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Abstract
This paper presents an unsupervised, graph based approach for
extractive summarization of meetings. Graph based methods
such as TextRank have been used for sentence extraction from
news articles. These methods model text as a graph with sen-
tences as nodes and edges based on word overlap. A sentence
node is then ranked according to its similarity with other nodes.
The spontaneous speech in meetings leads to incomplete, ill-
formed sentences with high redundancy and calls for additional
measures to extract relevant sentences. We propose an exten-
sion of the TextRank algorithm that clusters the meeting utter-
ances and uses these clusters to construct the graph. We evaluate
this method on the AMI meeting corpus and show a significant
improvement over TextRank and other baseline methods.
Index Terms: Summarization, Page Rank

1. Introduction
Text summarization has gained significant interest for news ar-
ticles and web pages. Given a text, the summarization task
consists in extracting or forming sentences to be included in
the summary such that they cover important information with
minimal redundancy, while satisfying a length constraint. For
meeting summarization, transcripts of participants’ dialogs may
be generated using automatic speech recognition (ASR). How-
ever, the nature of spontaneous speech presents additional chal-
lenges such as incomplete or ill-formed sentences, noise in the
form of random “chit-chat”, and high redundancy which should
be taken into account while forming a summary. For instance,
consider the dialog in Figure 1. In this discourse, Person A

Figure 1: Dialog between two persons: A and B

might have initially intended to say that ‘The severity of Global
Warming has made us look into other sources of energy’. The
information in this conversation is split across five sentences or
utterances. As discussed later, this is one of the motivations for
clusteringthe utterances together that address the same subject.
Furthermore, a summary should avoid including redundant sen-
tences that do not convey any new information.

A summary can either be extractive i.e. consisting of sen-
tences chosen from the given text, or abstractive where new sen-
tences might be synthesized or existing ones rephrased by the
system. Most of the previous work has focused on extractive
summarization of structured text like news articles. While these
methods can be applied in meetings as well, taking additional
measures to cope with high noise and redundancy could im-
prove the performance of the summarization algorithms. In this

work, we present an extension of the TextRank algorithm [1],
ClusterRank, that segments the transcript into clusters and uses
the clusters to construct a cluster graph of the transcripts. We
evaluate our approach against TextRank and other algorithms
used for meeting summarization.

Section 2 describes related work on summarization. Sec-
tion 3 and 4 gives a brief overview of the TextRank algorithm
and a detailed description of our approach. Dataset and Results
are presented in sections 5 and 6, respectively. We conclude in
section 7 and discuss some future directions of research.

2. Related Work
Several methods have been proposed for ranking sentences
based on some relevance metric. In supervised approaches [2],
a classifier is trained on sentence features such as key words,
sentence length, and position, and given a new text, a relevance
score for each sentence is calculated. [3] uses the structural
features of broadcast news such as position, length and speaker
of the segment to rank different segments. Maximal Marginal
Relevance (MMR) [4] is an unsupervised query based approach
where a term vector is created for each sentence. In the absence
of a query, a centroid of all the term vectors is used. Sentences
are chosen iteratively to be included in the summary such that
they are maximally similar to the query and have minimal simi-
larity to the already chosen sentences. In meetings, such an ap-
proach tends to promote non-content words such as “okay” and
“sort of”. [5, 6] tackle this issue by usingkeyphrases, extracted
from the text, to construct the centroid. [7] augmented the tex-
tual features with a set of prosodic features such as F0, energy
and duration of utterances, and found that much effort is needed
to find the right set of features for sentence extraction. [8] mod-
els the text as a bipartite graph having a node for every sentence
and word, and a weighted undirected edge from a sentence node
to a word node if the word appears in the sentence. The au-
thor argues that sentences with highsaliencyscores should have
high saliency words in them and words that appear in many high
saliency sentences should have high saliency scores. This mu-
tual reinforcement principle is used to find high saliency key-
words and sentences in the text. Other graph based methods in-
clude eigenvector centrality approaches that have been applied
in TextRank [1] and LexRank [9]. Our approach is an extension
of the TextRank algorithm as described in the next section.

3. TextRank
TextRank [1] is a graph-based sentence extraction algorithm
where each sentence is represented by a node in the graph. An
undirected edge between two sentences is created based on lex-
ical similarity. Specifically, if a sentenceSi is represented as a
set of words:Si = wi
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i
|Si|

, then the similarity between
two sentencesSi andSj is defined as:

Sim(Si, Sj) =
|{wk : wk ∈ Si ∧ wk ∈ Sj}|

log(|Si|) + log(|Sj |)



An edge based on similarity can be seen as a process of “recom-
mendation”: a sentence that addresses certain concepts, gives
the reader a “recommendation” to refer to other sentences that
address the same concepts. The underlying assumption for cal-
culating relevance is that the sentences which are similar to a
large number of other important sentences are “central”. Text-
Rank uses PageRank [10] to calculate a relevance score for each
sentence based on the relevance score of its similar sentences.
Top ranked sentences are selected for the summary such that
their total length satisfies the summary length constraint.

As reported in [1], TextRank works quite well for structured
text like news articles where each sentence has some mean-
ingful information and redundancy is low. However, in spon-
taneous speech, the utterances are typically not well-formed.
Participants often interrupt each other during the conversation
leading to information spread across multiple utterances. In the
conversation shown in Figure 1, even though it might be im-
portant, utterance 5 would get a lower score compared to if it
had the keywords ‘global’ and ‘warming’ in it, as then it would
have shared more keywords with the rest of the transcript. Due
to this feature of spontaneous speech, it is useful to consider the
above five utterances together as aclusterrather than individual
utterances. Since a cluster is likely to contain more keywords,
a good scoring method would probably give a high rank to the
cluster compared to if they were considered as individual utter-
ances. We use text segmentation to form utterance clusters, and
create cluster nodes rather than utterance nodes in the graph.

A meeting might also have “off-topic” sections unrelated
to the general theme of the meeting. For instance, in a meet-
ing about ‘effects of climate change’, there might be a brief
exchange about ‘what is for lunch today’. We would like to
avoid including such utterances in a summary. In an utterance
based graph, the utterances in an off-topic segment would link
to each other and as a result might be assigned a high score even
if they share very few keywords with the rest of the transcript.
If the entire off-topic conversation is merged into a single clus-
ter, that cluster is unlikely to be linked to other clusters with
high weight edges due to lack of common keywords. Thus, the
off-topic cluster gets down-weighted.

Redundancy is a major problem in meetings where the
same information is often repeated by participants. We employ
a simple solution to this problem by representing the present
summary as a bag of words. A new sentence is picked only if
its similarity with this bag is below a certain threshold.

4. ClusterRank
As a preprocessing step, we remove the stopwords and apply
Porter’s stemming algorithm [11]. The following subsections
describe the five steps of our algorithm.

4.1. Clustering
The aim of clustering or text-segmentation is to segment the
transcript such that each section has utterances about the same
subject. TextTiling [12] is a domain-independent algorithm for
multi-paragraph segmentation of text. Text is subdivided into
pseudo-sentences or token sequences of predefined length. A
potential segment break is then evaluated based on the lexical
similarity of adjacent blocks of token sequences. LCseg [13]
computes lexical chains consisting of term repetitions and pro-
poses that major topic shifts are likely to occur where “strong”
term repetitions start and end. [14] presents a bayesian approach
to unsupervised topic segmentation where a multinomial lan-
guage model is associated with every topic segment. Since our
aim is to demonstrate the usefulness of segmentation, we chose

Figure 2: Clustering algorithm. The updatewindows() function
generates a combination of (windowabove, windowbelow) in
the following order:{(1,1),(1,2),(2,1),(2,2), (1,3), (3,1), (2,3),
(3,2), (3,3)...(maxwindow,maxwindow)}.

a simple approach similar to TextTiling [12] by starting with
each sentence as a separate cluster and merging adjacent clus-
ters if they are similar above a certain threshold. We define the
weight of a wordw in a clusterX as:

WX(w) = freqX(w) × IDF (w)

wherefreqX(w) denotes the number of sentences in cluster
X that have the wordw andIDF (w) is the inverse document
frequency of the wordw calculated as:

IDF (w) = log

„

# of sentences
# of sentences with wordw

«

We compute the similarity between two clusters using the co-
sine similarity of words they contain.

sim(X, Y ) =

P

{w:w∈X∧w∈Y } WX(w) ∗ WY (w)
q
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Figure 2 gives the complete clustering algorithm. The al-
gorithm works by calculating the similarity between all pairs
of adjacent clusters, selecting the pair with the highest sim-
ilarity and merging it into a single cluster. The process is
repeated as long as an eligible pair can be found. As il-
lustrated in Figure 3, merging only two clusters at a time
might be too restrictive. Due to incompleteness of sen-
tences, adjacent sentences might not have enough common
words even though they are about the same subject. To get a
more effective clustering, we choose amergepoint and win-
dows of sizewindow above andwindow below where1 ≤
{window above, window below} ≤ window threshold.
We optimize these parameters using a held-out set. For
our dataset, the parameters weresimilarity threshold =
0.4 and window threshold = 3. We observed that the
segmentation of sentences tends to stabilize after a certain
window threshold value as the clusters become big in size
and the similarity between two clusters no longer satisfies the
similarity threshold. There is an initial increase in the sum-
marization performance due to clustering. As we increase
window threshold beyond 4, the probability of wrong seg-
mentation increases, resulting in a slight decline in perfor-
mance.

4.2. Graph Construction
A clusterX can be treated as a bag of words with the weight
of each word asWX(w). Each cluster is represented as a node
in the graph. A directed edge from clusterX to clusterY is
weighted by their normalized similarity value. More precisely,

edge(X, Y ) =
sim(X, Y )

P

Z
sim(X, Z)



Figure 3: Effect of window sizes on clustering

An important difference to note here, compared to the Text-
Rank algorithm, is that instead of simply counting the num-
ber of common words between two nodes, we take the co-
sine similarity of the words where each wordw is weighted
by freq(w) ∗ IDF (w). This gives a higher similarity score
if the two nodes share less-common keywords. We confirmed
experimentally that cosine similarity indeed gives slightly bet-
ter performance for both TextRank and ClusterRank, and show
results with cosine metric in both algorithms.

4.3. PageRank

The obtained graph can be represented as a stochastic matrixG
in which an entry(i, j) denotes the edge weight from nodej to
nodei. Further, to make the matrix primitive and irreducible,
we construct the final matrixM as:

M = d ∗ G + (1 − d) ∗ 1/|nodes|

whered is the damping factor taken as 0.85, as suggested in
[10]. Next, we use the PageRank algorithm [10] to compute an
“importance” score for each cluster.

4.4. Sentence Scoring
To go from cluster scores to sentence scores, a reasonable ap-
proach would be to simply compute the centroid of the sen-
tences within the cluster and rank the sentences according to
their similarity with the centroid. However, the sentences within
a cluster might also contain random “chit-chat” words unrelated
to the rest of the meeting. To avoid their influence, we construct
the centroid by taking into account only the words shared with
other clusters. Also, since the PageRank score of the cluster
depends on the word overlap with other clusters, this is a more
reliable estimate of the importance of a sentence within the clus-
ter. For a clusterX, the weight of a wordw in the centroidCX

is calculated as:

CX(w) =
X

Y :w∈Y,Y 6=X

PR(Y ) ∗ M(X, Y ) ∗ IDF (w)

wherePR(X) denotes the page rank score of clusterX. This
gives a higher weight to words common with high PageRank
clusters. The score of a sentences in a clusterX is taken as:

score(s) = sim(s, CX) ∗ PR(X)

wheresim(s, CX) refers to cosine similarity, calculated as:

sim(s, CX) =

P

{w:w∈s∧w∈CX} Ws(w) ∗ CX(w)
q

P

w∈s
W 2

s (w)
q

P
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Ws(w) is taken asIDF (w). score(s) is calculated such that a
sentence in a high PageRank cluster will get down-weighted if
it has a very low similarity with other clusters. This helps filter
out noise from the summary.

4.5. Greedy Selection
Once we have a score for each sentence, we start from the high-
est scoring sentence and include sentences in the summary until
the length constraint is satisfied. At any iteration step, the sum-
mary already constructed,sum, is represented as a bag of words
with the weight of a wordw as:

Wsum(w) = |{Si : w ∈ Si ∧ Si ∈ sum}| ∗ IDF (w)

To minimize redundancy, for a new sentenceS, we calculate a
ratio of the words inS that are already present in the summary:

r =

P

w∈S
Wsum(w)

P

w∈S
IDF (w)

If r is below a certain thresholdβ and it satisfies the length
constraint, we includeS in the summary.

In a variation of this algorithm, we first normalize the sen-
tence scores by their length and pick the sentences in the de-
creasing order of ‘score(s)/log(1 + length(s))’ value. This
gives preference to shorter sentences which have high scores.
Selecting shorter sentences helps create more space in the sum-
mary for other topics thus leading to an increase in recall. We
call this variation “ClusterRank with normalization” and also
include its results along with the basic ClusterRank algorithm.

5. Data
The AMI meeting corpus [15] is a collection of 100 hours of
meeting data that includes speech audio, transcripts, and human
summaries. Each meeting has participants talking for about 35
minutes on a given topic and the transcripts are about 3000-
7000 words. Our experiments are based on the 137 meetings
that have abstractive human summaries.

6. Evaluation and Results
For each meeting, we generate an extractive summary satisfying
a length constraint specified in terms of a percentage of the total
number of words in the transcript. We compare the performance
to the following algorithms:

• TextRank with cosine similarity metric

• Centroid based MMR algorithm

• Longest sentence baseline that iteratively forms the sum-
mary by choosing the longest sentence at each step.

ROUGE [16] is used to evaluate the performance for all
the systems. ROUGE scores are based on the number of over-
lapping units such as n-grams, between the system generated
summary and the ideal summaries created by humans. The hu-
man summaries provided in the corpus have a length of about
6% words. Table 1 shows the ROUGE-1 (unigram overlap) and
ROUGE-2 (bigram overlap) precision, recall, and F-measure
for different algorithms for a summary length constraint of 6%
words. As shown in the table, ClusterRank achieves a signifi-
cant performance gain over the basic TextRank model. Normal-
izing sentence scores by their lengths gives a further improve-
ment in recall. However, as observed in our summaries, se-
lecting shorter length sentences may decrease the readability of
the summary, which is in general a problem for extractive sum-
marization of meetings. Human evaluation can provide more
insights, and this remains as an issue for future research. The
performance comparison follows a similar trend for both human
transcripts as well as ASR output. The performance difference
of different algorithms remains consistent across different sum-
mary lengths as shown in Figure 4.



Algorithm Rouge-1 Rouge-2
Precision Recall F-measure Precision Recall F-measure

H
um
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ts Longest Sentence Baseline 0.257 0.146 0.182 0.037 0.021 0.026

Centroid based MMR 0.258 0.147 0.182 0.042 0.023 0.029
TextRank with cosine similarity 0.327 0.212 0.250 0.062 0.040 0.047
ClusterRank 0.361* 0.232* 0.275* 0.069 0.043 0.051
ClusterRank with sentence normalization 0.351* 0.262* 0.291* 0.067 0.049* 0.055*

A
S

R

O
ut

pu
t

TextRank with cosine similarity 0.302 0.219 0.246 0.055 0.039 0.044
ClusterRank 0.337* 0.240* 0.272* 0.059 0.041 0.047
ClusterRank with normalization 0.322 0.262* 0.280* 0.056 0.044 0.048

Table 1: Performance of different algorithms for a 6% summary length. The numbers in bold denote the best performing algorithm for
a given measure. * denotes a significant improvement over the TextRank algorithm according to t-test at 95% confidence interval.

The clustering approach tends to suppress topics that are un-
related to the general topic of the meeting. If one does not
want to suppress these topics, it might be advisable to avoid
clustering and construct a sentence graph instead. The AMI
corpus includes manual topic annotations for meetings, but the
topics there are very broad which leads to very few clusters.
The PageRank scores will not be meaningful in this case and a
better sentence scoring could be achieved by only considering
sentence similarity within the cluster. An extreme case would
be just a single cluster and here, the approach could be a cen-
troid based MMR algorithm. On the other extreme, the graph
constructed by ClusterRank would be very similar to TextRank
if there are as many clusters as sentences.
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Figure 4: Performance variation with summary length

7. Conclusion and Future Work
We have presented an unsupervised graph based algorithm for
extractive summarization of meeting transcripts. Our approach
extends a text summarization algorithm, TextRank, to include
measures for high noise and redundancy found in meetings. For
future work, we are investigating more sophisticated techniques
for text-segmentation that look beyond the simple word over-
lap. Another enhancement would be to integrate a user query
into the system by giving higher weights to “topics” present in
the query. This could be done along the lines of topic sensitive
page-rank [17] where the edge weights in the link graph are ad-
justed according to the query topic.
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