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ABSTRACT

In this presentation, we give a detailed analysis of the considerations needed for mapping the complete
pattern classification chain to the restricted embedded system hardware environment. We describe the
methodology of the design, realization and testing process that takes these hardware limitations into
account. For this purpose, we consider a particular embedded application from the field of digital sports:
a novel running shoe that is capable of sensing run-specific parameters and adapting the cushioning set-
ting accordingly. Of utmost importance in this context is the classification of the current surface condi-
tion in order to enable optimal adaptation to the prevailing situation. Following our design approach, we
provide a classification system with a runner-independent surface classification rate of more than 80%.
This system is implemented in the current version of the aforementioned running shoe. The presented
methodology is quite general as it makes no system-dependent assumptions and can thus be transferred
to many other embedded classification applications.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The ability to perform accurate classification in real-time is a
key factor for many applications. This is not only true when com-
putationally powerful hardware is used. It is most often crucial
in the restricted hardware environment of the power-efficient,
highly mobile microprocessors used in embedded systems. Con-
sider, for example, portable devices performing image classifica-
tion or speech recognition. As Hacker et al. (2006) showed,
classification of the focus of attention of a user in interaction with
a portable digital assistant (PDA) is possible with classification
rates of up to 93%. The authors avail the signal of a built-in video
camera and information from the speech signal to discern whether
the user is trying to interact with the device or not.

The most important question is which of the complex algo-
rithms known in pattern recognition can be used and implemented
in the context of the restricted memory capacity and computa-
tional power of the employed microprocessors. Special consider-
ations have to be made in order to adapt those algorithms to the
specific hardware and classification task at hand. A lot of areas of
engineering can benefit from the possibility of accurate classifica-
tion in this restricted environment. Examples include, but are not
limited to, automotive solutions, communications, industrial
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automation, speech recognition and medical care. In each of these
fields, cheap and therefore mass producible systems that are highly
portable can open up completely new ranges of applications.

We present an approach to accurate classification on a micro-
controller that uses an example from the field of digital sports. It
is quite common in this field to use rather straightforward statisti-
cal analysis and model building techniques even for large, multidi-
mensional datasets. Lun et al. (2004) for example examined the
relation between biomechanical variables of runners and the risk
of running specific injuries. To facilitate this, they defined several
injury classes and tried to identify significantly different parame-
ters between those. While their work offers a lot of new insights,
the underlying database is very complex so that important high-
er-dimensional coherences might not have been revealed. In the
most recent years, pattern analysis concepts find their way into
the field of digital sports, too. One application of pattern analysis
methodology was shown in (von Tscharner and Goepfert, 2003).
In this paper it is reported that electromyograph signals of muscle
activity can be represented in pattern space using wavelet analysis.
The authors furthermore demonstrate that the different activity
patterns of males and females can be classified with a precision
of more than 95%.

Our approach to guarantee accurate classification on the
embedded system is to perform as much analysis as possible on
computationally powerful PCs. This allows us to efficiently
compare a lot of different approaches and select the one that is
best suited for the classification task. Thereby, we keep the hard-
ware restrictions in mind during every step of the pattern recog-
nition chain. We identify the classifier that is best suited for the
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implementation on the specific microcontroller that is used, per-
forming only the final verifications on the embedded hardware.
For this presentation, we focus on the application of these con-
cepts on the adidas_1 running shoe, which is the first shoe ever
that features an embedded system. This shoe is built to adapt
to various running conditions like the prevailing surface situation.
A precise classification of these conditions is of course mandatory
to guarantee this functionality. To facilitate this, the step signal of
the runner is continually measured and processed by the embed-
ded microcontroller. A detailed description of the adidas_1, its
functionality and embedded system hardware can be found in
Sections 2.1 and 2.2, in (DiBenedetto et al., 2004) and in (DiB-
enedetto et al., 2005). In the rest of Section 2 we describe the
analysis methods that lead to accurate, real-time surface classifi-
cation, including:

e the preprocessing steps that are a prerequisite to later obtain
features that can be reliably computed (Section 2.4);

e the choice of discriminative features, which dependably repre-
sent the signal information while still being efficiently calcula-
ble (Section 2.6);

e a detailed description of the examined classifiers (Section 2.7).

The choice and parameterization of each of these factors of the
classification chain is essential for ensuring optimal results. In Sec-
tion 3 we present the conducted experiments and their results. In
our summary in Section 4 we will show that, while the specific
question of surface classification is solved, the employed methods
are general in nature so that they can contribute to a wide area of
applications featuring embedded systems. The presented example
for a classification system has recently been implemented in the
current version of the adidas_1 running shoe, which is commer-
cially available. It is significantly contributing to the shoe’s func-
tionality and thereby offering runners an ideal adaptation during
each phase of their run.

Signal classification techniques have long been successfully ap-
plied to radio signals (Schmidt, 1986), images (Haralick et al.,
1973) and speech signals (Furui, 2004). Recently, examples of clas-
sification systems implemented on embedded systems have also
been published, for example in (Englehart and Hudgins, 2003; Wolf
et al., 2002). Pattern recognition algorithms are lately also applied
in sports related problems (Assfalg et al., 2002; von Tscharner and
Goepfert, 2003). However, to our knowledge, we are the first group
to use these established techniques in order to classify a step signal
on an embedded system in the context of sports.

2. Materials and methods
2.1. The adidas_1 running shoe

The adidas_1 is a running shoe which possesses a built-in 8-
bit microcontroller, a sensor for heel compression measurement
and a motor for cushioning adaptation. This shoe is designed for
avid runners, and is constantly adjusting itself to the running sit-
uation. In this presentation, we will focus on the classification of
the surface that the athlete is running on. While other parame-
ters are also important, it was the first goal of the ongoing re-
search to develop an algorithm that is well suited for surface
classification from the sensor signal alone. The general demand
to establish constant cushioning when a change of running sur-
face takes place and all other running conditions remain con-
stant is to have

e a soft shoe on hard surfaces (e.g. asphalt, concrete) and
e a hard shoe on soft surfaces (e.g. grass, trail).

Wearing a shoe that provides good cushioning on hard surfaces,
for example, can reduce the risk of long-term wearout injuries in
the knees. This effect was evidenced by Milgrom et al. (1992).
For this reason, we aim at a good classification of any hard surface
that the runner is on. Similarly, if we detect a change of surface, i.e.
if the surface is not hard anymore, we adapt the shoe to this softer
surface condition, making it harder and stiffer in order to prevent
injuries that are attributed to a lack of control, e.g. an ankle sprain.
We therefore decided not to use a continuous scale from the hard-
est possible surface to the softest, but rather to employ a hard deci-
sion threshold either for the hard or soft surface condition. This can
thus also be regarded as a decision for either a ‘control’ or a ‘cush-
ioning’ condition and a corresponding complete adaptation of the
shoe. This automatic adaptation ideally takes into account the ath-
lete’s weight, speed, fatigue level and furthermore the current sur-
face condition, elevation profile and shoe condition.

To facilitate this adaptation, the shoe features a cushioning ele-
ment, whose ability to give way in vertical direction (hereafter de-
fined as z-axis) can be regulated by a motor-driven cable system.
The cushioning element is depicted in Fig. 1. The regulating cable
is visible in the z-axis X-ray image of the adidas_1 in Fig. 2. It is
running from the motor through the middle of the cushioning ele-
ment to its opposite end and is fixated there. The motor shown in
Fig. 1 can adjust the attenuation setting by turning a screw which
lengthens or shortens the cable. When the cable is shortened, the
cushioning element is tensed and compresses very little when
external forces are applied. When the cable is longer, it allows
the cushioning element to compress further by giving it more room
to expand in the x-axis direction (forward-backward direction),
effectively making the shoe softer. Changes to the softness setting
are gradual. The attenuation setting from one extreme to the other
is made in 15 increments. A decision for the current surface is
made after every fourth step, taking the three preceding steps
and the actual step into account by a majority vote. In the case
of a tie, no adaptation is made. This is done to maintain the cush-
ioning adaptation mechanism in the case that the runner takes
only one or two single steps on a different surface and to save bat-
tery power. Thus, to go from the softest setting to the hardest and
vice versa, 60 steps of the runner are required. We did not opt for a
instantaneous change from one extreme to another once a definite
surface change is detected, in order to once again save battery
power. A complete change of the cushioning setting from one ex-
treme to another is quite energy consuming. It is more economical
to change the setting in small increments. This saves a lot of bat-
tery power if the runner only changes surface for a small number
of steps, e.g. when running over a small stretch of grass while being
mainly on a hard sidewalk surface. Using this approach, we can en-
sure that the battery (see also next Section 2.2) holds for the com-
plete life-time of a running shoe, which is about 100 h. For more

Fig. 1. A view of the adidas_1 shoe, depicting the cushioning element and motor
unit. The indicated magnet induces a magnetic field for compression measurement.
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Fig. 2. X-ray image of the adidas_1 in z-axis direction. Motor unit, regulating cable
and the magnet are clearly visible.

details on the shoe design the reader is referred to DiBenedetto
et al. (2004) and DiBenedetto et al. (2005).

2.2. Embedded system hardware

The compression measurement of the adidas_1 shoe is made by
a hall sensor that is mounted at the top of the cushioning element.
It detects the magnetic field strength induced by a small magnet,
see Fig. 1, and can be sampled with a rate f; of up to 1 kHz. The sen-
sor-magnet distance d,; can then be computed from the magnetic
field strength with an accuracy of +0.1 mm. A decision whether
the attenuation of the shoe has to be adapted is made based on
the measured sensor data, see Section 2.3.

The sensor-magnet distance is sampled by the built-in micro-
processor that is mounted on a flexible circuit board on the motor
element. Currently, a Cypress Semiconductor Corporation control-
ler CY8C21634 is used. However, the methodology that is pre-
sented below does not make any special requirements to the
employed Microprocessor. The CY8C21634 possesses a clock speed
feock of up to 24 MHz, 512 Bytes of SRAM and 8 kByte flash pro-
gram store. Additional on-chip system resources include internal
oscillators, control and communication interfaces and other highly
configurable I/O options. The controller is designed with a standard
Harvard architecture and focuses on low power consumption. The
whole system is powered by a small 3 V coin cell, which is replace-
able and lasts for the normal life-time of a shoe. The CY8C21634
and similar microprocessors are employed in a wide range of
embedded applications, examples include automotive solutions
and consumer products like handhelds and digital cameras.

2.3. Sensor data

In order to get the data needed for the analysis, there is a special
prototype system equipped with a data collection interface. The
data from the magnet sensor is stored with a 256 kByte EEPROM
array and is evaluated offline in a later stage. An example running
signal is depicted in Fig. 3 with the sensor-magnet distance d,
plotted against time t. During the time where the shoe is in the
air, the measured signal consists mainly of noise. In contrast, the
heel (de-)compression phases of four steps can be distinguished.
This measured signal is the basis for the surface classification
experiments in Section 3.

Because the signal from the hall sensor consists mostly of noise
while the foot is in the air, no relevant information for the cushioning
adaptation can be gained. Therefore the sensor system and micro-
controller are powered down for 120 ms after registering a compres-
sion maximum. Energy consumption during this period is very low,
thus the system is saving battery power again. This phase is short en-
ough to ensure that no step is missed when running normally.

2.4. Preprocessing

First of all, we have to extract the specific events that need to be
classified in a reliable way. In this context, the events correspond to
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Fig. 3. Data example with 4 step maxima shown.

individual steps which have to be found in the signal. All our fea-
tures that we will present in Section 2.6 are based on exact identi-
fication of these single steps. To facilitate this identification, we first
establish a baseline sensor-magnet distance value d, ps.. This value
corresponds to the sensor-magnet distance when the shoe is in the
air between steps. It can be reasonably assumed that it is the most
frequently occurring value in the data. Next, all sample values that
belong to a compressed state are detected. Initial experiments sub-
stantiated that compressed states occur when the sample values
are below a sensor-magnet distance threshold dp thres = i pase
—1.5 % Ogqq, Where o044 is the overall standard deviation of a
dataset.

We define the start and end of the compression phase as those
points in the compression states where the distance from dy, pgse
drops below three sample units, which corresponds to 0.7 mm.
By using this approach, all steps could be identified in the datasets.
This was confirmed by manually extracting 449 steps in 6 datasets
and comparing the manual and automatic approaches. The results
were completely identical. This result proved that our step detec-
tion algorithm provides reliable input for feature computation.

The presented algorithm is rather straightforward, which is a
main design criterion for all processing steps for the microcontrol-
ler implementation. However, in this case no trade-off had to be
made between complexity and accurateness.

2.5. Labeling

In order to learn the necessary parameters for class separation,
we needed information about the class membership of the sam-
ples. We therefore implemented a graphical user interface for data
labeling. The interface is general and can be used for many differ-
ent labeling tasks. Each event that has to be later classified is as-
signed to one of the classes manually because we believe this
approach to be superior to an automatic labeling. Manual labeling
was quite efficiently possible because we could batch label se-
quences of steps. This is due to the fact that a lot of consecutive
steps are made on the same surface when running, i.e. the surface
does not change at each step. We were therefore able to label from
a start step to an end step of a sequence, assigning all intermediate
steps to the same class. Due to the design of our data collection
(see Section 3.1), these sequences were easily identifiable. This is
because we knew which surface the runners were running on, in
consequence we could store the different surface data in separate
files. Thus, data labeling was consistently and efficiently possible.
The user interface with a sequence of steps labeled as belonging
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to the soft surface class is depicted in Fig. 4. A labeling interface
like this can easily be programmed for a wide range of classifica-
tion tasks and does not decrease the generality of the approach.

2.6. Feature computation

A set of features that can be used for microprocessor classifica-
tion has to fulfill two main design criteria. It has to represent the
sensor input information consistently while being computationally
cheap as it has to be computed on the controller. The choice of fea-
tures is critical, and “has to be performed for each specific problem
to decide which feature of which type one should use” (Ohanian
and Dubes, 1992). We therefore manually selected a feature set
that is very specific to our task of running surface classification.
The selected features should contain the information of the step
signal as good as possible. We accordingly computed them such
that the important properties of steps are well represented. Our
experiments indicated that these features were sufficient because
we noticed no improvement using any other imaginable feature.
The features are listed in Table 1.

Features 1-11 are calculated on one step alone, with the excep-
tion of feature 3, which is computed on two consecutive steps. Fea-
tures 12-19 are computed on the N preceding steps. The standard
deviations oy, where f = 11,...,19, are computed as an unbiased
estimator (Fukunaga, 1990) according to

o (1 3 (x x>2>% (1)
N=|——= — .
Nf‘lk:] ‘

The unbiased estimator of the standard deviation has been chosen
because oy is computed for a sample drawn from a larger popula-
tion in our case. Fig. 5 additionally illustrates features 1-10.

The obvious redundancy contained in the extracted features is
volitional. It was a goal from the start to use only a subset of the
given features to reduce complexity further, thereby using only
features with small or no mutual dependence. We will explain
our choice for the feature subset selection algorithm in Section 2.8.

Every single feature can be computed in real-time on the em-
ployed microprocessor (Section 2.2). In order to substantiate our
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Table 1

Overview of the features used for classification. SD abbreviates standard deviation.
Step compression and decompression refer to the respective phases where the shoe
gets compressed and decompressed during heel strike.

Feature number Feature description

1 Step compression first order least-squares fit

2 Step decompression first order least-squares fit

3 Time between step compression maxima points

4 Time from step compression maximum to step end
5 Time from step start to step compression maximum
6 Step curve area approximation by Trapezoid method
7 Time from step start to step end

8 Step mean value

9 Step median value

10 Step compression maximum value

11 SD of the values contained in one step

12 SD of the step minima (feature 10)

13 SD of the step means (feature 8)

14 SD of the step standard deviation (feature 11)

15 SD of the step duration (feature 7)

16 SD of the step area (feature 6)

17 SD of the time between steps (feature 3)

18 SD of the time to peak (feature 5)

19 SD of the time from peak (feature 4)

other claim that the features dependably represent the signal
information, we used them in a different classification task. In
(Eskofier et al., 2008), we report on work on running fatigue clas-
sification where we successfully applied the same step signal fea-
ture set. We also performed experiments that showed that our
feature set even outperformed a computationally more demanding
feature set successfully applied in biosignal classification. While
our set could achieve classification rates of 73.9% in a comparative
experiment, only 67.4% were achieved using the more complex
feature set.

2.7. Classifiers
For our intended goal of embedded system classification we fo-

cused on classifiers that could be implemented in computationally
efficient manner. Once again, this decision was motivated by the
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Fig. 5. Depiction of the step signal classification features 1-10.

hardware limitations presented by the embedded system de-
scribed in Section 2.2. Our approach is to experimentally compare
a set of classifiers. Duda et al. (2000) state that if one algorithm is
outperforming another one in a particular situation, then this is a
consequence of its fit to the particular pattern recognition problem,
and not of the general superiority of the algorithm. We therefore
want to find a fit to the problem by evaluating each particular clas-
sifier’s performance. Of course there exists a large set of available
classifiers which we can not all individually test, so we reasonably
selected such classifiers that are quite well known and widely dis-
cussed in the literature. The existence of reference implementa-
tions to compare the classifier performance experimentally
further motivated our selection. Our choices included:

e Naive Bayes (NB), which is described and experimentally evalu-
ated for example in (Duda and Hart, 1973; Langley et al., 1992).

e Neural Networks (NNet) with one hidden layer and varying
number of hidden nodes (Specht, 1990; Duda et al., 2000).

e Nearest Neighbor (NNeigh) classifiers with different number of
neighbors, which has seen a lot of applications (e.g. Cover and
Hart, 1967; Lee, 1991).

e Support Vector Machines (SVM) using kernels of low complexity
(Vapnik, 1998; Duda et al., 2000).

e AdaBoost.M1 (Freund and Schapire, 1996) with decision stumps
(Schapire et al., 1998) as weak classifiers.

e Rule-based (Duda et al., 2000) approaches like PART (Eibe and
Witten, 1998).

e Linear Discriminant Analysis (LDA), see Fisher (1936) and Duda
et al. (2000).

B. Eskofier et al./Pattern Recognition Letters 30 (2009) 1448-1456

In order to test these classifiers, we could efficiently use the
WEKA toolbox, see Witten and Eibe (2005). This toolbox allowed
us to compare all different approaches on powerful PC hardware
in order to identify the algorithm that is best suited for the micro-
controller implementation. Our experiments (see Section 3.2)
proved that in our case LDA classification yielded comparable clas-
sification rates to other, more complex approaches while being the
only approach meeting the real-time criterion. Because of the re-
stricted hardware environment, we therefore decided to train a
computationally cheap linear polynomial classifier using LDA.
While the theory for other approaches will be omitted here and
can be found in the according references, we will give a brief over-
view of Linear Discriminant theory for the sake of self-sufficiency.
LDA classification uses the statistical properties of features, and
furthermore provides rather simple linear decision surfaces even
in high-dimensional spaces. To accomplish this, LDA transforms
the feature space in a way that

e intraclass variation is minimized, i.e. the features of the same
class are as densely packed as possible and

e interclass variation is maximized, i.e. distinct classes are as far
apart from each other as possible.

For optimal classification, each point x in the d-dimensional fea-
ture space gets assigned to the class w;, where i denotes the class
index, so that the posterior probability P(w;|x) is maximized. In
our case, we only consider two classes @, and w,; however, clas-
sification can easily be extended to multiple classes as well.
According to LDA theory, the equation for the optimal decision
boundary between two classes (see Duda et al., 2000, pp. 117-
121) is

wix+w, =0, (2)
where

Wo= 3+ )E )+ I 3)

is an additive constant and

W) =X (i — ) (4)

are coefficients for each of the d features used. Here, y; are the d-
component class specific mean vectors and X is the d x d covariance
matrix that is identical for both classes but otherwise arbitrary.
P(w;) denotes the prior probability of the class w;. The above equa-
tions hold only if the class specific densities p(x|w;) can be assumed
to be multivariate normal distributions (p(X|®;) ~ A" (u;, X)). In Sec-
tion 3.1 we show that this assumption is justified.

In summary, the decision rule for two classes w; and w,
becomes

w= (Wi, Wy,..

q

th 2 —Wo, (5)
3

which can be straightforwardly implemented even on a micropro-

cessor. In the case of equality, i.e. w'x = —w,, an engineering deci-

sion for one of the classes has to be made.

2.8. Feature selection methods

Feature selection means identifying a feature subset that deliv-
ers good classification rate while reducing the complexity of the
overall process. The computation of the 19 features given in Table
1 on the microprocessor would be too time-consuming. Further-
more, the computation would require storing a lot of hall sensor
sample values, which is not possible due to memory constraints.
Thus, we implemented a method to select the best subset from
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the original features. This reduction not necessarily decreases the
overall classification rate, by deselecting detrimental features the
result can even improve. A widely used method for selection or
reduction of features is the principal component analysis (PCA),
see Duda et al. (2000). It identifies the major axes of variance with-
in the feature space by a Karhunen-Loéve transform. Axes of low
variance contribute less to the discriminative ability of the features
and can thus be neglected, thereby reducing the feature space. In
our case, however, the application of PCA has a major drawback.
PCA needs all the input feature values in order to come up with a
reduced set of features for classification. This means that the origi-
nal set of 19 features would have to be computed on the embedded
system before it is reweighed by the PCA coefficients. We cannot
compute all these 19 features due to the real-time requirement.
This means that we have to perform the feature reduction on the
original set of 19 features, thus deciding for a subset of features
that can directly be computed from our input signal and meets
the real-time requirements. However, as we wanted to show
whether our feature selection as described below is significantly
inferior to feature reduction using PCA, we compared both meth-
ods in our experimental chapter (see Section 3.3).

For our proposed selection algorithm the obvious criterion for
choosing the best subset is the overall classification rate for a given
problem. This result is computed via leave-one out cross-validation
to prevent any overfitting effects. One example is presented in the
experiments Section 3. In this example, we collected data from 24
runners and performed leave-one-runner-out cross-validation and
used LDA training and classification to compute the rates.

Our algorithm follows the principles of a beam search as pro-
posed by Bisiani (1987). During initialization, we use all combina-
tions of two features for training and evaluation of the LDA
classifier. A total of (;f
number of features. The overall classification rates are stored for
every feature pair. Subsequently, only a predefined (e.g. 20) num-
ber of feature pairs delivering the best results are promoted to the
next algorithm step. In this step, the best pairs are combined with
each of the remaining features, thus leading to feature triples. This
process is iterated, in every iteration the overall classification re-
sults are computed, the best combinations are kept and then again
combined with the remaining features. For each iteration, a subset
is thus identified that delivers the best result amongst those com-
binations remaining in the pruned search space. While the beam
search does not guarantee that the optimal solution is found, it is
a very cost-effective search method and ensures a good trade-off
between computational complexity and classification rate. More-
over, we could show that in our case the optimal solution and
the one identified by the beam search are identical, see Section 3.3.

An important effect of the feature reduction approach is that it
gives a very good overview of classification rates for different fea-
ture subset sizes. If the hardware framework is not completely
specified, a system designer can easily decide what classification
rate is necessary for the particular application and give an estimate
on computational complexity and thus the required hardware.

> combinations is tested where ny is the

3. Experiments

In the following, the experimental evaluation of the proposed
surface classifier is presented. The important framework require-
ments were that the algorithm works for

o different runners (w.r.t. height, weight, running style, training
level),

o different shoe sizes and

o all shoe settings (e.g. hard, medium, soft).

We will show that the system for surface classification that was
developed works for these conditions. Additionally, the design con-
siderations that specifically aim at meeting the hardware architec-
ture restrictions are given below.

3.1. Collected data

In order to get a sufficient random sample for the subsequent
classification experiments, a test course was selected where the
desired surface conditions were present. The test course is located
on the campus of the Faculty of Engineering of the University
Erlangen-Nuremberg. It is depicted in Fig. 6. All runners were
asked to run 12 sections of about 150 m each. The test was divided
into 2 parts of 6 sections. The first 6 and the second 6 sections were
each made with a manually chosen shoe setting. No automatic
cushioning adjustment was made to make sure that signal changes
only derive from surface or speed changes. The shoe setting was
only changed after the first part in order to have data generated
with varying cushioning setting, then the running procedure from
that part was repeated. The 6 sections of one part were

e two runs on soft surface (grass) with constant speed;

e two runs on hard surface (asphalt) with constant speed;

e one run on changing surface, starting on grass, then switching to
asphalt, and finally running on grass again, all with constant
speed;

e one run on hard surface with a change in running speed, starting
with the same constant speed from the previous sections and
accelerating to a fast jog after the first half of the distance.

Each participant was asked to run normally with a comfortable
but constant speed for the first 5 sections. Shoe setting, time infor-
mation and an athlete profile (weight, height, training frequency)
was noted for every runner. In addition to the shoe signal, a Polar
RS800 system with foot pod was used to get speed and step fre-
quency information.

Altogether, 24 test runners participated in this data collection.
Shoes with sizes 7, 9 and 11 were used for those experiments. A to-
tal of 106 datasets with different shoe cushioning settings was col-
lected for the subsequent experiments. Steps were extracted using
the automatic procedure described in Section 2.4. Table 2 shows
the number of valid steps for each of the 24 test runners that were
used for the classification experiments. They amount to a total of
22,910 single steps with a fraction of 50.6% on soft surface. The
data was labeled as belonging to soft or hard surface using the
GUI described in Section 2.5. The distribution of each of the 19 fea-
tures for the two classes has been tested for normal distribution

Fig. 6. Aerial view of the test course that was used for data collection.



1454 B. Eskofier et al./Pattern Recognition Letters 30 (2009) 1448-1456

with a y?-test (e.g. Fukunaga, 1990, Ch. 3) after labeling. As a result
we could say that the null hypothesis of normal distribution for
both classes and each feature is true at a 95% significance level.

3.2. Classifier selection

In order to substantiate our choice of classifier, we tested the
performance of the algorithms given in Section 2.7 on our 19-fea-
ture set. We used leave-one-runner-out cross-validation to com-
pute the results that are summarized in Table 3. Algorithm
settings were as follows. For the NNets, we used one hidden layer
and 12 hidden nodes in the layer. Nearest Neighbor classification
was performed with k=1,3,5,11 nearest neighbors. For the
SVM evaluation, we chose linear polynomial kernels, as more com-
plex kernels could not be implemented on the embedded system
anyway. AdaBoost.M1 was tested with decision stumps as weak
classifiers. The number of training iterations, Ni, was set to 10,
30 and 50. PART was applied with at least 2 instances per rule
(212 rules were trained in total). LDA and NB were tested as de-
scribed in Section 2.7. As can be seen from Table 3, the results
for LDA classification yielded comparable classification rates to
most other algorithms that were tested. Nearest Neighbor classifi-
ers were the only ones that performed significantly better. This
indicates the existence of subclusters in the high dimensional fea-
ture space, which can not be correctly classified using linearly-
based decision boundaries. Despite this improved performance,
in the context of the very restricted memory capacity of only
512 Bytes of the currently employed CY8C21634 microcontroller,
NNeigh methods would be impossible to implement. We would
need to store and compare with too many single data points or
cluster centroids than is feasible. As we will point out in Section
3.3, we already used 98% of the available microcontoller program
memory with our current approach using LDA and three features.
All the same, we will certainly reconsider the choice of micropro-
cessor in future product generations in the light of these results.

Three other algorithms (AdaBoost.M1 with N;; = 50 iterations,
NNet and PART) outperform LDA less significantly. Our decision
not to implement them on the microcontroller was made for com-
putational reasons, too. We will briefly discuss them here. The 50
decision stumps trained by AdaBoost require a more complex deci-
sion system and more memory than is currently available. Further-
more, the number of required comparisons is undetermined,
leading to a variable decision time. The constant number of opera-
tions required for LDA classification is preferable in our case. Even
for a simple Neural Net as tested in our case, we would have a lot
more multiplications (240 for the described Neural Network versus
19 for LDA). More importantly, we have to evaluate the sigmoid
function or a comparable non-linear function. These facts inhibit
a NNet implementation on the employed embedded system. PART
generates 212 rules with a total of 1305 possible comparisons,
which is also impossible to implement on the embedded system
that we utilize, given the fact that the available memory is already
used with a much simpler solution. We did, however, compare all
these results for the different classifiers in order to get good evi-
dence of the performance of our proposed compromise of LDA clas-
sification. For other data and framework conditions, we expect that

Table 3
Cross-validated results for different classifiers on the complete 19-feature set.

Classifier Classification rate (%)
NB 70.2
AdaBoost, Ni; = 10 73.6
AdaBoost, N;; = 30 75.3
AdaBoost, N;; = 50 76.0
SVM 75.4
LDA 75.5
NNet 77.9
PART 78.4
NNeigh, k=1 833
NNeigh, k=3 84.9
NNeigh, k=5 84.5
NNeigh, k=11 83.6

other solutions are more favorable. As we already stated in Section
2.7, is the experimental comparison of different solutions vital for a
profound implementation decision.

3.3. Feature selection results

The results of the feature selection algorithm described in Sec-
tion 2.8 are given in Table 4 (see Table 1 for details on the features).
Only the combinations that perform best are shown. For this eval-
uation, we used the fact that the classification of single steps can be
improved when additionally taking a context of preceding steps
into account. In this case, a short context of three steps was used
by casting a majority vote over the single decisions. In the imple-
mentation for the final product solution, a longer context can be
used, which leads to even better classification results (see Section
3.6). We finally selected the feature triple 1, 12 and 17 for the
implementation on the microcontroller for three reasons. First, it
is the best three-feature combination and outperforms the two-
feature classifier. Second, with the three-feature implementation
we used 7816 Bytes program flash memory of the the embedded
CY8C21634 microcontroller. This corresponds to 98% of the avail-
able program memory, see Section 2.2. Implementation of a fourth
feature would not have been feasible with the selected processor.
The third reason for the implementation decision was that we
could show that even with calculating the features and classifica-
tion decision, we could still sample with maximum sample rate
and therefore meet the real-time computation criterion.

As we already stated in Section 2.8, the beam search does not
guarantee that the identified subset performs optimal. We there-
fore computed the classification rates for all 1140 possible three-
feature combinations. We could thereby show that the selected
feature triple represents the optimal solution. We also compared
the results of our feature selection with feature reduction using
PCA as described in Section 2.8. A comparison of the classification
rates of both methods for reduction to two to seven features is de-
picted in Fig. 7. For our data, it can be seen that our feature selec-
tion method outperforms PCA. In the comparable case of reduction
to three features, a classification rate of 73.9% could be achieved
with PCA and 76.3% using beam search.

Individual identifiers for the 24 test runners with number of valid steps given for each of them. Shoe size of each participant is given in brackets.

Table 2
ABo (7) 1307 DE 11) 1121
ABr (9) 1152 EK (7) 961
AM (11) 1338 HH 9) 936
BD 11) 781 ™M (11) 541
BE (11) 1206 JP (9) 1013
CcD (11) 911 KH (11) 903

KR (9) 1326 RS (11) 384
MA 11) 898 SK (7) 1273
MP (9) 914 swW 9) 1240
MS (9) 627 TS (11) 612
MW (11) 1165 TT (11) 791
RB (11) 670 VD (11) 840
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Table 4 Table 5

Results for the first 7 iterations of the feature selection algorithm. Classification confusion matrix for the feature combination 1, 12 and 17.
Selected features Classification rate (%) Class soft Class hard
1,12 75.4 Classified as soft 9000 2993
1,12,17 76.3 Classified as hard 2583 8334
1,2,14,17 76.9
1,2,5,14,17 77.0
1,2,7,12,13,17 76.9
1,2,5,14,15,16,17 76.8 Table 6

The confusion matrix for the selected feature combination is gi-
ven in Table 5. Sensitivity is 77.7% and specificity is 73.6%. This re-
sult shows that no class is significantly favored over the other.

The characteristics of the selected feature subset become very
clear when visualizing the three-dimensional feature space. Run-
ners on soft surface generally have

o smaller compression gradient (feature 1);
e higher step minima deviation (feature 12) and
e higher interstep time deviation (feature 17)

compared to runners on hard surface.

3.4. Classifier implementation

With the three-feature subset described in Section 3.3 we addi-
tionally performed experiments using all classifiers presented in
Section 2.7 to confirm our choice of the LDA classifier. For cross-
validation, 24 subsets were used, each consisting of the samples
of one individual runner. The results of these experiments are pre-
sented in Table 6. Algorithm settings are the same as the ones gi-
ven in Section 3.2, with the exception that only 4 hidden nodes
were used for the NNet and that PART produced only 32 rules on
the reduced feature set. It can be seen in Table 6 that only the Neu-
ral Network slightly outperforms the Linear Discriminant Analysis.
However, the gain in classification rate is not statistically signifi-
cant. Moreover, the problem of the complexity of the NNet classi-
fier as already described in Section 3.2 remains, an implementation
on the CY8C21634 microcontroller is thus not possible. We there-
fore decided to use the LDA classifier in the final application.
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Fig. 7. Comparison of feature reduction using PCA and feature selection using beam
search.

Results of the experiments on the selected three-feature set using different classifiers.
Classification rates are computed with a short context of three steps.

Classifier Classification rate (%)
NNeigh, k=1 71.2
NNeigh, k=3 73.1
NNeigh, k=5 75.3
NNeigh, k=11 75.3
AdaBoost, N;; = 10 724
AdaBoost, Ni; = 30 74.0
AdaBoost, N;; = 50 74.5
NB 74.6
PART 75.5
SVM 76.1
LDA 76.3
NNet 76.5

3.5. Effect of runner-dependent parameters

We already stated in Section 3 that our algorithm has to work
independently of the runner, i.e. for different runner height,
weight, shoe size and training level. The surface classification also
has to work for different individual running speeds. We collected
this information for all test participants. Table 7 shows the ranges
for the parameters, as well as means p and standard deviations o.
The training level was derived from the sports activity frequency of
each individual on a range of one to four. On this scale, one indi-
cates low or no regular sports activity whereas four stands for high
running relevant activity, e.g. for marathon runners.

For the evaluation we computed the Spearman rank order cor-
relation coefficient ryeq- (Spearman, 1904) of the individual param-
eters and the classification rate of each runner. These correlation
coefficients are +1 for perfect positive or negative correlation
and O if the samples are uncorrelated. The results of the evaluation
are given in Table 7. In our case of 24 value pairs the null hypoth-
esis that the samples are uncorrelated has to be rejected for
[Tspear] > 0.359 at the 95% significance level (Olds, 1938). The re-
sults for reeqr given in Table 7 are all below this value and show
that the value pairs are uncorrelated. If there was a sigificant cor-
relation, we would have to assume that the runner-dependent
parameters have some kind of influence on the recognition. For in-
stance, the decision threshold would have to be adjusted for lighter
runners if there was a correlation. However, by showing that there
is no correlation between the individual parameters and the recog-
nition rate we could assure that classification with the proposed
system works independently of the runner.

Table 7

Individual runner parameters. Ranges are given for each parameter, as well as mean
and standard deviation. The Spearman correlation rgyq- of the individual parameters
and the classification rates of each runner is also given.

Parameter Range; mean; standard deviation Tspear

Height [cm] [156;196]; 1 =181.6; 0 =10.5 0.00
Weight [kg] [46;125]; u=77.3; 6 =153 -0.19
Shoe size [US] {7911}, u=99;0=14 0.06
Training level {1234} n=23;0=1.1 —0.03
Runner mean speed [km/h] [8.3;15.0]; u=12.0;0=1.4 -0.15
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Table 8
Description of the datasets that were used for the final evaluation on the
microcontroller.

Dataset description Number of Ratio (hard Classification
recorded steps  surface) (%) rate (%)

Park, grass and concrete 3480 61.5 82.8

Only asphalt surface 995 100 92.0

Forest soil, no inclination =~ 4438 0 90.8

Forest soil and asphalt, 4448 65.9 80.3

running up/downhill

3.6. Final evaluation on the microcontroller

It was important to implement our classification algorithm on
the microcontroller that is employed in the product to verify our
results. For these control experiments, we used the internal EE-
PROM (see Section 2.3) to store for each step only the classification
decision derived with the described classifier. Longer contexts of
16 steps were used for the implementation. We let the test partic-
ipants run totally freely, i.e. no requirements on running speed,
step frequency or other parameters were made. An external obser-
ver counted and wrote down the number of steps on each of the
surfaces that were tested during this evaluation. Thus, we could
straightforwardly determine the classification rate. Table 8 shows
the results of these experiments. Classification rates of more than
80% could be achieved.

4. Summary

For the realization of accurate surface classification using sensor
output from the adidas_1, data was collected from 24 test runners
on hard and soft surface. This data was labeled, and 19 features
were extracted which were chosen because they consistently rep-
resent the step information. A classification system using Linear
Discriminant Analysis was then proposed. Using the classification
rate as a criterion, a subset of three features was found that is sui-
ted to be implemented on the embedded system that is integrated
in the running shoe. The system was evaluated with regard to the
parameters shoe cushioning setting, runner height, runner weight
and runner training level, which were all found to have no impor-
tant effect on the accuracy of the classifier. The described classifier
has been implemented in the current version of the adidas_1 run-
ning shoe.

During the complete analysis procedure, no assumptions
regarding sampling rate of the sensor, memory or clock frequency
have been made. This makes the methodology applicable to many
other problems which require accurate embedded classification.
The first important point is that computationally cheap features
can be identified that well represent the sensor information. Sec-
ondly, a classifier has to be determined that establishes a good
trade-off between complexity and classification rate. Feature
reduction is compulsory to provide a feature subset that is best sui-
ted for the problem at hand. Lastly, the result of the analysis that
has been made on computationally powerful PC hardware has to
be verified on the embedded system itself.

5. Future work

First results indicate that other important conditions can be
classified using the shoe signal. One example includes the state
of fatigue of a runner. An adaptation of the shoe hardness setting
to a fatigued condition is definitely imaginable. Additionally, we
will analyze the effect of elevation profile and speed changes in or-
der to be able to classify these parameters, too.

We will furthermore investigate other application areas, for
example accurate classification on microcontrollers in household
appliances or for mobile phones. In the latter case, the computa-
tional framework conditions are not as critical as for microcontrol-
lers. Still, a lot of effort similar to the one presented in this work
has to be made to be able to implement pattern recognition algo-
rithms on this kind of hardware.
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