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This article addresses enhancements and optimizations of a lane detection system through 
sensor fusion methodology. Challenging tasks have to be considered, e.g. illumination or pattern 
mismatches. Therefore the digital map is used as a guide to a precise and fast lane model 
estimation process, allowing the introduction of constraints. Scan lines are projected into the 
image domain to get the search paths. The (re-)initialization can be improved e.g. in curve 
scenarios by adapting dynamically the search region to the expected road geometry. The 
developed system is compared to the original system using several scenarios. The results show 
a significant improvement of the overall performance, showing the advantages of integrating 
multiple sensors like a High Dynamic Range camera and digital map data into the next 
generation of lane detection systems. 
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1. Introduction 
 
Accidents caused by lane departure or collision with lateral traffic result in18.312 injured and 134 
dead people in Germany in 2006 [1]. Most of these accidents are caused by inattention of the 
drivers, and could be avoided by automatic warning systems. In our approach, we concentrate 
on unintended lane departures. Challenges rise from uncountable environment variables, e.g. 
illumination conditions, road types or mismatching patterns, that influences the determination of 
the relative position between the car and the road. In this context, making the best use of all 
available sensor data is fundamental.  
 

2. State-of-the-art 
 
Regarding the most representative works on the application of maps and positioning devices to 
support lane detection algorithms, Cramer presented a method that fuses image and map data 
and evaluates various other sensor fusion approaches [2]. The reconstruction of the road 
geometry out of digital map data is content of the work from Tsogas [5] and Weigel [6]. They 
concentrate on the enhancement of the recognition task especially in far distances. In difference 
to the previously mentioned publications, we consider map and positioning device data as a 
guide to the lane model estimation process. This leads to a higher precision and accuracy 
compared to single camera approaches.  
 

3. Methods 
 
Our system is composed of a positioning device, a computational unit, e.g. a notebook or a PDA, 
and a High Dynamic Range (HDR) camera facing towards the driving lane. The base 
methodology is described in [3] and [4]. The complete system is designed to be easily ported to 
several embedded platforms. Minimal working performance can already be achieved with 
ARM11 processors. Video acceleration co-processors designed for solving pre-processing tasks 
in hardware, e. g. edge detection, are well suited to increase significantly the overall 
performance. An acceleration module, fitting low cost FPGAs as the Altera EP2C8, presents 



already real time performance in combination with a 133MHz processor with floating point unit 
(FPU) (tested with a NIOSII soft-core processor). Additionally the fusion of the digital map leads 
to further improvements in computational speed, as will be described in the sequence. 
 
The introduction of the map information into the lane detection system starts at the definition of 
the search region, the area where the lane is expected to be in the image space. 3D lines 
orthogonal to the lane direction, along a certain range in front of the vehicle, are projected into 
this space to define the search paths. In the single camera system, the lane geometry is fixed, 
what in many cases, especially in curves, avoids the (re-)initialization of the algorithm. By 
adapting dynamically this region to the expected road geometry, more features can be correctly 
selected, and hence a model can be estimated. Fig. 1 shows this procedure. 
 

   
a)                                                                 b) 

Fig. 1: Projection of scan lines: a) without and b) with adapted initialization parameters. 
 
Edges are then searched along the previously described scan lines. In the sequence, a process 
selects the best marker candidates according to specific physical constraints. At this point a 
generalized Hough transform is applied to find a third degree polynomial, approximating a 
clothoid curve.  
The model is given by: 
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where y is the lateral offset, c0 is the curvature, c1 is the curvature change, b is the lane width 
and x the distance from the vehicle along the lane. The map geometry constrains the search 
region. Due to the high computational effort, the Hough space h is reduced to the four main 
parameters, defined by: 
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where φ3 denotes the yaw rate, necessary to compute x. By adjusting dynamically the search 
ranges through the local road geometry, we do not just enable the system to start in curve 
situations, but we also increase the precision of the algorithm, while maintaining the same 
computational effort.  
 
Once a reasonable model is found an Extended Kalman Filter is applied to track it over time. 
The search regions are narrowed, following just the predicted model. If a bad estimation occurs, 
the search space in the subsequent frame will be incorrect, leading to worst models until quality 
checks force the system to re-initialize. In such situation it is interesting to fuse the predicted 
model to the map geometry. One approach would be to derive an intermediate model out of the 
two, like in [5]. In our approach the map serves as a guide for the lane detection. The map 
geometry is applied to define an extended search region. It is first aligned to the lane and 
projected into the image space, defining a guidance curve. Finally, the measurements are re-



sampled in a certain region along this curve and the new model is estimated. If the map is wrong, 
features will not be selected in the new region, forcing the system to re-initialize. However, if the 
map geometry is correct, the re-sampling will provide a better feature set, and therefore a better 
model, stabilizing the detection. Fig. 2 shows a ramp scene before and after the re-sampling 
process. The blue marked points are measurements fitting 3D physical conditions of the lane 
marker, e.g. width and length. The estimated model is represented by the cyan curve and is 
fitted through selected points (marked in pink), as a result of the filtering process. At the right 
side, the red points indicate additional features selected from the extended search region. As a 
result of this approach, during the tracking operation, the lane is determined based only on 
image cues, assuring independence of the estimated model with respect to the map geometry.  
 

   
a)                                                                 b) 

Fig. 2: Re-sampling process: a) before, b) after re-sampling. 
 

4. Results 
 
Test sequences of several scenarios with approximately 3500 images were manually annotated 
to serve as ground truth. The error between the estimated and the ideal system is calculated in 
the image space in order to avoid introducing errors of calibration parameters into the ground 
truth data. The absolute error is given by the Euclidean metric of lane points at the same 
distance from the car. 
 
Table 1 shows the comparison for the four most common scenarios during a highway drive. 
Beside the average error, we compute the percentage of frames in which the system is kept in 
tracking operation, as a recognition rate metric. 
 

 
Original System 

 
Map Guided System 

 
Scenarios 

 
Tracking Time [%] 

 
Avg. Error [pixels] 

 
Tracking Time [%] 

 
Avg. Error [pixels] 

 
Entrance/Exit 

 
76.7 

 
16.2 

 
93.8 

 
4.2 

 
Straight Road 

 
93.1 

 
2.7 

 
96.6 

 
1.8 

 
Curve 

 
57.9 

 
9.5 

 
78.9 

 
4.1 

 
Lane Change 

 
82.5 

 
3.2 

 
92.5 

 
2.4 

Table 1: Evaluation of different scenarios between the original and the map guided system. 
 



For the complete test data base, the system is kept 16.2% longer in the tracking mode than the 
original algorithm. The average error has fallen to 3.6 pixels, representing 13.8% less than the 
single camera system. In the final version of this paper, a more precise analysis of the 
improvements will be presented. 
 
The images sequence in Fig. 3 demonstrates three frames from a ramp scene. In this scene the 
car is driving a curve with changing lane width. The comparison between the estimated lane 
model of the original system (left) is shown in contrast to the enhanced (right). One can easily 
see the strong bending of the model caused by poor feature selection in this sequence on the 
left hand side, while the enhanced system stays stable and the estimated model is much more 
reliable. 
 

 
Fig. 3: Feature selection without (left) and with map constraints (right). 

 
Fig. 4 shows the visual realization of the results: the green arrow indicates the driver which lane 
he should select. The turquoise lines highlight the actual detected lane. It can be seen that the 
lane is detected correctly although there are some noisy factors like the rear light of a car. 
 



 
Fig. 4: Lane guidance demonstrator.  

 
5. Discussion   

 
In this work we have shown how maps can be introduced as guides to the lane detection 
process. Through the dynamic adaptation of the search space and by a better guidance of the 
initialization process, the system is now able to (re-)start in non-straight road situations. These 
adaptations lead to a better trade-off between precision and computational effort during the 
Hough transform phase. During the tracking operation, the introduction of the re-sampling 
approach avoids undesired bending of the lane model in situations where the feature quality at 
the far end is low. The new method contributes, first, to a more robust system, second, to a 
better precision of the estimation process and finally, by avoiding re-initialization phases, it also 
contributes to reduce the overall computational effort. Keeping the model estimation 
independent of the map geometry is therefore an interesting step towards an automatic mapping 
system.  
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