole image domain,
what means that effectively a much lower filtering effecth$ained close to the edge of the
circular inlay with the standard bilateral filter than withetnoise adaptive bilateral filter
using the same set of parameterg andr.

For all the different MTFs presented in Fig.18.5 the corresfiog linear filters that need
to be applied to the original image in order to get the sameagesmoothing at the edge
were computed. After the application of the linear filter toése reduction rate and SNR-
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gain was compared between the different configurations laadlifferent contrast levels.
The results of the noise-resolution analysis are sumnthiizé&ab[8.1.

Table 8.1: Contrast dependent noise-resolution analysis.

Original Noisy Image 20 HU 60 HU 100 HU 1000 HU
Oorig IN HU 17.0+4.0 16.8:3.6 17.1#4.0 20.5-6.4
Standard Bilateral Filter 20 HU 60 HU 100 HU 1000 HU
og1 In HU 10.8+4.3  10.6t3.8 10.9t4.3 13.3t6.9
NRR in % 38.749.6 38.A410.7 39.2210.6 40.2:13.1
SNRG in % 7.6+14.7 35.9£11.0 39.6t10.6 40.6£13.1
Noise Adaptive Bilateral Filter{= 1) 20 HU 60 HU 100 HU 1000 HU
oinHU 12.9+29 12.6t24 13.0t2.9 15.6:4.6
NRR in % 23.9t1.4 24.5-2.2 24118 23.A2.2
SNRG in % -0.7+4.0 27.5£5.2 36.4+4.6 24.0t6.1
Noise Adaptive Bilateral Filterr( = 2) 20 HU 60 HU 100 HU 1000 HU
og1 In HU 7.5£1.5 7.3t11 7.6£1.6 9.2£25

NRR in % 55.0+£2.0 54.9+2.1 55.5+2.2 54.8t2.4
SNRG in % 2.4+4.0 46.12.8 54.9+2.2 54.8t2.4

From this quantitative analysis, it can be seen that thedataibilateral filter does not
take into account the local noise statistics. As can be seEigi8.4(b), noise in the image
Is removed quite well in average. There are, however, stvangtions between the differ-
ent regions within the elliptical phantom. At the outer benginoise is strongly removed,
while in the center the noise suppression seems to be nagligihis is also reflected in
the high standard deviations of the noise standard dewidgtdween the different image
regions in Tak. 811. In average, a noise reduction rate aite@®%0 was achieved, but with
a standard deviation of about 10%. The same effect is vigibtee values of the SNR-
gain. In comparison to a linear filter some regions are fittareich stronger than others.
From the variation of the standard deviations of noise withe different pixel regions it is
visible, that although in average the noise was reduced feam 20.5HU to 13.3 HU, the
variation between the regions kept about the same or ewghtlglincreased from 6.4 HU
to 6.9 HU. Compared to the mean noise the variation of noisetbeeimage domain was
even increased.

In contrast to that, the proposed adaptive bilateral filsgluces the amount of noise
in the image, but also the variation between the differexelpiegions. This can be seen
for both configurations of the proposed filter, also from tkameple images shown in
Fig.[8.4(c) and Fig.8.4(}). In average, the standard deviaif noise was reduced about
24% withr = 1 and 56% withr = 2, with only a low variation between the different pixel
regions of 1.4-2.4%. Regarding the SNR-gain, the proposetiadethows much lower
variation between the different pixel regions than the ddad bilateral filter. With respect
to a noise-resolution-tradeoff, the computed values ferSNR-gain show that in nearly
all cases the resolution was preserved well. In comparis@nsimple linear filtering that
leads to the same smoothing at the edge the NABF methods shiearseadvantag. Only
for very low contrast-to-noise levels around 1 the edgesrmaionger be differentiated
from noise and thus the SNR-gain clearly drops. At contrastetise levels between 3 to
5 the noise reduction can already be seen as a real gain,deetteuSNR-gain is close to
the NRR.
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(b) Noise-adaptive bilateral filter (c) Standard bilateral filter

Figure 8.6: Clinically acquired thorax scan. Comparison ahdard bilateral filter and
noise adaptive bilateral filter.
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8.4.2 Example Images

In Fig.[8.6 an example of a clinically acquired thorax scashiswn. The standard deviation
of noise was evaluated in 10 pixel regions, as illustratetthénoisy original slice shown
in Fig.[8.6(a). The standard deviation of noise in the oagimage of72.0 + 14.5 HU was
reduced tal8.0+15.9 HU for the SBF and td4.4+9.9 HU with our proposed NABF. Here
it can again be observed that the proposed NABF reduces th@asthdeviation of noise
and noise between the different pixel regions becomes mmr®beneous. The SBF, on
the other hand, assumes all pixel values in the image ardlggelegable. Therefore, some
regions in the image are smoothed stronger than others.eAd¢nl this results in a noise
suppressed image, too, but the standard deviation betlwearotse standard deviations in
the different pixel regions even increased.

8.5 Conclusions

In this chapter a new approach for computing orientatioreddpnt noise estimates was
presented. Based on the theory of the Fourier-Slice thedredirection, which mostly
contributes to the local noise variance during backpraeaotan be determined for each
image pixel. The overall noise variance can then be splitndp its contribution along
and orthogonal to this direction. With this technique it @spible to obtain information
about the local noise correlation in the image without extihg the complete covariance
matrix. The additional information about local noise vada and correlation can be used
for adapting post-processing methods to the non-statycenad non-isotropic noise in the
reconstructed image. The effectiveness was demonstratde@xample of a bilateral fil-
ter. The evaluation on simulated and clinically acquireh@d@owed that a noise reduction
close to 60% could be achieved without noticable loss oflugism. Only for contrasts
very close to the noise level, the edges can no longer begtigrfeeserved. For CNR lev-
els larger than 3 the noise reduction rate can already beasaereal gain in SNR, because
the perforance of the NABF is improved with respect to noiseitien at the same average
resolution, compared to a simple linear filtering.
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Discussion

The non-stationary and non-isotropic noise in reconstdi@T datasets makes the use
of specially adapted methods for noise reduction indispieles In the previous chapters,
basically two different approaches for noise adaptiveriiigeof CT reconstructions were
introduced. In the first part of this work, wavelet based eaisduction methods were
discussed, which use two input datasets. Correlation asdigsween the wavelet repre-
sentations of the two input datasets and noise estimatidheirwavelet domain is used
for differentiating between structure and noise. In theogsécpart, noise is analyzed in
the measured projection data. The propagation of variameéscovariances through the
reconstruction algorithm gives an estimate of the localgenaoise. The estimated local
noise variance and noise correlation is then used for ndiapteve filtering.

The evaluation of the different approaches already showatlhigh noise reduction
rates of about 60% can be achieved with both approaches emdtomical structures are
well preserved. In this chapter the different proposedencésluction methods are com-
pared to each other. The visual appearance of the proceatsexts, as well as quantitative
criteria like noise reduction and resolution are consideiased on the analysis of noise
and resolution, the potential for dose reduction is disedsd$-urthermore, the computa-
tional requirements of the different approaches are aedlyand possible optimizations
are discussed. After the comparison of the methods, pessitgctions for future work are
considered.

9.1 Comparison of Proposed Noise Reduction Methods

If noise reduction methods for the use in CT are comparederéifit aspects are of in-
terest. First of all, the visual appearance of the procedsga plays an important role.
Especially, if the noise suppressed data should not jussbd for post-processing appli-
cations. The processed images or volumes used for diagstosigd ideally look like CT
images acquired at a higher radiation dose. Noise in theesmagould be reduced, but
resolution ideally be preserved. Furthermore, it is impatrthat the images are free of
artifacts and do not strongly change the noise pattern. ttapbfor the comparison of
noise reduction methods is of course also the quantitatagparison. If non-linear filter-
ing techniques are applied, resolution at the edges chalegesnding on the contrast of the
edge. Consequently, a contrast dependent analysis of tee remuction methods needs
to be performed. The noise reduction performance of a cealgorithm should always

139
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be considered together with the influence on image resolutWith respect to practical
usability of the proposed algorithms not only the image igualays an important role.
The computational efficiency of the algorithms is also wartltonsideration. Therefore,
the computational and storage costs of the certain algosilre analyzed and discussed.

The above described aspects are in the following compartskba the wavelet based
noise reduction method, described in Chapter 6, and the -adiaptive bilateral filtering
introduced in Chaptdr] 8. The qualitative, as well as the dtaine comparison is done
based on the same simulated CT datasets. The elliptical plagetom, described in Sec-
tion[6.4, with a cylindrical inlay of varying contrasts isags

9.1.1 Qualitative Comparison

In Fig.[9.1 one example of a noisy slice together with the Itesaf the noise-adaptive
bilateral filtering at two different denoising strengths£ 1.0 andr = 2.0) is shown.
The different wavelet based denoising techniques apptiaied same example slice can
be found in FigL. 9.2. The wavelet filtering results are shoamdifferent wavelet transfor-
mations, the 2-D-DWT, 2-D-SWT and 3-D-DWT all in combinationthva simple Haar
wavelet. Two different filtering strengths are comparecher= 1.0 andp = 2.0).

The following observations can be made by visual inspection

* The 2-D-DWT in combination with Haar wavelet tends to shosibde blocky re-
gions in the noise suppressed image. Especially, in caseaniger noise suppres-
sion like in Fig[9.2(h), the processed images show strangepatterns and are no
longer suitable for diagnostic imaging.

» The blocky regions that are visible with 2-D-DWT can be ehated by using the
redundant and shift-invariant wavelet transformation-&WT instead. The noise
suppressed images in Hig. 9.2(c) and Fig. 9]2(d) look moteala

 Clearly, best results with respect to noise reduction aedgvation of edges are ob-
tained with the 3-D-DWT. The images look very natural withpest to the remain-
ing noise in the image, even in case of stronger noise sugipredike in Fig[9.2(f).

* In comparison to the wavelet approaches, the NABF approdaotivis just working
on 2-D datasets, shows good results. The original noiserpaseems not strongly
changed, just reduced in its amplitude.

9.1.2 Noise and Resolution

The influence of the different denoising approaches to namkresolution has already
been discussed in detail at the end of each chapter. Heredimealbservations are sum-
marized and the wavelet based approaches are compared noifeeadaptive bilateral
filtering. The comparison between several noise reductiethads is not an easy task.
A fair comparison is only possible if image noise is evaldadé the same image resolu-
tion. Achieving the same image resolution for all approacloa the other hand, is nearly
impossible. At least if non-linear methods are applied ® ithages, image resolution
might differ between the different image regions, and, esaaly shown in the evaluation
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(a) Original

(b) NABF r = 1. (c) NABF r = 2.

Figure 9.1: Elliptical water phantom with circular inlaygfie with contrast of 100 HU).
Original noisy slice and noise-adaptive bilateral filtemraages (NABF) with two different
strengths of noise suppression<£ 1 andr = 2). Display: ¢=50, w=200.
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(8) 2-D-DWTp = 1.0,k = 0.0 (b) 2-D-DWTp = 2.0,k = 0.0

(c) 2-D-SWTp = 1.0,k = 0.0 (d) 2-D-SWTp = 2.0,k = 0.0

(e) 3-D-DWTp = 1.0,k = 0.0 (f) 3-D-DWT p = 2.0,k = 0.0

Figure 9.2: Elliptical water phantom with circular inlaygie with contrast of 100 HU).
Wavelet based noise reduction method with different waedasformations (2-D-DWT,
2-D-SWT, 3-D-DWT) and different strengths of noise suppr@s$ = 1.0 andp = 2.0),
without using significance weighting (= 0.0). Display: ¢=50, w=200.



9.1. Comparison of Proposed Noise Reduction Methods 143

1001 1001

——— 2D-DWT, k=0.0
——— 2D-SWT, k=0.0
——— 3D-DWT, k=0.0
8oy - - - 2D-DWT, k=15 8or
- - - 2D-SWT, k=1.5
-~ - 3D-DWT, k=1.5

601 601

NRR in %
NRR in %

— 2D-DWT, k=0.0

401
— 2D-SWT, k=0.0

40+

— 3D-DWT, k=0.0
- - - 2D-DWT, k=15
- - - 2D-SWT, k=1.5
- - - 3D-DWT, k=15

201 201

0 . . . . . . . . 0 . . . . . . . .
-08 -06 -04 -02 0 02 04 06 08 -08 -06 -04 -02 0 02 04 06 08
SNRGainINRR SNRGainINRR

@ p=1.0 (©) p = 2.0

Figure 9.3: Noise-Resolution-Tradeoff - Comparison of NRR ddferent values ofp
without (¢ = 0.0 solid) and with £ = 1.5 dashed) significance weights in combination
with different wavelet transformations 2-D-DWT (blue), 2SWT (gray) and 3-D-DWT
(red).

100
—NABF r=1.0
80+

60

NRR in %

401

20+

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
SNR_ . /NRR
Gain

Figure 9.4: Noise-Resolution-Tradeoff - NABF with two diféet noise suppression
strengths«{ = 1.0 andr = 2.0).

sections of the previous chapters, also at differently re@ted edges. In addition to the
noise-reduction rate (NRR in E.(6.9)), a new figure of mehié SNR-gain (SNRG in

Eq. (6.10)), has already been introduced in Chdgter 6 for un@sthe noise-resolution-

tradeoff.

The main idea of the evaluation strategy is briefly summadrizere. The local average
MTF at the edge of a circular inlay is computed. From the MTRasweed in the original
image and the MTF in the processed image, a linear filter catobguted, which leads
to the average same smoothing at the edge. The linear filtersalso applied to the
noisy image. The standard deviation of noise in differerelpregions (here 12 different
regions) is than compared to the standard deviation of noitiee original image (giving
the NRR defined in Eq_(6.9)) and to the standard deviationenitearly filtered image
(giving the SNRG defined in Eq.(6110)). The quotient of NRR ahNiRS is then used as
a measurement for the edge-preservation capability of gtbad. It measures how much
the adaptive filtering can be seen as a gain compared to aeshimgdr filtering that leads to
the same average smoothing at the edge. If a quotient cldsis tabtained, the edge at the
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circular inlay was perfectly preserved and the noise redoatan be seen as a real gain.
Otherwise, if the ratio is below 1, this means that the edge na perfectly preserved.
The edge was smoothed and consequently, the linear filtetethds to the same average
smoothing at the edge performed like a lowpass filter.

The NRR and the ratio between SNRG and NRR is plotted inFig. 9.thioNABF
and in Fig[9.B for the wavelet based approaches. Each fieerithe plot consists of four
points. They correspond to the evaluations at the fourmdiffecontrast-to-noise levels that
were considered. The contrast at the circular inlay contperevater was varied between
20, 60, 100 and 1000 HU. Accordingly, the CNR at the edge ofrikegyivaried between
1, 3, 5 and 50. It can be seen clearly, that for all differens@oeduction approaches the
resolution at high contrast edges was perfectly presebesjuse the ratio between SNRG
and NRR is close to 1. The noise reduction rate can thus be seaneal gain. With
decreasing contrast, the edges are no longer perfectlgtddtand get smoothed. The
lower the contrast at the edge, the stronger this effecttiserble.

If we compare the different approaches, it can be obsenagdah the wavelet based
filtering methods the performance differs between the wifie wavelet transformation
methods. The 2-D-SWT is better than 2-D-DWT and 3-D-DWT is lvdtian both 2-D
transformations. This observation holds for the NRR as wsefba the edge-preservation
capability. Furthermore, it can be seen that higher NRR caachéved if significance
weights ¢ = 1.5) are used compared to no significance weights=(0.0). For very low
contrasts, however the preservation of edges is slighdiyaed, using significance weights.
With p = 1.0 lower noise reduction of around 37-54% is achieved thamp fer2.0, which
results in NRR of about 54-73%.

The NRR obtained with the NABF is about 24% for= 1.0 and 55% forr = 2.0. In
comparison to the wavelet based noise reduction approattteesdge-preservation with
the bilateral filter is better. Even for a CNR of 5 the edge isrlyazot smoothed and the
SNRG/NRR is close to one. For lower CNR around 1 SNR without Bagrice weighting
Is comparable to the NABF. The 3-D-DWT based filtering is eveteb¢han the NABF, in
both NRR and edge-preservation.

9.1.3 Potential for Dose Reduction

The close relation between the radiation dose used for theisiton of the projections
and the noise in the reconstructed CT datasets has alreandypbigted out in Sectidn 2.4.
The standard deviation of noise in the reconstructed imagwlirectly proportional to the
square root of the dosk [Kale 00]:
: ©.1)
O X —, .
vD
which holds as long as quantum noise is the most dominantsafrnoise and other
effects, like electronic noise, are negligible. Goal of tleése reduction methods proposed
in this thesis is either:

* Improving the signal-to-noise ratio in the image withontreasing the radiation
dose, or

» Decreasing the radiation dose without decreasing thekigrnoise ratio.
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The amount of noise reduction and the associated influenémage resolution as been
discussed in detail in the last section. In this section wienew concentrate on the analysis
of the potential of dose reduction. More precisely, we atergsted in how strong the
radiation dose can be decreased, such that in combinatibrowe of the proposed noise
reduction methods no loss of image quality is noticeablepamed to the image obtained
at the common dose. Image quality is here only considered iegpect to the standard
deviation of noise and spatial resolution.

In a first step, we consider the upper limit of dose reductiaseld on the achieved
reduction of the standard deviation of noise in the image.tf® moment we do not take
into account the influence on image resolution. Accordingpéproportionality expressed
in Eq. (9.1) the following holds:

Duwin _ 02

Do ?ﬂg, (9.2)
whereo?, is the standard deviation of noise in the adaptively filteredge (using one
of the proposed noise reduction methods),, is the standard deviation of noise in the
original image. The dos®,,;, was used for the acquisition of the original image and
D, corresponds to the dose that would be necessary to acquineage with standard
deviationo2;, without using an adaptive filter. The upper limit for doseuetibn rate

DRR,,.x can, thus, be defined as:

Dmin

0.2
=1- 21 =1—(1-NRR). (9.3)

orig O-orig

DRRyax =1 —

If we now take the noise reduction rates from the last secti@obtain that the NRR of
37-54% of the wavelet based filter with= 1.0 corresponds to ®RR,,., of 60-79%,
and the NRR of 54-73% fgy = 2.0 corresponds to ®RR .. of 79-93%. In case of the
NABF we get aDRR,,.x 0f 42% forr = 1.0 and 80% for- = 2.0.

The analysis presented so far does not take into accourgsbtution in the processed
images. If we only consider theRR,,,. for a filter, arbitrarily high dose reduction rates
could also be achieved with linear filters. However, strregun the image get blurred
and the low dose acquisition usirg,,;, with the applied post-processing filter is clearly
not comparable with the unprocessed image acquired at tmardoseD,,;,. Only
if the edges in the image are not influenced in image resolutidhe processed image,
the maximum dose reduction rate is really achievable. Thestigation of the noise-
resolution-tradeoff in the previous section showed thatsimoothing of edges, due to the
application of the proposed algorithms, depends on the CNIReagdge. It must be taken
into account that the CNR at the edge in the low dose acquisfitNR,,,) is reduced
compared to the CNR in the original imagéNR.,;,):

CNRIOW =\ Dmin/DorigCNRorig =V 1— DRRmaxCNRorig7 (94)

because the noise in the low dose acquisition is increasedthéh get a more realistic
approximation of the achievable dose reduction rate ondbeslof the SNR-gain, evaluated
at an edge wittCNR,,,,, according to:

DRR.pp = (9.5)

1 —(1-SNRG)? if SNRG >0
otherwise '
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Figure 9.5: Potential for dose reduction of wavelet basesene@duction methods - Com-
parison of DRR,,,, for different values ofp without (¢ = 0.0 solid) and with § = 1.5
dashed) significance weights in combination with diffeneaielet transformations 2-D-
DWT (blue), 2-D-SWT (gray) and 3-D-DWT (red).
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Figure 9.6: Potential for dose reduction of noise adaptiladral filter - Comparison of
DRR,,, for NABF with two different noise suppression strengths=(1.0 andr = 2.0).

This approximation of the achievable dose reduction rdtesanto account the loss of
resolution due to the filtering. If no resolution was lostra edge the SNRG is equivalent
to the NRR andRR.,, = DRRy,.x. Otherwise DRR,,, < DRR,,.x depending on the
ratio between SNRG and NRR.

The estimated potential for dose reduction of the wavelsetalenoising approaches
are presented in Fig.9.5. In Fig.P.6 the estimated dosectietiurates are shown for the
NABF. TheDRR,,, values, computed according to Hq.(9.5), are plotted agtinsCNR
in the original images. From the plots it can be seen that xpeaed potential for dose
reduction varies depending on the minimum CNR level we aegga@sted in in the original
image. Consequently, it depends on the clinical applicat@mm much dose can be saved
by applying one of the proposed post-processing filters. ety low contrasts close to
CNR values of 1 are of interest for the application, there iononly low potential for
dose reduction, because it is difficult to preserve strastat very low contrasts in image
acquired at a lower dose. But even for low CNR levels betweenS3the application of
the proposed filters to low dose images can lead to a notieeadlction of radiation dose
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up to 60% in 2-D and even close to 80% in 3-D. For CNR levels hitjinen 5 there is not
much difference in the estimated dose reduction compareekrjohigh CNR levels around
50, because edges with a CNR of about 5 can already be welrpeése

9.1.4 Computational Performance

Although noise reduction methods are usually seen as posegsing methods, the here
presented approaches are not simply applied to a recotestr@d dataset as one would
expect for a typical post-processing application. Both algms require the acquired CT
projection data. The wavelet based approach for recorstgutwwvo volumes from dis-
joint subsets of projections, the noise-adaptive bilatidtaring for performing the noise
propagation through the reconstruction algorithm. In lmathes special processing of the
projection data is necessary for generating the requinedt idata for the noise reduction
algorithms. The computational requirements for genegatite input data is, thus, the
first thing to be analyzed. After that the computational ctaxipy of the noise reduction
algorithms themselves are analyzed.

Generation of Input Datasets

As already mentioned before, the wavelet method requiresiiput datasets. Different
possibilities for generating two input datasets are dbsdrin Sectiol 4]2. It is possible
to use successive scans, split up one acquisition into evéio@d numbered projections,
or use a dual-source CT-scanner. If two successive scansede two complete recon-
structions need to be performed. If one acquisition is ggitinto two disjoint subsets
of projections, two reconstruction, but both at only haké tumber of projections is re-
quired. It is however, important to notice that only if a Emeeconstruction algorithm is
used, the sum of the two separate reconstructions is equivia the reconstruction from
the complete number of projections. Otherwise, it is bettesdditionally compute the
reconstruction from the complete set of projections andyajye computed weights to its
wavelet coefficients. The acquisition with a dual-source @&atly results in two projec-
tion datasets. The projections acquired at the one detaaarsed for the reconstruction of
the first, the projections acquired at the other detectottfereconstruction of the second
input dataset. Altogether, it can be summarized that dtiht approaches for generating
the two input datasets require two complete reconstrustion

The noise-adaptive bilateral filtering takes just one retricted CT dataset as its in-
put. Additionally, it requires the variance map that shoarsdach image pixel an estimate
of the local noise variance. Furthermore, the orientatepethdent variance map is needed,
which shows a pixel wise estimate of the variance contriloutif a certain orientation, e.g.
in direction of the strongest correlation, to the overalseovariance. This orientation de-
pendent variance map gives information about the locakrmosrelation and consequently,
the noise-anisotropy. The computation of the variance nspased on the noise propa-
gation algorithm described in Chapfér 7. It is basically heoreconstruction, however,
a modified reconstruction that allows the computation oseciariances. The computa-
tional performance of the noise propagation method is coaiypa with the reconstruction
of the HU-values. Nevertheless, more computations areviedodue to the correlation
estimations during the noise propagation. The computatfdhe variance map and the
orientation dependent variance map can partially be paedrtogether. They only differ
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in the backprojection step. Here, it is necessary to firstpugdmthe backprojection loop
for the variance map, where at the same time the directiotrafgest correlation is deter-
mined. The direction of strongest correlation is obtaingd&tecting for each image pixel
the projection angle from which the strongest contributmthe overall noise variance is
achieved. In a second backprojection loop the weightedgragction of the noise vari-

ance is computed based on the pixelwise determined direcfistrongest correlation. In

sum one and a half additional reconstructions of noise naéa need to be performed in
addition to the standard reconstruction of the HU-values.

Noise Reduction Algorithm

After the generation of the input datasets the main part@htlethod, the noise reduction
algorithm can start. The core of the wavelet based apprsashbe computation of the
wavelet representation of the input datasets. As alreadgribed above, the wavelet de-
noising techniques presented here require two input dataskich are both decomposed
into its wavelet coefficients. Different wavelet transf@tions can be used for this decom-
position. As the above discussion showed, the 2-D-SWT ofdpas the 2-D-DWT and
the best visual and quantitative results are achieved W&l3tD-DWT. The use of the sta-
tionary wavelet transformation, on the one hand, or theetldienensional transformation,
on the other hand, do not only come with better denoisingltsesaut also with increased
computational and storage cost. While one decompositign agitehe 2-D-DWT has a
complexity ofO(N log V) for an image ofNV x N pixels, the 2-D-SWT has a complexity
of O(N?). The SWT, furthermore, does not perform a downsampling dtep tae filter-
ing and consequently, the number of pixels in the approxonamage is constant over all
the decomposition levels, meaning that for all levelgp to the maximum decomposition
level the same number of computations needs to be perforifeeldownsampling of the
DWT reduces size of the approximation image at léwel2~' N x 2=' N and accordingly
fewer computations are necessary for the decompositia@val/l+ 1. The 3-D-DWT has
a complexity ofO(N log N loglog N) for a volume of N3 pixels, where the number of
coefficients is kept constant, regardless of the maximuromeosition level.

Especially, for the further processing on the basis of theeled representation of the
input data, it plays an important role, if a downsamplingoste performed or not. For
each detail coefficient of the wavelet representation anraatg weight needs to be com-
puted, in order to suppress the noisy coefficients. The numbeomputations scales
with the number of detail coefficients. The number of detagéflicients up to the max-
imum decomposition level,.., in case of DWT amounts 8 /"% (27'N)2. In case of
2-D-SWT the number of overall detail coefficientsis,.. N2, and for 3-D-DWT we have
7 Zﬁ";j"(TlN )3. The respective weights can be computed efficiently and smigl local
neighborhoods are needed. The weights are computed indiepiynfor each detail coef-
ficient, which means that this step can be well be parallé)ine computed on streaming
architecture, like graphics cards.

After the weighting of the detail coefficients one inversevelat transformation is nec-
essary. The computational cost of an inverse DWT is compasaitth the DWT decompo-
sition. The inverse SWT, however, is computational more Bgpe, if the redundancy of
the data should ideally be used for the reconstruction. Bdipg on the redundancy factor
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R at a respective decomposition levél,times the computations of an inverse DWT are
necessary. The redundancy at levef the SWT isRk = 2.

The noise-adaptive bilateral filtering can be compute@(V?). For each image pixel
a weighted sum with its local neighborhood is computed fdeeining the noise sup-
pressed new pixel value. All pixels can be calculated inddpatly. The algorithm is,
thus, well suited for parallel computing.

9.2 Suggestions for Future Research

The application of edge-preserving filters to reconstdi€@d images is a relatively new
approach and is so far not commonly applied in clinical pcact The examinations of
the previous section showed the practical applicabilitythef proposed algorithms and
demonstrated that potentially a remarkable gain in sigmaleise ratio can be achieved
with the new techniques. Nevertheless, some open questi@hpossibilities for further
improvements remain. It has been shown that with better laaye about the local noise
properties in the reconstructed datasets improved naapt&e filtering methods can be
developed. The deeper investigation of methods for noiagysis, also in 3D, is thus an
important part for future research. Furthermore, the useledr sparse representations like
the curvelet transformation, can potentially lead to inweraents in noise reduction in CT.
In the following some ideas for future research are desdribe

9.2.1 Noise Analysis Methods

Throughout this thesis, it has been shown that one of thefkeybe development of effi-
cacious noise reduction methods is to have precise knoelatgut the underlying noise
characteristics. In CT, noise in the acquired projectioadan be well described by phys-
ical models. The noise in the projections then propagatesi¢ih the reconstruction algo-
rithm to the reconstructed volumes. Noise in the imagesiis #idirect result of the noise in
the measurements, but can no longer be easily describachdtessary to use noise prop-
agation algorithms in order to determine the local noiseam&e and correlation. Such
noise propagation algorithms might become rather comglicand computational expen-
sive, especially, if all correlations of the input data atused during the processing should
be taken into account. The proposed approximation schenmesfionating the correlation
within the data based on linear system theory, as introdutetiapter Chaptdr] 7 might
also be applicable in the context of other reconstructiothods. In this thesis, the noise
propagation has only been investigated for 2-D indirecttfaam FBP reconstruction. The
application of the here presented theory in 3-D reconstmcahethods, like the weighted
filtered backprojection (WFBP), is one field for future reskarc

Another interesting aspect is the frequency dependenysisalf the noise after recon-
struction. Some post-processing methods, like the wabaletd noise reduction, decom-
pose the reconstructions into frequency bands and proceb® drequency representation
of the data. For this purpose, it would be beneficial to hawess to the noise variance
and correlation in the respective frequency band. It isiptesto perform a frequency se-
lection during reconstruction, for example by modifying tteconstruction kernel, e. g. by
multiplying its frequency response with a bandpass filtetheé noise propagation is then
performed with the modified reconstruction kernel the neegance can be computed for
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a certain frequency band. An interesting investigation lidne to compare if this more

precise frequency dependent noise analysis helps in inmgdlie noise reduction algo-
rithms. It might also be possible to compute the noise in theelet coefficients of the

reconstructed dataset directly from the noise estimatdiprojections. Here, the theory
on multiresolution reconstruction [Delal95, Bonn 02] migattelpful for developing noise

estimation methods for wavelet coefficients of reconsed@T datasets.

9.2.2 Noise ReductioninCT

The evaluation of the different proposed noise reductiothouws already showed, that
noise reduction in 3-D gives best results with respect tesenoeduction and preservation
of structures. So far the NABF has only been considered inl2eDause methods for noise
propagation of 3-D reconstruction methods, like the WFBP aifaisnot available. Based
on the comparison between the 2-D wavelet based noise redaetd the NABF it could
be observed that improved edge-preservation at compdxiitieis achieved with NABF.
It is, therefore, promising to obtain even better result&kiending the noise propagation
and NABF to 3-D.

Of course, the computed variance and orientation depemdettibutions to the noise
variance that were proposed in this thesis, can potentigllysed for adapting other post-
processing methods to the non-stationary and non-isatnopise in reconstructed CT
datasets. Other filtering methods, or image processingigaés like segmentation and
registration could make use of the knowledge about the rsisistics in the image or
volume. Especially, for methods, which are based on imagdignts, it would be help-
ful to have an estimate of the uncertainty of the reconstdigtnage pixels, in order to
differentiate between gradients that are computed dueise oo real structures.

Another idea for future research would be to use other spemesentations, like the
curvelet transformation [Star02] for noise reduction in @Eombines the resolution hi-
erarchy known from wavelet transformations and the Radamstoamation and is thus
closely related to CT reconstruction. Noise reduction inghgection domain has the
advantage of having good estimates of the noise variance. Signal-to-noise ratio is,
however, better after reconstruction, because duringdbkgdrojection process an averag-
ing of many noisy samples is performed. In this work the coration of both advantages
was performed by estimating noise in the reconstructedsdateom the projections and
use this for noise reduction. Based on the curvelet transftiom the good knowledge
about the noise statistics in the projection data and thel gmealization of edges in the
reconstructed data can be combined. It is however necedsairyclude noise estima-
tion approaches for curvelet based noise reduction in CTaSiné proposed thresholding
approaches only consider white Gaussian noise in the recoted images. The noise
propagation approach introduced in this thesis could a¢ésoded for improved threshold
determination of the curvelet coefficients of a CT datasettHeumore, the extension of
the curvelet transformation to 3-D is still under investiga and could probably be more
closely investigated in the context of 3-D reconstruction.
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Summary and Conclusions

In this thesis methods for structure-preserving noisectaolin reconstructed CT datasets
were investigated. The goal was to improve the signal-isencatio without increasing
the radiation dose or noticeably affecting the spatial ltégm. Due to the close relation
between image noise and radiation dose, this improvemedheatame time opens up a
possibility for dose reduction. Two different original appches for noise reduction in CT
were developed, implemented and evaluated.

The first part of the thesis covers wavelet based noise reductethods. They are
based on the idea of using reconstructions from two disgibisets of projections as in-
put to the noise reduction algorithm. The two input dataaetsgenerated such that they
show the same structure, but differ with respect to noise.realation analysis between
the wavelet coefficients of the two input datasets can themsked for differentiating be-
tween structure and noise. We evaluated the proposed metrmnbination with dif-
ferent wavelet transformation techniques with respectdisenand resolution. It turned
out, that the non-redundant SWT showed best qualitative aadtgative results. High
noise reduction rates about 45% were achieved. Within a husbaerver study the low-
contrast-detectability was evaluated. The experimentelddhat even small objects with
a contrast-to-noise level close to 1 can be detected as goeuden better after the applica-
tion of the adaptive filter in comparison to the unmodifiedjoral image. The comparison
with a state-of-the-art projection based noise reductiethod, furthermore, showed that
better edge-preservation at comparable noise reductiobténed with the new method.
In order to allow anisotropic filtering in the wavelet domadrtechnique for noise estima-
tion from the difference of the two input datasets was predosThe comparison of the
computed noise estimates with results from Monte-Carlo gldothiat average pixelwise
relative errors between 11.6% and 20.7% are achieved. A ms@mation based on just
two measurements, thus only allows a rough estimation optkelwise standard devia-
tion of noise. Nevertheless, the proposed thresholdindnoaebased on local, frequency
and orientation dependent noise estimates leads to artrapiediltering and shows much
better results than standard wavelet thresholding methodase of CT. Especially, for
datasets with strongly directed noise, like in the showderhips, improved results are
obtained with the proposed algorithm. We then combined tireetation analysis and
noise estimation and extended the algorithm to 3-D. Theenaduction in 3-D showed
much better results than in 2-D. The processed images look matural in case of 3-D.
Furthermore, higher noise reduction rates of more than G@%latained.
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In the second part of the thesis, a new approach that is basedise propagation
through the reconstruction algorithm was introduced. Thsenvariance in the recon-
structed image is a direct result of noise in the projectioffe developed an original ap-
proach for computing pixelwise estimates of the noise waean the image reconstructed
with indirect fan-beam FBF. The difficulty is that the rebingistep, which reorganizes the
acquired fan-beam projections to parallel-beam projestiocorrelates the data. In contrast
to other approaches the correlations introduced to the dlaiag the reconstruction are
modeled by linear system theory and are taken into accourth e new noise prop-
agation method average pixelwise relative errors betwe@¥ 2nd 6.7% are achieved.
The noise propagation approach was then extended in or@elditonally give informa-
tion about the local noise correlation. We proposed a sinsiie-square-weighting of the
noise variances in the projections and separate noisegeitipa in order to obtain the hor-
izontal and vertical contribution of the noise variance dgery pixel. The approach was
then improved such that for each individual pixel a spec#jgasation into two orthogonal
directions can be computed. The variance contributionrection of strongest correlation
and orthogonal to that can be determined for each pixel. ddhktional knowledge was
then used for developing noise-adaptive filtering methals. proposed a bilateral filter,
which adapts itself to the non-stationary and non-isotrowise in CT. With this method
noise reduction rates close to 60% were achieved in 2-D.

In addition to the development of new noise reduction meglfod CT, this work also
presented some new ideas for the evaluation of non-lingarsilClearly, the reduction of
the noise variance in the image is an important quality Gatdéut the influence on the spa-
tial resolution plays an important role, too. Usually, sglaesolution is only considered at
high contrast objects. If non-linear processing is perfafmmage resolution might change
depending on the local contrast-to-noise ratio. There@@ntrast dependent evaluation
of the spatial resolution was introduced. Furthermore, vep@sed a new figure of merit
for the noise-resolution-tradeoff, we call SNR-gain. Thalesation is based on the com-
parison to the linear filter, which leads to the same averpgéias resolution. The new
evaluation method can be used for more realistically juglgive potential for dose reduc-
tion, depending on the clinical task. The estimated doseatezh rates that were computed
on basis of the new noise-resolution-tradeoff do not singolysider the improvement of
image noise by the application of the filter. They also cossttie loss of resolution at a
certain contrast-to-noise ratio. Depending on the cliréggplication, the minimum con-
trasts that are of interest might vary. If lesions should eecded very low contrasts are
usually of interest, on the contrary, in case of bone fragwery high contrasts are of in-
terest. If very low contrasts close to CNR values of 1 need tditberentiated, there is no
or only low potential for dose reduction, because it is difito preserve structures at very
low contrasts in image acquired at a lower dose. Based on opoped estimation of the
potential for dose reduction we can conclude that even f@@dIR levels between 3 to 5
the application of the proposed filters to low dose imagedeaohto a noticeable reduction
of radiation dose up to 60% in 2-D and even close to 80% in 3Bhduld, however, be
reminded that an extended clinical study is necessary tovprthese estimates in clinical
practice also in context of different diagnostic and treathassesment tasks.
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Acronyms

A.1 CT Reconstruction

CT computed tomography

MSCT mulit-slice computed tomography
DSCT dual-source computed tomography
FBP filtered backprojection

WFBP weighted filtered backprojection
SMP  segmented multiple plane

HU Hounsfield Unit

FOV  field of view

MTF  modulation transfer function

SNR signal-to-noise ratio

CNR  contrast-to-noise ratio

PSF point-spread-function

LSF line-spread-function

Ip line-pairs

A.2 Wavelet Transformation

WT wavelet transformation

CWT continuous wavelet transformation
WFT windowed Fourier transformation
STFT short-time Fourier transformation
DWT discrete time wavelet transformation
SWT shift-invariant wavelet transformation

ATR ‘a-trous wavelet transformation
FFT fast Fourier transformation
Db2 Daubechies 2 wavelet

CDF9/7 Cohen-Daubechies-Fauraune wavelet
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A.3 Denoising
CORR correlation coefficient based weighting
GRAD gradient approximation based weighting
S80 sharp reconstruction kernel
B40 smoother reconstruction kernel
ROC receiver operating characteristic
TPR true positive rate
FPR false positive rate

STSWT standard thresholding using on SWT
ANESWT adaptive noise-estimation based thresholding USIVG
CASWT  correlation based weighting using SWT

NRR noise reduction rate

SNRG SNR-gain

SBF standard bilateral filtering
NABF noise-adaptive bilateral filtering

A.4 Noise Propagation

ACF auto correlation function
ACCF auto correlation coefficient function
WSS  wide sense stationary
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Notation

B.1 CT Reconstruction
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TR AEFE R
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intesity at source

number of emitted photons at source
intesity at detector

focus radius

focus angle

fan angle

parallel projection angle
orthogonal distance to iso-center
ray

2-D or 3-D spatial position
spatial coordinates

projection

fan-beam projection
parallel-beam projection
Fourier transformation operator
Radon transformation operator
attenuation coefficient
attenuation coefficient of water
ramp kernel

apodized convolution kernel
apodization window
attenuation coefficient
attenuation coefficient of water
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Appendix B

number of channels in fan-beam projection
number of fan-beam projections
number of channels in parallel projection
number of parallel projections i
number of parallel projections in
sampling distances/ increments

indices

fan-beam projection at, andg,

hybrid projection at,, and,
complementary rebinned projectiondatind j;
parallel-beam projection & andt,

filtered parallel-beam projection
interpolation function

azimuthal interpolation function

radial interpolation function
backprojection interpolation function
function to be reconstructed in HU
Cartesian coordinates, position

signal measured at detector
measurement error/noise of signal
guantum noise

electronics noise

constants

number of X-ray quanta quanta
probability distribution

expectation

variance of quantum noise

variance of electronics noise

variance of intensity

variance of projection

highest spatial frequency within measured projection

. Notation
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B.2 Wavelet Transformation

I
[\
L

g, hl7§£7 ]’;/l~
G>H7 Gl7Hl

function

window function

complex conjugate of w

wavelet function (mother wavelet)

scaling function (father wavelet)

scaling factor

translation

Fourier representation af

dyadic scale

translation corresponding to dyadic scale
indices

detail coefficient at scalg and translation
approximation coefficient at scasgand translatiorr
analysis lowpass filter

analysis highpass filter

synthesis lowpass filter

synthesis highpass filter

image (approximation at level 0)

scale of input image

decomposition level

maximum decomposition level
approximation at level

horizontal detail coefficient ofl at levell
vertical detail coefficient of at levell
diagonal detail coefficient ofl at levell
analysis and synthesis filters used at lgvel
z-transformations of filters
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B.3 Wavelet Denoising

A B input datasets (2D, 3D)

P set of projections

P1 first subset of projections

P2 second subset of projections

P, projections at anglé;

R* reconstruction operator

M mean of input datasets / reconstruction from all projection
D difference of input datasets

S noise-free signal

N zero-mean additive noise

Ny, Np, ... zero-mean additive noise i, B,...

o standard deviation of noise

ON4,ONg standard deviation of noise i, B,...

R denoised result

C similarity value based on correlation analysis
CcH similarity value in horizontal direction at level
Cov covariance

Cov, local covariance arounx

Var variance

Var, local variance aroung

Ay local mean of4 aroundx

Qy local neighborhood aroun

n weighting function for local neighborhoods
Tx mean value of weighting function

w weighting function for detail coefficients

P parameter of weighting function controlling the strengtldenoising
L linear combination

91, 92 weights

d direction

T threshold

o, estimated standard deviation of noise

op reference standard deviation of noise

rA relative error

N average relative error

Tra variance of relative error

SA average error, normalized on per-pixel basis
G weighting image

Geor correlation coefficient based weighting image
Gs' significance weighting image

T threshold

hisy Fourier transformation of linear filter

MTF,q MTF of adaptively filtered image
MTF oig MTF of original image
Kmod modified reconstruction kernel
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B.4

pICL‘
QSLBZE

fan

R

ipol

conv

p
p
o

B.5

v (91 s X)
emax
émax
Vary
Vary

0.2

o’H

Noise Propagation

normalized autocorrelation function/ autocorrelatioefficient function
autocorrelation function

autocorrelation of noise in fan-beam projections

autocorrelation of noise after rebinning

autocorrelation of noise after convolution

Kronecker delta-function

Noise-Adaptive Bilateral Filtering

variance contribution from projections at an¢leo positionx
angle with largest variance contribution

direction of strongest correlation

horizontal variance contribution

vertical variance contribution

standard deviation of noise in image

standard deviation of noise in image in horizontal diretctio
standard deviation of noise in image in vertical direction
standard deviation of noise in image in direction of streatgerrelation
standard deviation of noise in image orthogonal to directibstrongest correlation
input data

filtered output data

domain filter

range filter

covariance matrix of Gaussian filter at position

rotation matrix

diagonal matrix

singular values

parameter that controls the maximum degree of anisotropy
parameter that controls the spatial extension of the doffil&n
parameter that controls the strength of noise reduction
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