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ABSTRACT

Being able to automatically determine which portion of the human body is shown by a CT volume image offers
various possibilities like automatic labeling of images or initializing subsequent image analysis algorithms. This
paper presents a method that takes a CT volume as input and outputs the vertical body coordinates of its top
and bottom slice in a normalized coordinate system whose origin and unit length are determined by anatomical
landmarks. Each slice of a volume is described by a histogram of visual words: Feature vectors consisting of
an intensity histogram and a SURF descriptor are first computed on a regular grid and then classified into
the closest visual words to form a histogram. The vocabulary of visual words is a quantization of the feature
space by offline clustering a large number of feature vectors from prototype volumes into visual words (or cluster
centers) via the K-Means algorithm. For a set of prototype volumes whose body coordinates are known the
slice descriptions are computed in advance. The body coordinates of a test volume are computed by a 1D rigid
registration of the test volume with the prototype volumes in axial direction. The similarity of two slices is
measured by comparing their histograms of visual words. Cross validation on a dataset of 44 volumes proved
the robustness of the results. Even for test volumes of ca. 20cm height, the average error was 15.8mm.
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1. INTRODUCTION

This paper addresses the problem of determining which portion of the body is shown by a stack of axial CT image
slices. For example, given a small stack of slices containing the heart region, one may want to automatically
determine where in the human body it belongs.

This offers various applications like attaching text labels to images of a database. A user may then search the
database for volumes showing the heart. The DICOM protocol already specifies a flag “Body part examined”,
but this is imprecise as it only distinguishes 25 body parts, and is even wrong in many cases as reported by Gueld
et al.1 Or alternatively, it may be used to reduce traffic load on medical image databases: Often physicians are
only interested in a small portion of a large volume stored in the database. If it is known which parts of the body
the large image shows, the images slices of interest showing e.g. the heart can be approximately determined and
transferred to the user. Another possible application is pruning the search space of subsequent image analysis
algorithms like organ detectors.

Further author information: (Send correspondence to J.F.)
J.F.: E-mail: johannes.feulner@informatik.uni-erlangen.de, Telephone: +49 9131 8527825
S.K.Z.: E-mail: shaohua.zhou@siemens.com, Telephone: +1 609 7343325
S.S.: E-mail: saschaseifert@siemens.com, Telephone: +49 9131 731392
A.C.: E-Mail: alexander.cavallaro@uk-erlangen.de, Telephone: +49 9131 8545515
J.H.: E-mail: joachim.hornegger@informatik.uni-erlangen.de, Telephone: +49 9131 8527883
D.C.: E-mail: dorin.comaniciu@siemens.com, Telephone: +1 609 7343643



Figure 1. The proposed system for body portion estimation. The axial slices of a CT volume are first processed separately.
sample positions are generated on a regular grid. For each sample position inside the patient, a SURF descriptor is
computed from the local neighborhood called “patch”. The descriptors are classified into visual words and accumulated
in a histogram. The stack of histograms from the axial slices is registered with prototype histogram stacks to find the
body portion.

The problem of estimating the body portion is closely related to inter-subject image registration as it can
be solved by registering the volume to an anatomical atlas. This is typically solved in two ways: By detecting
anatomical landmarks in the volume image, or by intensity based non-rigid image registration. Landmark based
registration may also be used as an initialization for non-rigid registration. However, a set of landmark is required
that covers all regions of the body and can be robustly detected. Intensity based registration tends to be slow,
and because it is prone to getting stuck in local optima, it requires a good initialization. In many cases one is
only interested in registration along the longitudinal (z) axis and a complete 3D registration is not necessary.

Dicken et al.2 proposed a method for recognition of body parts covered by CT volumes. An axial slice is
described by a Hounsfield histogram with bins adapted to the attenuation coefficient of certain organs. Derived
values like the spatial variance within the slice of voxels of a certain bin are also included into the descriptor.
The stack of the N -dimensional axial slice descriptors is interpreted as a set of N 1D functions whose domain is
the (vertical) z level. Then five handcrafted rules are used to decide which body parts are visible, where eight
different body parts are distinguished. However, the results are imprecise because no quantitative estimation of
the covered body region is performed. Furthermore, they report problems with short scan ranges.

For the purpose of scene classification, is has recently become popular to measure the similarity of two images
by extracting a bag of features from both images. Grauman and Darrell3 proposed a distance measure for feature
bags which builds a pyramid of histograms of features and compares two histogram pyramids. Lazebnik4 adapted
this distance measure by first classifying the feature vectors into visual words. The vocabulary is generated
in advance by clustering feature vectors extracted from a set of training images. Then a spatial pyramid of
histograms of the visual words is generated and used to compare two images.

In this paper, histograms of visual words are used to register stacks of CT image slices. Only the z axis of
the volume is considered as it is sufficient for many applications and leads to a small search space that even
allows exhaustive search. By 1D registration of a test volume along the longitudinal axis to prototype volumes
whose body region is known, the body region of the test volume is estimated. In order to measure body regions,



1D “body coordinates” (bc) are introduced, whose origin level is defined to be a landmark in the pelvis, and the
unit length is chosen to be the distance between a landmark at the clavicle and the pelvis landmark.

Figure 1 shows an overview of the proposed system. For an incoming volume, first the skin of the patient is
detected. Independently of this, the axial slices of the volume are regularly divided into small quadratic patches.
In the next step, a feature vector is extracted from each patch, which is used to classify the patch into a visual
word belonging to a predefined vocabulary. Only patches inside the skin of the patient are considered in order
not to get confused by the environment, e.g. the table the patient lies on and the air surrounding the patient.
A visual word corresponds to a class of patches sharing similar appearances. Now a histogram is generated
from the visual words detected in a slice of the volume, which serves as a description of the slice. With this
being performed for all slices of the volume, the result is a stack of histograms. A set of training volumes with
known annotations of the pelvis and clavicle landmarks are processed in the same way, resulting in a set of
prototype histogram stacks. The vocabulary of visual words is generated in advance by clustering the feature
vectors extracted from the training volumes. Now the body portion of the input volume is determined by 1D
registration of its histogram stack with respect to the prototype stacks with known body regions. Generally a
single prototype would be enough, but using more than one leads to more robust results.

The structure of the rest of this document is as follows: In section 2 the extraction of visual words, the
histogram generation and the features used are explained. Section 3 is on the registration of the histogram
stacks. Section 4 describes experiments and presents results, and section 5 concludes the paper.

2. HISTOGRAMS OF VISUAL WORDS

Visual words are primitive patches used to characterize an ensemble of images. The visual word vocabulary may
include straight lines, corners, uniform patches, holes or certain textures.

The concept of describing images using a visual vocabulary has been successfully used before for purposes
of data mining, scene classification and object recognition. Bhattacharya et al.5 described retina images using
a visual vocabulary. This description was used to distinguish image classes and to highlight parts of the image
that are characteristic for their class. Duygulu et al.6 labeled image regions with keywords from a predefined
vocabulary of nouns in order to automatically generate an image description and to recognize objects.

In this paper histograms of visual words are used to measure the similarity of two axial CT slices. Visual
words are extracted from an image slice on a regular grid. For a typical slice of size 35cm by 35cm, about 1000
samples or visual words are extracted.

A simple patient detector is used to reject samples outside the patient. The skin of the patient is detected
by scanning rows and columns from both directions until a certain number of pixels is above a threshold of -600
HU. This proved to be fast and effective for rejecting the air surrounding the patient and also the table s/he lies
on.

For all sample points inside the patient, a 72 dimensional feature vector is computed, which consists of an eight
bin histogram of the Hounsfield units and a 64 dimensional oriented SURF descriptor.7 SURF descriptors were
used because good results were reported for scene classification with SIFT features.4,8, 9 SURF approximates
SIFT but is faster to compute as it uses Haar-like filters and integral images to speed up computation. Refer to
Ref. 7 for details about SURF descriptors.

As SURF descriptors were designed to be invariant to illumination changes that often cause problems in
computer vision, they do not make use of absolute intensities. However, in CT images absolute intensities are
reliable. In order to use this information, the SURF descriptor is extended with the Hounsfield histogram, which
is scaled to fit the mean values of the SURF descriptor entries. Descriptors are computed at a fixed scale of 2.5,
which corresponds to a descriptor window size of 50× 50 pixel. An alternative to a fixed sampling grid and fixed
scaling is to detect key locations in the image, for example minima and maxima in scale space as suggested by
Lowe,9 but better results were reported for a regular dense sampling by Fei-Fei and Perona.8

The extracted feature vectors are now classified into a set of visual words. The vocabulary is represented by
a prototype feature vector for each word, and for classification the nearest neighbor is used. The distance of two
feature vectors is measured using the ℓ2 norm. To generate the vocabulary, a random subset of feature vectors is



extracted from a set of training images, and the K-Means algorithm is used to find clusters. The cluster centers
are chosen as the vocabulary. In Figure 2, one example image from each visual word cluster is displayed. In
Figure 3, a stack of histograms of visual words is shown together with a coronal section of the original volume.

For each slice, a histogram of visual words is generated. This serves as a description, which is used to measure
similarity between slices. This is similar to the method described by Lazebnik4 but does not make use of a spatial
pyramid in order not to make any assumption of the patient position, which is usually in supine position, but
can also be in prone position or lying on the side. Also, the patient is not necessarily centered in an image slice.

3. HISTOGRAM MATCHING

To measure the distance d of two slices s and t, their histograms Hs and Ht are compared using the sum of
absolute differences (SAD)

d(s, t) =

M−1
∑

i=0

|Hs(i) − Ht(i)|. (1)

Figure 2. Example images are shown for ten different visual words picked from a vocabulary of size 100. A row in the
image corresponds to a visual word. Some correspond to homogeneous regions at a certain attenuation coefficient, other
to air-soft-tissue edges, soft-tissue-bone edges, straight or curved edges, or holes/blobs.
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Figure 3. Histograms of visual words along with a coronal section of the volume it was generated from. Salient are
especially the visual words that correspond to the lung region. The image is best viewed in color.
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Figure 4. Objective function f shown for four different prototype volumes. Left: Test volume with 114 slices. Right: Test
volume with 10 slices from the abdomen. For the large volume, one clear minimum exists. For the small stack it is more
ambiguous. But still in 3 out of 4 cases, the global optimum is close to the correct location (at approx. 0.2bc).

which is for a fixed number of visual words per image up to a normalizing factor equivalent to using one minus
the histogram intersection10 h

h(s, t) =

M−1
∑

i=0

min(Hs(i),Ht(i)). (2)

Here, M denotes the number of histogram bins that equals the size of the vocabulary. The objective function
f used to rigidly register two slice stacks S = s0, . . . , sn−1 and T = t0, . . . , tm−1 along the z axis is the average
distance of their slices

f(z) =
1

imax − imin + 1

imax
∑

imin

d(ti, si+z), (3)

where imax and imin are chosen so that there is at least 50% overlap between the two stacks S and T . For the z

axis a discretization of 5mm was chosen. Because a single evaluation of the objective function f is computationally
inexpensive and the search space is only one-dimensional, exhaustive optimization is feasible. Figure 4 shows
f(z) for two test stacks T1,2 of different size and four reference histogram stacks S1 . . . 4.

After exhaustive optimization, a set of candidates C = {c1, c2, . . . , c||C||} is generated from f by finding local
optima. The reason is that especially for volumes with a small number of slices, it occasionally happens that
the global optimum is not the right solution. However, the correct solution is almost ever located in a valley.
A weight wi is now attached to each candidate ci, which is computed from the objective function at ci and its
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Figure 5. Histogram of location candidates, with one from each prototype. 40 prototypes were used in total. Left: Test
volume with 114 slices. Right: Test volume with 10 slices from the abdomen. For the small test volume, the variance is
higher, but still a single obvious mode exists.

Num. partitions/
size in mm∗ 10/44 5/86 3/140 2/206 1/427 Total
e in mm 45.3 ± 77.7 31.7 ± 59.6 21.2 ± 33.9 15.8 ± 16.9 16.6 ± 12.8 34.4 ± 63.6
e < 10mm in % 31.1 38.2 47.7 44.3 36.4 36.7
e < 20mm in % 51.1 59.5 75 76.1 72.7 60
e < 30mm in % 65.9 74.1 84.1 86.4 86.4 73.4
e < 40mm in % 73 79.1 88.6 96.6 93.2 79.9
e < 50mm in % 79.3 85.9 90.9 98.9 95.5 85.2
e < 60mm in % 82.5 90 93.2 98.9 100 88.2
e < 100mm in % 90.2 94.5 95.5 98.9 100 93.3
eHU in mm 71.4 ± 100 60 ± 96.6 54.7 ± 85.1 40.5 ± 71.1 51.3 ± 89.4 62.4 ± 94.8
eHU < 60mm in % 67.7 76.8 76.5 86.4 88.6 73.9
Num. registrations 440 220 132 88 44 924

Table 1. Results of registration accuracy and robustness. The columns show results for test volumes of different height,
from 4cm to 43cm. First row: mean registration error along with standard deviation in millimeters. Below: Percentage
of cases where registration error e was better than a threshold. eHU: Accuracy of a registration only based on histograms
of attenuation coefficients for comparison. Bottom row: Number of registration this column was generated from. ∗Size of
partition in mm is an approximate value, averaged over patients.

second derivatives:

wi = 2





2
∑

j=0

f(z − ci) ∗ gj(z)



 − f(ci). (4)

Here, ∗ denotes convolution, g0 is a filter kernel to compute the second derivative, and gj+1(z) = gj(
z
3
) is scaled

with a factor of 3 relative to gj .

In order to achieve robust results, a test volume is registered with several prototype volumes. To select the
final candidate, first for each single registration the candidate with the best weight is selected, resulting in a set
of best candidates B = {b1, . . . , b||B||}. To become insensitive to single candidates with good weights far away
from most others, the mode zm in a histogram is detected and the final result is the candidate with the best
weight closer to zm than a certain threshold θ. In Figure 5, two examples for histograms of B are shown.

Note that, though the described method does not handle scale variations explicitly as they occur for patients
of different size, they are handled implicitly by the scale variations of the training data. For instance, a test
volume showing a tall patients will generally fit best to tall patient in the training set.

4. RESULTS

Registration accuracy was evaluated using 44 CT volume scans showing the thoractic and abdominal region. For
all datasets, annotation of landmarks at the clavicle and the pelvis were available. They served as ground truth



Figure 6. Illustration of the error measure used. For a single registration, the error was measured at the top and bottom
of the test volume.

Figure 7. Example of a registration result. Middle: Sagittal slice through the test sub volume of which the body region is
to be determined. It consists of 10 axial slices with a slice thickness of 5mm and shows a portion of the abdomen. Left:
True position in the original volume from which the sub volume was cropped. Right: Sagittal slice through a volume with
known body coordinates. The horizontal lines show the estimated body region covered by the test sub volume.

for the body coordinate system, marking the levels zero and one. In between, linear interpolation was used to
generate ground truth values for the body coordinates.

Eleven fold cross validation was used to separate the datasets in test and prototype volumes. Registration
was performed with slice stacks of five different sizes: A test stack was always partitioned into ten, five, three,
two and one pieces, resulting in 10 + 5 + 3 + 2 + 1 = 21 registrations per fold and test volume.

The error of a single registration was measured at the top and the bottom of the test volume (see Figure 6
for illustration). The average of the absolute values

e =
1

2

(

|etop| + |ebottom|
)

(5)

was taken as the final error e. Table 1 shows the results of the cross evaluation. The columns show the registration
accuracy for the five different test volume heights. Generally, accuracy improves with the height of the test volume
because more context can be used. For the test volumes with the smallest size (a height of 4.4cm), the average
error is about the same as the size. For mid-size test volumes of 21cm height, the average error was 15.8mm,



and in 87 out of 88 cases, the error was below 5cm. For 43cm test volumes, estimation worked in all 44 cases
with a maximum error of less than 6cm with an average error of 16.6mm and a standard deviation of 12.8mm.
For comparison, registration was also evaluated using a 1024-bin histogram of the Hounsfield units as a slice
descriptor. Inter-slice-similarity was again measured using the sum of absolute differences of the histograms.
The histogram of visual words clearly outperformed the Hounsfield histogram (see eHU in Table 1).

Figure 7 shows an example of the algorithm’s output. The input is a portion of the abdomen of 10cm height.
To visualize the result, another volume shown at the right side was annotated with body coordinates. The
horizontal lines at the right indicate the estimated body region. The horizontal lines at the left show the true
position in the original volume.

As the proposed algorithm is deterministic, its computation time was only benchmarked on a single dataset
of 100 slices and using 40 prototype volumes. On a PC with Intel Core 2 Duo 2.2GHz CPU and 2GB of RAM,
patient detection took 0.13s, computing the histogram of visual words 15.2s, and exhaustive search 0.77s. The
algorithm can be parallelized easily. We leave this for future work.

5. CONCLUSION

This paper presents a method for estimating the body region of a CT volume image. It is based on 1D registration
of histograms of visual words, which serve as a description of a CT slice. Experiments showed that especially for
mid-sized and large volumes the body region can be estimated very robustly with an mean error of approximately
2cm. Besides automatic initialization of further processing steps like organ detection, possible applications are
also automatic labelling of images for the purpose of semantic image search.
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