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ABSTRACT: An automated segmentation system of the optic radiation using diffusion tensor imaging (DTI)
is proposed. The DTI-data is interpolated in the Log-Euclidean framework to avoid the swelling effect and
regularized by diffusion filtering. Based on physiological and anatomical information, robust initial estimates
of the optic radiation and the midbrain are obtained using thresholding and connectivity analysis. The estimated
optic radiation initializes a statistical level set framework. The optic radiation is segmented by evolving the
level set function. The segmentation is refined using the relative position between the optic radiation and the
midbrain. The system is tested using eighteen DTI-datasets of glaucoma and normal subjects. The segmentation
results were compared to the manual segmentation by a medical expert and found to be in agreement with the
known anatomy with 83% accuracy. The automation eliminates the necessity of medical experts’ intervention
to identify the optic radiation and facilitates future glaucoma studies.

1 INTRODUCTION
Glaucoma is the second leading cause of blindness in
the world. The damage caused by glaucoma is irre-
versible. The progression of glaucoma can be delayed
significantly if glaucoma is detected in early stages.
Therefore, methods for screening, early diagnosis and
better understanding of glaucoma and its progression
are needed.

Most of the existing eye imaging modalities focus
on imaging the eye in general and the retina in par-
ticular. Many studies were performed to investigate
the correlation between glaucoma and retinal changes
such as retinal nerve fiber atrophy, retinal vessels, and
optic disk changes (Lee et al. 1998; Hoffmann et al.
2007; Polo et al. 2009). The human visual system
does not only consist of the eye but it extends through
the optic nerve into the brain till it reaches the visual
cortex. Some studies exist for the correlation between
glaucoma and parts of the visual system such as the
optic nerve (Hui et al. 2007). As a part of the visual
system, the optic radiation is a massive fiber bundle
of axons carrying visual information from the lateral
geniculate body of the thalamus to the visual cortex.

In this work we aim to provide a system for the au-
tomatic identification of the optic radiation in normal
and glaucoma patients. DTI is used to segment the op-
tic radiation as it is the only imaging modality that al-
lows for the identification of white matter fibers. This

is a step towards a better understanding of the changes
caused by glaucoma in this part of the human visual
system.

In the last two decades, diffusion tensor imaging
has received a lot of attention due to its clinical ap-
plications. Furthermore, it is the only imaging modal-
ity that allows tracking the white matter fibers in-vivo
and non-invasively, and it enables the construction of
an atlas of white matter fibers in the human brain
(Zhou 2004; Zhang et al. 2005; Basser and Jones
2002; Nucifora et al. 2007; Wakana et al. 2004). DTI
is calculated from diffusion weighted magnetic reso-
nance imaging (DW-MRI). Diffusion weighted imag-
ing (DWI) is based on weighting the magnetic res-
onance images by the diffusion of water molecules
(Le Bihan et al. 2001).

Many algorithms were proposed for the identifica-
tion of white matter tracts using DTI. The dominant
category is tractography which is based on follow-
ing the fiber tracts using the principal diffusion di-
rection (Zhang et al. 2005). Connectivity maps were
suggested (Yörük et al. 2005) to explore the connec-
tivity in DTI and to overcome tractography drawbacks
such as accumulated errors during the tracking pro-
cess. Connectivity maps have the disadvantage that
they do not provide plausible visualization of the re-
sults (i.e. fiber tracts). The split and merge technique
(Bozkaya and Acar 2007) provides a degree of mem-
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bership of small tracts belonging to the same fiber but
do not describe the complete fiber pathway. Segmen-
tation approaches of DTI are proposed (Wang and Ve-
muri 2005; Zhukov et al. 2003; Hamarneh and Hrad-
sky 2006) and are more suitable for identifying co-
herent densely packed bundles of axons as it avoids
the drawbacks from both connectivity maps and trac-
tography such as tracking accumulation errors and the
need to merge the individual tracts to obtain fiber bun-
dles. Furthermore, it relies on the coherency within
the fiber bundle of interest. Therefore, the segmenta-
tion approach is adopted in this work. The proposed
segmentation system utilizes the complete tensor in-
formation in a statistical level set frame work that
takes into consideration the Riemannian nature of the
tensor space.

Most of the proposed algorithms did not address
the problem of algorithm initialization. They rely on
medical experts interaction to select the seed points
of the desired fiber tracts in tractography algorithms
or the initialization of the segmentation engines to in-
clude the desired fiber bundle. The proposed segmen-
tation system utilizes the physiological properties of
the optic radiation to produce a robust initialization
of the proposed segmentation system in both healthy
and pathological subjects with glaucoma.

The segmentation system consists of the following
steps: First the diffusion tensor and related anisotropy
measures are calculated from the diffusion weighted
images. The calculated diffusion tensor data is trans-
formed into the Log-Euclidean framework and inter-
polated as presented in Section 2. In Section 3, DTI-
data is regularized to increase the coherency of the
optic radiation fiber bundle before obtaining an ini-
tial estimate of the optic radiation using thresholding
and connectivity analysis. The midbrain is initially
identified using a similar analysis to that of the op-
tic radiation. The system extends the statistical level
set framework for DTI segmentation developed by
Lenglet et al. (2006) to be used in conjunction with
the Log-Euclidean dissimilarity distance as detailed
in Section 4. The optic radiation is obtained by itera-
tively evolving the level set function. Finally, the out-
put from the level set framework is adjusted based on
the relative location of the optic radiation and the mid-
brain. Section 5 contains the experimental results. The
conclusion and future work are stated in Section 6.

2 LOG-EUCLIDEAN FRAMEWORK AND DTI
INTERPOLATION

The diffusion tensors are 3 x 3 symmetric positive
semi-definite matrices that do not form a vector space.
The Log-Euclidean framework proposed by Arsigny
et al. (2006) provides a Riemannian framework to
deal with the diffusion tensors. Using this framework,
diffusion tensor space of positive semi-definite matri-

ces can be transformed into the space of symmetric
matrices, i.e. a vector space. Moreover, all operations
performed on vectors can be used on the vector form
of the diffusion tensor in the Log-Euclidean frame-
work.

The Log-Euclidean distance dTLE
between tensors

T1 and T2 is defined by

dTLE
(T1, T2) =‖ log (T1)− log (T2) ‖ (1)

where log is the matrix logarithm.
The interpolation of the DTI-data is necessary in

order to obtain a volumetric identification of the
optic radiation. Interpolation of diffusion tensors in
the Euclidean framework results in the non-physical
swelling effect where the average of diffusion ten-
sors with the same determinant has a larger determi-
nant (Corouge et al. 2006). Interpolation in the Log-
Euclidean framework avoids the swelling effect at a
computationally attractive cost. The diffusion tensor
T is interpolated trilinearly at non-grid position x as
the Log-Euclidean weighted sum of N tensors in a
neighborhood of the non-grid position. The weights
are inversely proportional to the spatial distance be-
tween the non-grid position and the locations of the
tensors in the neighborhood.

3 INITIAL ESTIMATION OF THE OPTIC
RADIATION

In this step, the optic radiation and the midbrain are
initially identified. The diffusion tensor data is first
regularized by applying Perona-Malik diffusion filter-
ing (Perona and Malik 1990) to the vector form of the
tensors componentwise. Regularization is performed
to reduce the noise and to increase the coherency in-
side the fiber bundles while preserving the edges.

The initial estimation of the optic radiation is based
on the fact that the main fiber bundle of the optic
radiation is dominated by diffusion in the anterior-
posterior direction. The image is thresholded and bi-
narized on a voxel by voxel basis. The eigenvec-
tor of the tensor corresponding to the largest eigen-
value is taken as the principal diffusion direction and
the principal diffusion components in the three co-
ordinate axis are compared. The foreground voxels
are selected to have an anterior-posterior component
greater than a variably selected factor of the sum of
the other two components and a fractional anisotropy
value greater than 0.15. The remaining voxels that do
not satisfy the selection criteria are set as the back-
ground of the binary image. A three dimensional con-
nectivity analysis is performed on the binarized image
where two voxels are considered connected if they
have a common face. Connected objects are deter-
mined and the optic radiation is initially identified
as the largest object dominated by diffusion in the
anterior-posterior direction. This estimation will be
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used in the segmentation step as an initialization to
the used level set framework.

The analysis applied to estimate the optic radiation
is similarly applied to identify the midbrain. The anal-
ysis takes into account that the midbrain is character-
ized by diffusion in the superior-inferior direction and
is located in the neighborhood of the centers of the ax-
ial brain slices. The relative position of the estimated
midbrain to the optic radiation will be used in a later
step to refine the segmentation of the optic radiation.

4 SEGMENTATION USING STATISTICAL
LEVEL SET FRAMEWORK

The segmentation is performed in two steps. First, the
DTI is segmented using a statistical level set frame-
work. The initially estimated optic radiation is used as
the initial surface. Second, the results from the level
set framework are adjusted based on anatomical infor-
mation between the midbrain and the optic radiation.

We extend the surface evolution framework devel-
oped by Lenglet et al. (2006) to work with the Log-
Euclidean dissimilarity measure given in equation 1.
In the following we present briefly the mathematical
formulation of the level set framework in the case of
the Log-Euclidean framework. For further details see
(Lenglet et al. 2006; Arsigny et al. 2006). The diffu-
sion tensor T (x) at voxel x is mapped to the space
of symmetric matrices and transformed into a vector
form β(x) using the following mapping:

β(x) = vec (log (T (x))) (2)

where vec is the mapping of the 3 x 3 symmetric ma-
trices to the corresponding 6-dimensional vectors.

Using the notation in equation 2, the mean, covari-
ance matrix and Gaussian distribution between diffu-
sion tensors can be defined as :

µLE =
1

N

N∑
i=1

β (xi) (3)

CovLE =
1

N − 1

N∑
i=1

(β (xi)− µLE) (β (xi)− µLE)T

(4)

PLE (β (xi)) =
1√

(2π)6|CovLE|

exp

(
−(β (xi)− µLE)T Cov−1

LE (β (xi)− µLE)

2

)
(5)

The spatial gradient of the diffusion tensor in the

vector space is given by

|∇β(x)|2 =
1

2

3∑
k=1

∑
s=±1

tr
(

(β(x)− β(x+ sek))

· (β(x)− β(x+ sek))T
)
(6)

where the ek, k=1, 2 ,3 denotes the canonical basis
of R3. s ∈ {1,−1} and denotes the forward and back-
ward approximations of the gradient. tr is the trace of
a matrix.

The idea of the statistical surface evolution is to
seek the optimal partitioning of the tensor image (β
in the Log-Euclidean case) by maximizing a posteri-
ori frame partition probability for the diffusion tensor
image with image domain Γ. This is done in a level set
framework, where the image is partitioned into three
regions based on a level set function φ: inside Γin,
outside Γout or on the boundary ΓB. The boundary is
defined as the zero-crossing of φ. The probability dis-
tributions of the inside pin and outside pout regions
are modeled by Gaussian distributions on tensors us-
ing equation 5. The partition probability is given by

P (β|φ) =
∏

x∈Γin

pin(β(x))

·
∏

x∈Γout

pout(β(x))
∏

x∈ΓB

pb(β(x))
(7)

The boundary probability distribution pb is selected
to have a value of approximately one for high gradi-
ents of the diffusion tensors (using equation 6 for gra-
dient calculations) and a value of approximately zero
for low gradients as the following relation indicates.

pb (β (x)) ∝ exp (−g (|∇β (x) |)) (8)

where g(u) = 1/(1 + u2).
This leads to the energy minimization formulation:

E(φ,µLEin/out
,CovLEin/out

)

= ν

∫
Γ

δ(φ)|∇φ|dx+

∫
Γ

δ(φ)|∇φ|g(|∇β (x) |)dx

−
∫

Γin

log(pin(x))dx−
∫

Γout

log(pout(x))dx

(9)
with the corresponding Euler-Lagrange equation

∂φ

∂t
= δ(φ)

(
(ν + g(|∇β (x) |))div

(
∇φ
|∇φ|

)
+
∇φ
|∇φ|

· ∇g(|∇β (x) |) + log

(
pin

pout

))
(10)
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The level set function in equation 10 is evolved iter-
atively to obtain the desired segmentation. The output
from the level set framework contains the fiber bun-
dle of the optic radiation and additional bundles con-
nected to it such as the optic tract. The segmented re-
gion is automatically adjusted in order to confine the
segmentation results to the part representing the op-
tic radiation based on its relative position to the seg-
mented midbrain. A plane is automatically selected
corresponding to the anterior boundary of the seg-
mented midbrain. The segmentation results anterior
to the selected plane are eliminated.

5 EXPERIMENTAL RESULTS
Eighteen subjects were examined by ophthalmolo-
gists and categorized into two age matched groups.
The first group represents the subjects that were
diagnosed with primary open angle glaucoma and
the other group represents the normal subjects.
The glaucoma group contains 9 subjects with a
mean±standard deviation age of (66±11.8 years)
with 7 females and 2 males, while the normal group
contains 9 subjects with a mean±standard deviation
age of (67.1±8.1 years) with 6 females and 3 males.
Further ophthalmological and neuroradiological ex-
aminations were performed and did not provide indi-
cations of microangiopathy or irregularly developed
optic radiation.

The subjects were scanned using a 3T-MRI scan-
ner. The diffusion weighted images were acquired
using a single-shot, spin echo, echo planar imaging
(EPI) as an imaging sequence with repetition time
(TR) 3400 ms, echo time (TE) = 93 ms, field of
view (FoV) 230 x 230 mm2, acquisition matrix size
of 128 x 128 reconstructed to 256 x 256, seven sig-
nal averages, and partial Fourier acquisition = 60%.
The axial slices have a thickness of 5 mm and 1 mm
interslice spacing. Diffusion weighting with a max-
imal b-factor of 1000 s/mm2 along 15 icosahedral
directions complemented by one scan with b = 0.
The diffusion tensors were calculated from the mea-
sured diffusion weighted images along with fractional
anisotropy, eigenvectors and eigenvalues on a voxel
by voxel basis.

The segmentation system is applied to the DTI-
datasets and the optic radiation in the two groups is
identified. The left side of Figure 1 shows the final
segmented optic radiation on non-diffusion weighted
axial slices with b = 0 from three sample subjects
(two normal and one with glaucoma). The color coded
fractional anisotropy representation of the DTI-data is
demonstrated on the right side of the figure.

The segmentation results were evaluated by com-
paring them with a manual segmentation of the op-
tic radiation main fiber bundle performed by a medi-
cal expert. The accuracy of the segmentation system

is calculated as the percentage of the overlap volume
between the automatic segmentation results and the
manual segmentation to the total volume of the man-
ually segmented optic radiation. The accuracy of the
segmentation results is 83% for both the normal and
the glaucoma groups.

The analysis of the segmentation errors showed that
most of the errors are in the region where the optic ra-
diation branches in the proximity of the visual cor-
tex as indicated by arrows in Figure 1. Due to the
branching of the optic radiation in this region, the
incoherency increases and the anterior-posterior di-
rection is no longer the dominating diffusion direc-
tion which is the principal segmentation assumption
for the proposed algorithm. The algorithm is robust
and produces comparable segmentation accuracy in
both groups in spite of the atrophy of the optic radi-
ation in case of glaucoma patients accompanied with
increased incoherency. This robustness is due to the
dependence of the system on the physiological and
anatomical properties which are slightly affected by
glaucoma.

6 CONCLUSION AND FUTURE WORK
A system has been proposed for the automatic seg-
mentation of the optic radiation using DTI based
on dissimilarity measure and the coherency prop-
erty within the optic radiation fiber bundles. The au-
tomation eliminates medical-experts’ intervention for
identifying the optic radiation and allows the process-
ing of large number of subjects. The system initial-
ization problem is addressed by utilizing prior knowl-
edge about the physiological and anatomical proper-
ties of the optic radiation to automatically provide ro-
bust estimation of the optic radiation. The incorpo-
ration of the Log-Euclidean framework in the statis-
tical level set framework is suitable and efficient for
DTI segmentation because it accounts for the Rie-
mannian nature of the tensor space and incorporates
the whole tensor information in a probabilistic frame-
work. The system is implemented and tested using
real DTI-data. The experimental results indicate that
the system shows high efficiency in determining the
main fiber bundle of the optic radiation for normal
subjects as well as pathological subjects with glau-
coma.

The automated identification of the optic radiation
will be utilized in a following study to investigate the
correlation between glaucoma and the quantification
of the changes occurred in the optic radiation. This
aims to give further insight into the glaucoma disease
and its effect on the various parts of the human vi-
sual system. Future work is the identification of the
optic radiation connectivity on the visual cortex. This
requires the development of a robust tractography al-
gorithm to be able to accurately identify the highly
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(a)

(b)

(c)
Figure 1. Segmentation of the optic radiation in three sample subjects : (a,b) normal subjects, (c) subject with glaucoma.
The main fiber bundle of the optic radiation and the lateral geniculate nucleus (LGN) of the visual pathway are clearly
identified. The arrows indicate the region where the optic radiation branches and the incoherency within the bundle in-
creases
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variable branches of the optic radiation while taking
into consideration the complex fiber situations (e.g.
crossing, branching, etc. . . ) and the uncertainties in
the diffusion tensor data.
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