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Abstract—An algorithm is proposed for the 3D modeling of
static scenes solely based on the range and intensity data acquired
by a Time-of-Flight camera during an arbitrary movement.
No additional scene acquisition devices, like inertia sensor,
positioning robots or intensity based cameras are incorporated.
The current pose is estimated by maximizing the uncentered
correlation coefficient between edges detected in the current
and a preceding frame at a minimum frame rate of four fps
and an average accuracy of 45 mm. The paper also describes
several extensions for robust registration like multiresolution
hierarchies and projection Iterative Closest Point algorithm. The
basic registration algorithm and its extensions were intensively
evaluated against ground truth data to validate the accuracy,
robustness and real-time-capability.

Index Terms—3D modeling, 3D reconstruction, ToF camera,
Time-of-Flight.

I. INTRODUCTION

MANY computer vision applications including tracking
and recognition have already benefited from the ro-

bustness and speed of range and depth sensors as opposed to
using regular image intensity cameras. Range imaging using
ToF systems has been used in radar and Lidar applications
for more than thirty years. Time-of-Flight (ToF) imaging
provides a direct way for acquiring 3D surface information
of objects and scenes in the current field-of-view [1]. More
recently, ToF sensors are used in a wider range of applications
like obstacle detection [2], gesture recognition [3][4] and
automotive passenger classification [5].
For more complex application areas like map building, robot
navigation or scene exploration, building a 3D model of
a scene larger than the field-of-view of the applied ToF
sensor imposes a 3D/3D-registration problem: Partially non-
overlapping 3D surface points have to be transformed into
a common coordinate system by estimating the extrinsic
parameters of the range measuring sensor at each acquisition
time step.
Available ToF sensors [6][7][8] provide the data at rates higher
than 10 Hz. Thus, for real-time analysis it is required to
perform the registration at a comparative speed and provide
an on-the-fly 3D modeling of the scene observed by the ToF
sensor.
ToF camera systems actively illuminate the scene with an
incoherent light signal, which is modulated by a cosine-shaped
signal of frequency f . Its light is usually in the non-visible
part of the spectrum near the infrared spectral range. The light
signal is assumed to travel with the constant speed of light in

the surrounding medium c ≈ 3.00 · 108 m
s (in vacuum) and is

reflected by surfaces in the scene. By estimating the phase-
shift φ between the emitted and the reflected light signal the
distance d can be computed as follows:

d =
c

4πf
· φ. (1)

Due to the periodicity of the cosine-shaped modulation
signal, this equation is valid only if the distance to
be estimated is smaller than c

2f . This upper limit for
the observable distances is termed the non-ambiguity
range and is approx. 7.5 m for available ToF camera
systems. By modeling the ToF sensor as a pin-hole camera
one can calculate the set of N 3D surface coordinates
P = {pi|pi = (xi, yi, zi)T ∈ R

3, 0 ≤ i ≤ N − 1, i ∈ N0}
of the field-of-view by using principles of similar triangles
[9]. The necessary intrinsic ToF camera parameters can
be determined by appropriate calibration routines [10][11].
Additionally, an intensity value ai ∈ R+ for each point pi is
provided. It represents the amount of light reflected and is thus
roughly encoding the reliability of the measured distance as
more reflected light leads to a more accurate estimation of the
phase-shift. 3D surface coordinates and intensity information
are registered by construction. The 3D surface coordinates
are given in an Euclidean coordinate system whose origin
coincides with the optical center of the ToF camera. The
camera coordinate system is a left handed system with the z-
axis aligned with the optical axis and pointing from the scene
towards the camera. The y-axis points upwards. We term
the set Fj = {(pj

i , a
j
i )|0 ≤ i ≤ N − 1, j ≥ 0, i, j ∈ N0} a

frame of the ToF camera and use upper indices to distinguish
multiple frames if necessary.

II. STATE OF THE ART

There is only a small number of publications on 3D model-
ing of static scenes using only ToF cameras. Most authors aug-
ment the ToF camera with either regular cameras and/or inertia
sensors (Huhle et al. [12]), high-resolution spherical cameras
(Prusak et al. [13]), accelerometers (Ohno et al. [14]) or extrin-
sic camera parameters provided for example by a robot arm
(Fuchs et al. [15]). By combining the laterally low-resolution
range data of the ToF camera with the high-resolution color
information from regular cameras or the very accurate pose
information from a robot arm, the transformation of the
acquired 3D information into a common coordinate system can
be done more easily as compared to computing it from ToF
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data alone. The authors are only aware of a single publication
which purely relies on ToF camera data: Swadzba et al. [16]
determine the relative transformation between two frames by
minimizing the mean square error between corresponding 3D
points using ICP (Iterative Closest Point) variants [17].
Ohno et al. [14] perform 3D map building using a robot
mounted ToF camera enhanced by an accelerometer. They
apply an improved version of the ICP algorithm and use
data provided by the accelerometer as additional information
for estimating an initial transformation. The authors report
problems in estimating the rotation components of the camera
motion.
Furthermore, none of the existing approaches can achieve real-
time operations: Huhle et al. [12] explicitly state that their ap-
proach is not real-time-capable and report computational times
of about two seconds for their complete processing chain. By
Prusak et al. [13] frame rates of seven fps are reported but the
proposed approach relies strongly on the color information
of a spherical camera to perform the pose estimation and
registration of the acquired data. Additionally, the authors used
a ToF camera which has a small lateral resolution (64×48
pixel) even in the context of ToF cameras (which provide
lateral resolutions of more than 160×120 pixel). As a result,
the authors have a small amount of 3D data to process and do
not report computational times for available ToF cameras with
a significantly higher lateral resolution. Swadzba et al. [16]
report computational times of nine to eleven seconds for
the registration of two range data sets acquired with a
PMD[vision] 19k (160×120 pixels) without using any addi-
tional information like robot pose or color information. By
Ohno et al. [14] computational times delivering a frame rate of
approx. four fps are reported.
Swadzba et al. [16] report a mean registration error of more
than 29 mm when using just the data available from a
PMD[vision] 19k. The biggest benefit of using additional
sensors is improved accuracy. In comparison, Fuchs et al. [15]
report a mean precision of 3 mm when using a ToF camera
of comparable lateral resolution and additionally incorporating
robot pose information. This is among the best reported ac-
curacy results for ToF based registrations. Huhle et al. [12] de-
scribe no quantified registration error. Prusak et al. [13] present
an initial mean error of less than 20 cm for their approach
using a ToF camera combined with a spherical camera.
Ohno et al. [14] evaluated their approach considering estimated
camera motion versus real camera motion and report relative
errors of 15% for translation and 17% for rotation.
A summary of the accuracy and performance of these tech-
niques is given in Table I. Note that the authors partly used
different criteria to evaluate the accuracy of their algorithms.
For example, Ohno et al. [14] focused on the correct estimation
of the camera/robot pose. Fuchs et al. [15] investigated how
well the known 3D geometry of a cube was reconstructed.
Swadzba et al. [16] and Prusak et al. [13] used arbitrarily cho-
sen scenes with unknown 3D geometry to investigate the
accuracy of their approaches by evaluating metric distances
between registered 3D data sets. Huhle et al. [12] provide only
a qualitative evaluation of reconstructed 3D scenes.

TABLE I
PUBLISHED APPROACHES FOR 3D MODELING USING TOF CAMERAS.

ToF camera1 resolution2 other comput. accuracy
and author (pixels) modalities times (s) (mm)

PMD19k [16] 160×120 none ≥9 ≥27
PMD1k-S [16] 64×16 none ≥9 ≥9
PMD3k-S [13] 64×48 spherical ≥0.14 ≤2003

camera
PMD19k [12] 160×120 1600×1200px. ≥2 –

regular camera;
inertia sensor

SR-3000 [15] 176×144 indust. robot – ≈3mm;
KUKA KR 16 ≈3◦4

O3D100 [15] 64×50 indust. robot – ≈3mm;
KUKA KR 16 ≈3◦

SR-2 [14] 160×124 accelerometer ≈ 0.25 ≈15%/17%5

1 Abbreviations: PMDx for PMD[vision] x, SR-3000 for SwissRanger SR-
3000, O3D100 for IFM O3D100 for , SR-2 for SwissRanger SR-2

2 The lateral resolution of the ToF camera is given.
3 This error value was reported as the initial mean error between 3D data

computed using Structure-from-Motion and the 3D data available from the
used ToF camera. The authors do not report any other accuracy measures.

4 The given values refer to the error in reconstructing a 3D geometry of a
cube with known dimensions from multiple acquired frames.

5 The given values refer to the relative error in estimating the transla-
tion/rotation of the robot the data acquisition devices were mounted on.

III. BASIC REGISTRATION

Assuming a static scene, a set of M frames
{Fj|0 ≤ j ≤ M − 1, j ∈ N0} can be transformed into a
common coordinate system, when the relative transformation
(Rj , tj) between two consecutive frames Fj and Fj−1 (for
j ≥ 1) is known.

The proposed registration approach estimates the relative
transformation by projecting edge feature vertices of frame
Fj−1, whose camera pose is known, into frame Fj with
respect to the camera pose of Fj , which has to be estimated.
The original feature points of Fj and the projected ones are
compared using the cosine of the images that are represented
as vectors, which is also called uncentered correlation coeffi-
cient:

c(x,y) =

{
0 if ‖x‖‖y‖ = 0

xT y
‖x‖‖y‖ else,

(2)

with x,y ∈ RN . If one or both vectors have zero length, the
cosine is here defined to be zero. The cosine of the angle is
used as a measure for the goodness of fitting features detected
in both frames to each other. The camera pose of F j is found
iteratively using nonlinear optimization. Fig. 1 depicts the
basic registration algorithm, which is explained in detail in
the following.

First, edges are extracted from the intensity data as well as
their z-coordinates Z = {zi|pi = (xi, yi, zi) ∈ P} of the 3D
data (given in the local camera coordinate system) of each
frame using the structure tensor [18]. Note that if in a certain
pixel an edge has been detected, two kinds of information
are available: on one hand the 2D pixel coordinates and on
the other hand the 3D coordinates of the observed point in
the scene. For the proposed approach it is only of interest, if
a pixel contains an edge or not. The set containing the 3D
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Fig. 1. Scheme of the basic registration: Having observed 3D (Ej−1
A , Ej−1

Z )
and corresponding binary 2D (ej−1

A , ej−1
Z ) features in frame Fj−1 as well

as binary 2D (ej
A, ej

Z ) in frame Fj , the objective function involves the cosine
of the angle between binary projected edges ej−1(Π) of frame Fj−1 and
the binary edges detected in frame Fj . ej−1(Π) is computed by projecting
Ej−1

A and Ej−1
Z to an image plane whose pose is parameterized by Π.

coordinates of points corresponding to edges in the intensity
data is denoted by

EA = {pi|ai is edge}, (3)

and the set containing the 3D coordinates of points correspond-
ing to edges in the set of z-coordinates is denoted by

EZ = {pi = (xi, yi, zi)|zi is edge}. (4)

The sets of observed corresponding 2D pixel coordinates of
edges are denoted eA ∈ {0, 1}N and eZ ∈ {0, 1}N . This
data is binary and thus only contains information about the
presence of an edge in a pixel or not:

eA(i) =
{

1 if pi ∈ EA

0 else , eZ(i) =
{

1 if pi ∈ EZ

0 else .

(5)
In (5), eA(i) or respectively eZ(i) denote the i-th entry of the
vector. Fig. 2 exemplarily visualizes these data. Thus, for a
specific frame Fj a vector ej ∈ {0, 1}2N can be derived by

ej = (ej
A|ej

Z), (6)

where we use upper indices to distinguish multiple frames
and | denotes the concatenation of vectors. Consider-
ing two consecutive frames Fj and Fj−1 the rela-
tive translation and rotation of the camera is parameter-
ized by Π = (tx, ty, tz, τx, τy, τz) ∈ R

6 and T(X,Π) with
X = {xi|xi ∈ R

3} denotes the perspective projection of a set
of 3D points to a 2D image plane: The extrinsic parameters
are given by Π, the intrinsic parameters are not explicitly

denoted for convenience and assumed to be constant. Using
this, a vector ej−1(Π) ∈ {0, 1}2N can be derived with

ej−1(Π) = (T(Ej−1
A ,Π)︸ ︷︷ ︸

ej−1
A (Π)

|T(Ej−1
Z ,Π)︸ ︷︷ ︸

ej−1
Z (Π)

), (7)

which contains binary information about the presence of an
edge in a pixel if the image plane observing the 3D edge data
Ej−1

A and Ej−1
Z of frame Fj−1 is moved virtually.

The registration of two frames Fj and Fj−1 (j ≥ 1, j ∈ N)
is done by minimizing

1 − c(ej−1(Π), ej) (8)

with respect to Π using the Levenberg-Marquardt algorithm
[19].

We use binary edge presence information in (5) for
optimization rather than a continuous edge strength
information, because in our experiments the binary
information lead to a better convergence. The reason is
that using continuous edge strength values derived from
the structure tensor proved to lead to an alignment of the
strongest edges while neglecting weaker ones.

In (8) the usage of the cosine of the angle between the two
vectors ej−1(Π) (projected edges with respect to extrinsic
camera parameters) and ej (currently observed edges) is
motivated by the consideration of the following two cases:

1) ej−1(Π) contains only zero-entries, i.e. from the camera
pose Π no edges are visible.

2) ej−1(Π) contains non-zero-entries at positions where ej

contains zero-entries, i.e. the current pose Π represents
a bad estimation of the real camera pose and the edges
of the previous frame are visible but completely non-
overlapping with the edges in the current frame.

When applying the sum of squared distances (SSD) or sum
of absolute distances (SAD) as distance measure, 1) will yield
a smaller distance value than 2). When computing the cosine
of the angle between the two image vectors, it will in both
cases yield zero, and only increase for an increasing overlap
of non-zero-entries. Thus, when using the objective function
proposed in (8) the constellation described in 1) does not yield
an additional local minimum, in contrast to the case when the
SSD or SAD is utilized. The occurrence of the case described
in 1) was frequently observed during our experiments and
the proposed objective function proved to enable a robust
convergence of the optimization.
The last three components of Π = (tx, ty, tz, τx, τy, τz) are
the Euler-angle parameterization of the rotation component of
the relative pose Π between frames Fj−1 and Fj . Because
rotations do not form a vector space, they cannot be optimized
using normal gradient decent or LM optimization. Note that
this is a fundamental problem and does not depend on the
parameterization of the rotation. However, small rotations
locally do approximately form a vector space. The reason
is that a small rotation has almost the same effect as a
translation. For example, if the earth was a perfect sphere,
moving on its surface 20 km to the north would actually
be a rotation by some tiny angle about the center, but the
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(a) (b) (c)

Fig. 2. Feature detection: Original intensity data (2(a)), overlayed with
detected features in the amplitude data (2(b); features depicted white) and
overlayed with features detected in the z-coordinates (2(c); features depicted
white). White pixels in Fig. 2(b) correspond to entries of eA equal to 1. White
pixels in Fig. 2(c) correspond to entries of eZ equal to 1 (see (5)).

effect is very similar to a translation. Here the optimization
is performed in a coordinate system coinciding with the local
camera coordinate system, which is determined by the camera
pose at frame Fj−1. Thus, the rotation components of Π can
be assumed to be small numbers and can be treated as a vector
space, which permits the use of normal gradient decent. This
imposes the requirement that the camera was not rotated far
between two consecutively acquired frames. This implies that
the registration shall not take too much time. The reader is
referred to section V to see how this requirement was fulfilled
by our experiments.
The LM optimization estimates the gradient of the objective
function given in (8) using forward differences. When opti-
mizing a multivariate function that has a highly different sen-
sitivity on different parameters, it is crucial to properly scale
the parameters before computing the gradient. Otherwise, the
components of the gradient corresponding to the parameters
with low influence will usually be near to zero. This problem
occurs in our case, because the translation parameters are
measured in millimeter and the rotation parameters in radian.
A translation by one mm causes only a small change, but a
rotation by one radian makes a huge difference. Furthermore,
the influence of the translation parameters also depends on the
distance of the camera from the scene, whereas the influence
of the rotation parameters remains constant. To cope with this,
the parameters are scaled once for an optimization run so that
a unit step in one parameter results in a shift of the border
pixels of the camera plane by approximately 0.5 pixel. The
gradient is computed by making a unit step for each parameter.
Further details on scale problems when optimizing translation
and rotation using gradient decent can be found in [20].

To cope with systematic errors, which may be caused by
inaccurate intrinsic camera parameters leading to a drift in
the registration, a frame Fj is only integrated into the 3D
model if the camera moved significantly since the last frame
Fj−k , with 0 ≤ k ≤ j and j, k ∈ N0, that was integrated into
the model. Otherwise, the model is not updated, but the
registration procedure of the following frame F j+1 will use
Πj as initial parameters. A new frame is always registered
with the last frame that was integrated into the scene.

IV. EXTENSIONS OF THE BASIC REGISTRATION

ALGORITHM

Different extensions of the basic registration approach based
on (8) were investigated to prevent the non-linear optimization

from getting stuck in a local optimum. We use upper round
brackets (like Π(icp) or Π(0)) to distinguish parameterization
obtained by different extensions, while keeping the convention
of using upper indices with no round brackets (like Π j) to
address parameterizations corresponding to a certain frame.

A. Camera Motion Prediction

Given the poses of the past three frames Πj−1, Πj−2 and
Πj−3, the current pose, which is to be estimated, is predicted
using different assumptions on the camera motion:

• assuming constant position, i.e. the camera did not move
since the last frame: the predicted pose is denoted Π(0)

and is equal to Πj−1

• assuming constant velocity, i.e. the velocity observed be-
tween poses Πj−1 and Πj−2 is assumed to be constant:
the predicted pose is denoted Π(1)

• assuming constant acceleration, i.e. the acceleration ob-
served between poses Πj−1 and Πj−2 is assumed to be
constant: the predicted pose is denoted Π(2)

Note that doing all computations in the camera coordinate
system of frame Fj−1 satisfies the assumption of only small
rotation angles and thus the six-dimensional pose parameteri-
zation can be assumed to form a vector space, which is utilized
for estimating the velocity and the acceleration of the rotation
of the camera.

B. Projection ICP algorithm

The predicted pose Π(2) is iteratively refined using an ICP
variant, called projection ICP [21]. Only the pose which was
predicted assuming constant acceleration is refined as it is the
most dynamic prediction and most sensitive to erroneously
estimated acceleration. The such estimated pose is denoted
Π(icp).

C. Multiresolution Hierarchy

Multiresolution approaches aim at smoothing the objective
function by starting the minimization at a rather coarse level
and then switch to finer resolutions. In the proposed algorithm
the multiresolution is achieved by convolving the binary edge
data ej (considered as a binary 2D image) with an isotropic
2D gauss kernel of standard deviation σ. An initial value of
σ = 2.0 pixel was chosen for the first level of the hierarchy.
Heuristically, for each level of the hierarchy the used standard
deviation is doubled.

D. Random Search

In order to further improve robustness of registration, S
randomly chosen parameterizations s(i) ∈ R

6 close to an es-
timated parameterization Π̂ are considered:

s(i) = Π̂ + n(i), i = 1, ..., S, i ∈ N0 (9)

where n(i) ∈ R6 is drawn from a zero-mean multivariate
Gaussian distribution with statistically independent compo-
nents. For the standard deviations of the rotation and trans-
lation parameters, values of 0.04 radian and 50 mm were
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chosen. Applying the addition of vectors in (9) for rotation
and translation components is justified by performing all
calculations in the coordinate system of the current frame and
thus reasonably assuming rotation components to be small and
consequently forming a vector space.

E. Extended Registration Algorithm

The above mentioned approaches constitute the extension
of the basic registration algorithm described in section III.

1) Predict poses Π(0), Π(1) and Π(2) according to IV-A.
2) Starting with Π(2) iteratively estimate a pose Π(icp)

according to IV-B.
3) For each pose Π(0), Π(1), Π(2) and Π(icp) com-

pute random poses according to IV-D. For each pose
S = 10 random samples are computed. The poses are
denoted Π(0,ni), Π(1,ni), Π(2,ni) and Π(icp,ni) with
1 ≤ i ≤ S, i ∈ N.

4) Evaluate the objective function given in (8) for Π (0),
Π(1), Π(2), Π(icp) and each Π(0,ni), Π(1,ni), Π(2,ni),
Π(icp,ni) with 1 ≤ i ≤ S, i ∈ N. The pose yielding the
smallest objective function value is denoted Π.

5) Π is used as an initial solution for a multiresolution LM-
optimization according to IV-C. Three resolution levels
are used. The final computed parameterization is denoted
Π.

V. EXPERIMENTS

To evaluate the proposed algorithm several indoor office
scenes containing chairs, desks, computers etc. were inves-
tigated. The camera used was a CSEM SR-3100 [7] with
a lateral resolution of 144×176 pixels. Camera motion was
induced by either a pan-tilt-unit or a board-ruler-instrument
allowing precise movement (rotation and translation). Table II
shows a summary of the acquired scenes. A short description
of the camera movement and the number of frames acquired
is given. Each scene was observed with a non-moving camera.
From ten consecutive frames the standard deviation of the z-
components of each point was computed. The average of these
values is a rough indicator of the amount of noise by which the
computed 3D coordinates are corrupted. Values in the range
of 17-72 mm were observed for the scenes investigated in the
experiments.

A. Reconstruction Accuracy

To evaluate the accuracy of the reconstruction, the point
set P = {pi|0 ≤ i ≤ N − 1, i ∈ N0} of a frame F was
transformed with a ground-truth rigid transformation (R r, tr)
determined by the parameters Πr given by the pan-tilt-unit
or the board-ruler-instrument and an estimated transformation
(Re, te) determined by the computed parameters Πe, resulting
in the ground truth transformed point set Pr and the estimated
point set Pe

Pr = {pr
i = Rrpi + tr} (10)

Pe = {pe
i = Repi + te} . (11)

TABLE II
THE VIDEO SEQUENCES USED FOR EVALUATION

Video Name1 Description Frames2 Noise (mm)3

tiltOnly short tilt motion 11 17
panOnly pan motion, direction of 36 15

view is orthogonal to
rotation axis

longPanSlow long slow pan motion 50 43
with a downward
tilted camera

longPanFast same as longPanSlow but 26 43
faster

longPanFastShaky same as longPanFast but 26 25
camera is moved shaky

tiltPan short tilt followed by 53 25
a long pan motion

longPan long pan motion by 67 72
approx. 180◦ with
a downward tilted camera

zigzag alternating pan and 45 40
tilt motions

transSlow slow translation motion 28 54
transFast fast translation motion 14 54
backward translation backward 10 40
panTransOpp pan motion combined with 9 42

translation into the
opposite direction

panTransSame pan motion combined with 17 22
translation into the
same direction

1 This name will be used furthermore as identifier for the acquired data.
The second column gives detailed information about the camera motion which
was performed.

2 To validate the feasibility of the proposed algorithms data sets containing
different numbers of frames were acquired and used for evaluation.

3 The value given is the average standard deviation of the z-coordinate
of 3D points in 10 consecutive frames acquired from a static scene with a
non-moving camera.

The mean Euclidean distance

e =
1
|P|

∑
i

‖pe
i − pr

i ‖ (12)

between theses transformed points serves as a measure for the
quality of the estimated transformation.

Two different rigid transformations were used to measure
• the absolute accuracy of the reconstruction and
• the accuracy of the registration of two frames.

The first transformation maps the point set P from the camera
coordinate system into the global world coordinate system,
which coincides with the camera pose at frame F0 . The
corresponding error is called accumulated registration error
eacc since it depends on the quality of the camera pose
determination of earlier frames. The second transformation
maps P into the camera coordinate system of the frame
the point set was registered with. The resulting error erel is
called relative registration error. In contrast to eacc, it does not
accumulate over time.

The error measures eacc and erel were averaged over a
sequence Fj , j = 0, 1, . . .N − 1, of ToF frames to obtain
the mean accumulated registration error and the mean relative
registration error:

eacc =
1

N − 1

N−1∑
j=1

ej
acc; erel =

1
N − 1

N−1∑
j=1

ej
rel (13)
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TABLE III
MEAN ACCUMULATED REGISTRATION ERROR eacc IN MILLIMETER FOR

ALL VIDEOS OF TABLE II AND DIFFERENT RECONSTRUCTION METHODS
(FOR DETAILS SEE SECTION V-A).

Video name Basic Extended1 Extended2 Extended3
tiltOnly 260 108 43 46
panOnly 1022 260 205 498
longPanSlow 641 472 422 483
longPanFast 1749 571 431 233
longPanFastShaky 1765 673 433 412
tiltPan 1003 614 203 306
longPan 1082 597 416 511
zigzag 511 248 316 420
transSlow 556 377 820 637
transFast 711 647 198 219
backward 190 224 80 48
panTransOpp 241 222 215 288
panTransSame 695 134 135 266

TABLE IV
MEAN RELATIVE REGISTRATION ERROR erel AND ITS STANDARD

DEVIATION IN MILLIMETER.

Video name Basic Extended1 Extended2 Extended3
tiltOnly 103 ± 55 73 ± 69 17 ± 3 19 ± 4
panOnly 333 ± 345 31 ± 13 25 ± 12 25 ± 11
longPanSlow 145 ± 141 35 ± 14 33 ± 11 31 ± 11
longPanFast 353 ± 217 91 ± 67 39 ± 28 26 ± 9
longPanFastShaky 406 ± 256 83 ± 46 64 ± 34 52 ± 18
tiltPan 317 ± 310 126 ± 185 25 ± 10 24 ± 8
longPan 177 ± 138 36 ± 23 27 ± 16 25 ± 12
zigzag 169 ± 121 43 ± 42 43 ± 32 40 ± 18
transSlow 285 ± 205 167 ± 137 86 ± 52 92 ± 55
transFast 711 ± 369 383 ± 200 43 ± 18 59 ± 24
backward 111 ± 53 225 ± 132 28 ± 25 25 ± 15
panTransOpp 141 ± 62 145 ± 64 122 ± 80 136 ± 106
panTransSame 490 ± 318 40 ± 21 23 ± 3 43 ± 16
Average 287.8 113.7 44.2 45.9
Median 231 78 30.5 28.5
Correlation -0.03 0.32 0.27 0.26

with noise

Table III shows the mean accumulated registration error
eacc for different videos and specific variants of the reg-
istration algorithm, and table IV shows the mean relative
registration error together with its standard deviation. Several
combinations of extensions of the basic registration algorithm
were evaluated, but the tables only report the results for the
three most effective combinations of extensions and the basic
registration algorithm:

• Basic denotes the algorithm described in section III.
• Extended1 denotes the basic algorithm extended by the

multiresolution hierarchy described in section IV-C.
• Extended2 denotes the extended algorithm (IV-E) with

out the ICP extension of section IV-B.
• Extended3 is the algorithm enhanced by all extensions

(see section IV-E).

The approach proposed in [16] is the only one using solely
ToF range data, and there also the mean relative registration
error erel is used to evaluate the quality of the registration.
The ToF camera used by [16] was a PMD[vision] 19k with
160×120 pixels, which is comparable to the SwissRanger SR-
3100 used for our evaluation. [16] reports a mean relative
registration error of 27±22 mm and 85±107 mm for two
scenes which were evaluated. For our approach 13 scenes were
evaluated.

(a) longPan, Extended2 (b) backward, Extended3
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(c) panOnly, Extended2 (d) panTransSame, Extended2
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Fig. 3. Examples of error accumulation over time. For different videos and
registration methods, the accumulated registration error ejacc is shown for
each frame j (see section V-A). It is the average Euclidean distance between
point pairs which were on one hand transformed with the ground truth camera
parameters and on the other transformed with the estimated camera parameters
into the camera coordinate system of frame F0. As erroneously estimated
camera parameters in frame Fj effect the estimation of the camera parameters
for frame Fj+1 the error accumulates.

TABLE V
TIME FOR OPTIMIZATION/TOTAL TIME FOR REGISTRATION PER FRAME IN

MILLISECONDS1.

Video name Basic Extended1 Extended2 Extended3
tiltOnly 47/203 128/276 212/335 240/470
panOnly 38/103 149/235 228/315 238/389
longPanSlow 56/132 156/232 219/315 245/343
longPanFast 48/121 168/305 222/335 243/402
longPanFastShaky 44/131 52/341 245/386 270/464
tiltPan 50/106 147/223 222/302 235/355
longPan 54/115 161/246 232/311 249/363
zigzag 43/114 149/236 238/338 255/410
transSlow 40/94 117/185 226/332 238/352
transFast 39/106 108/188 206/368 237/425
backward 42/144 107/194 205/366 231/537
panTransOpp 42/147 113/235 186/304 211/378
panTransSame 36/114 145/260 194/335 221/394
Average 44.5/ 130.8/ 218.1/ 239.5/

125.4 242.8 333.2 406.3

1For given values x/y x denotes the number of milliseconds used for
performing the optimization. The time difference y − x is spent for feature
extraction, visualization routines or inserting triangles in the Oct-tree if the
projection ICP algorithm was used (algorithm Extended3).

B. Performance

Performance evaluation for all the processing steps was
done on a system with a Intel Pentium M 725A processor
(1.6 GHz) and 1GB of RAM. Table V shows the overall time
for each of the specific investigated algorithms and the time
which the optimization procedure took as well.

VI. RESULTS AND DISCUSSION

The obtained results are discussed with regard to accuracy
and performance, on the one hand, and on the other hand
robustness of the proposed approaches. Finally, the feasibility
of the registration algorithm is addressed with emphasis on
the observed benefits and pitfalls.
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(a) (b)

Fig. 4. Reconstruction result for video tiltPan. 4(a) shows 3D model observed from viewpoint approximately to real position of the camera. 4(b) shows
the same 3D model observed from a different virtual viewpoint approximately right to the desk.

A. Accuracy and Performance

The results of accuracy evaluation show that robustness
could clearly be improved by the methods described in section
IV. The extension that had the greatest influence on robustness
by itself was the multiresolution registration. The method that
worked best overall was the combination of motion prediction
under the assumption of constant acceleration, random search
and blurred multiresolution registration (Extended2).
The experiments showed that the described extensions do
significantly improve the robustness which is documented by
the corresponding reduced values for eacc in Table III.
Table IV shows the mean relative registration error erel be-
tween two frames: It can be observed that the accuracy of the
registration is competitive to a purely ICP based registration
as the one used in [16]. There, a mean relative registration
error between 27±22 mm and 85±107 mm is reported for
the registration of two frames from a camera similar to
the one used in our experiments. This is comparable to the
overall average registration error of approx. 45 mm which
was achieved with the approach proposed in this paper (see
Table IV). With regard to the computed standard deviations we
furthermore conclude on the reproducibility of the quality of
the registration results independent from the camera motion.
From the mean relative registration error and its standard
deviation no preference of the proposed algorithm for certain
types of camera motion can be observed. [16] report compu-
tational times of nine to eleven seconds for the registration
of two frames. With our approach, registration and model
construction can be achieved at approx. 334 ms on average
per frame, yielding a frame rate of three fps.

B. Robustness

Table IV also displays the correlation coefficient of the mean
relative registration error achieved with a certain variant of the
registration algorithm and the noise present in a specific scene
(see Table II). For the Basic variant of the registration no
linear dependence of the achieved accuracy and the noise can
be found. For the extended variants, the computed correlation
coefficients were approx. 0.3. These correlation values are
small. Thus, we conclude that our registration approach is

robust to noise in the 3D point coordinates. Although the
absolute correlation values are small, the increasing value of
the correlation coefficient for the extended variants of the
registration algorithm (Extended1, Extended2, Extended3)
validates the following hypothesis: Due to the improved accu-
racy of the registration the computed mean relative registration
error erel is mainly due to scene noise compared to the basic
registration (Basic) whose errors seem to stem primarily from
mis-registration.
Regarding the approaches which incorporate other modalities
(see Table I) we do not reach the reported accuracies, as we
do not use additional acquisition devices.

C. Feasibility of 3D Modeling

The error accumulation displayed in Table III can be as-
sumed to increase roughly linearly. While error accumulation
is of minor importance for short sequences of less than ten
frames, it can reach relatively high values for long sequences
with for instance 60 frames (see examples given in Fig. 3). In
spite of partially large error values for each frame, the recon-
structions are still informative and the overall scene structure
is well retrievable. To illustrate the effect, we display 3D
reconstruction results for the scene tiltPan which contained
53 frames: The mean relative registration error erel using
algorithm variant Extended2 was 25 mm, while the mean
accumulated registration error was 199 mm with a maximum
value of approx. 500 mm computed for the last frame. But
Fig. 4(a) and Fig. 4(b) show that the 53 frames were registered
properly. It is worth noting that the reconstruction worked even
though the window pane to the right of the person led to very
noisy 3D coordinates in this part of the scene. The reason is
that the used features are not very sensitive to noise.
Note that the registration error also depends on the distance
of the camera to the scene, which was in the range of
approximately one to four meters. A mis-registration of one
degree will cause a four times higher accumulated registration
error for the current frame when the scene is four times
farther away. There are also other factors like the typically
noisy background of ToF images which limit the registration
accuracy.
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Fig. 5. Reconstruction of a medical dummy without abdominal wall.
Observable organs from left to right: heart (white), liver (black) and colon
(gray).

To show the feasibility of the purely ToF data driven 3D
modeling of static scenes we provide a visualization of the
3D model computed from twelve frames acquired from a
medical dummy whose abdominal wall was removed (Fig. 5):
Note that the small anatomical structures of the colon are
accurately registered and organs like the liver are correctly
stitched together. The vertical stripes which can be observed
in the region of the colon are not caused by mis-registration
but by different observed intensity values due to changing
illumination conditions when moving the camera around the
medical dummy.

VII. CONCLUSION

An algorithm for 3D modeling of static scenes based solely
on data acquired by a moving ToF camera was proposed.
The rigid transformation of the camera between consecutively
acquired frames is estimated by maximizing the uncentered
correlation coefficient between features detected in the current
and a preceding frame. Besides the basic algorithm three
extended variants were examined which incorporated different
combinations of a multiresolution hierarchy, camera motion
prediction, random search and projection ICP algorithm.
The experimental analysis showed that the variant using mul-
tiresolution hierarchy, motion prediction and random search
clearly increased robustness of the registration (variant Ex-
tended2). Incorporation of the projection ICP algorithm led
to improvements only for certain scenes. Registration of two
consecutive frames can be done at frame rates of about
four fps. Thus, occlusion effects between consecutively ac-
quired frames which may prevent finding matching features
can be reasonably ignored.
We could show that in terms of the reconstruction accuracy our
approach is clearly competitive to other proposed approaches.
The magnitude of the mean relative registration error (see
Table IV) can be explained by the distance measurement noise
whichwas evaluated for each investigated scene (see Table II).
The benefit of our approach becomes even more clear when
the computational times are considered: To our knowledge
there has been no proposed algorithm which can perform the
registration of consecutive ToF frames purely data-driven in
real-time or even approximately real-time.
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