Quantitative image-based spectral reconstruction
for computed tomography

B. Heismann?
Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany and Siemens Healthcare,
Computed Tomography, 91052 Erlangen, Germany

M. Balda
Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany

(Received 22 December 2008; revised 22 July 2009; accepted for publication 22 July 2009;
published 9 September 2009)

Computed tomography (CT) devices are routinely employed to obtain three-dimensional images of
the human body. The reconstructed CT numbers represent weighted x-ray attenuation coefficients.
Their spectral weighting is influenced by the selected x-ray source spectrum, the detector charac-
teristics, and the attenuating object itself. The quantitative ground truth of the scanned object is
given by the spectral attenuation coefficient. It is not directly measurable in standard CT. For
spectral CT measurements, algorithms like the basis material decomposition yield parametrized
representations of the spectral mass attenuation coefficient. In practical applications, image-based
formulations are commonly used. They are affected by both the CT system characteristics and the
object self-attenuation effects. In this article the authors introduce an image-based spectral CT
method. It expresses measured CT data as a spectral integration of the spectral attenuation coeffi-
cient multiplied by a local weighting function (LWF). The LWF represents the local energy weight-
ing in the image domain, taking into account the system and reconstruction properties and the
object self-attenuation. A generalized image-based formulation of spectral CT algorithms is ob-
tained, with no need for additional corrections of, e.g., beam hardening. The iterative procedure
called local spectral reconstruction yields both the mass attenuation coefficients of the object and a
representation of the LWF. The quantitative accuracy and precision of the method are investigated
in several applications: First, beam hardening corrections to various target energy weightings and
attenuation correction maps for SPECT/CT and PET/CT are calculated. Second, an iodine density
evaluation is performed. Finally, a direct identification of spectral attenuation functions using the
LWEF result is demonstrated. In all applications, the ground truth of the objects is reproduced with
a quantitative accuracy in the subpercent to 2% range. An exponential convergence behavior of the
iterative procedure is observed, with one to two iteration steps as a good compromise between
quantitative accuracy and precision. The authors conclude that the method can be used to perform
image-based spectral CT reconstructions with quantitative accuracy. Existing algorithms benefit
from the intrinsic treatment of beam hardening and system properties. Novel algorithms are enabled
to directly compare material model functions to spectral measurement data. © 2009 American
Association of Physicists in Medicine. [DOI: 10.1118/1.3213534]
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I. INTRODUCTION

Computed tomography (CT) measures CT Hounsfield num-
bers H(r) at position r. They correspond to weighted attenu-
ation coefficients g(r). Physically, the ground truth of the
scanned object (e.g., patient) is the energy-dependent attenu-
ation coefficient w(E,r). The measurement process corre-
sponds to a weighting of the physical ground truth w(E,r) to
the weighted u(r).

The spectral weighting is determined by both the mea-
surement system and the scanned object itself. The main
components of the measurement system are the x-ray source
and the CT detector. The x-ray tube spectrum S(E) defines
the energy distribution of the tube quantum field. For com-
puted tomography, it typically follows the well-known tung-
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sten emission characteristics."? The CT detector has an
energy-dependent detector responsivity D(E). It describes
the relative signal contribution of a quantum of energy E’?

The product of the tube spectrum and the detector re-
sponse function is normalized to one to yield w(E) as the
system weighting function (SWF). For small objects, it ap-
proximates the local energy weighting. However, typical pa-
tient and object diameters in practical CT reach several tens
of centimeters. In this case, the self-absorption of the object
shifts the local energy weighting to higher energies.

This so-called beam hardening effect is routinely compen-
sated in CT imaging. The basic approach calculates the ef-
fective attenuation length for water and bone for each pro-
jection and compensates the associated shift in average
energy (see, e.g., Refs. 4 and 5). An approach that addition-
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ally deals with the presence of the contrast agent iodine is
given in Ref. 6. The algorithms effectively reduce the typical
beam hardening artifacts, e.g., the cupping artifact on patient
cross sections and the funnel-shaped artifacts close to and
between bone regions. Commercial CT systems commonly
employ algorithmic implementations based on these basic
principles.

A quantitative approach to the correction of beam harden-
ing effects is described in Ref. 7. The authors suggested an
iterative method with a linearized polychromatic forward
projection. As a result, x(r) weighted by the SWF can be
obtained throughout the image. It was also shown that dual-
energy CT data can be used, in particular, to improve the
precision of the resulting z(r).

In this paper, we evaluate an image-based quantitative
framework for spectral CT applications. It is referred to as
local spectral reconstruction (LSR) throughout this work. As
the central element, the local weighting function (LWF)
Q(E,r) is defined. The LWF serves as the weighting func-
tion in the spectral integration of the physical ground truth
u(E,r) to the measured CT data u(r).

This has two main implications: On a fundamental level,
it allows us to evaluate the spectral weighting process in
arbitrary CT images. Energy weighting shifts can be ex-
pressed and evaluated in terms of a local energy weighting
function. From an application point of view, the image-based
link between ground truth and measured data allows for a
unified formulation of many spectral CT applications. These
include beam hardening corrections, energy calibrations for
CT, attenuation corrections for SPECT and PET as well as
image-based basis material decompositions or decomposi-
tions into density and atomic number.

This work is structured as follows: We first review the
impact of source, detector, and scanned object in a spectral
CT measurement. Based on this an image-based formulation
of the measurement process is derived. The main element is
the LWE. We provide a novel iterative LSR algorithm for its
calculation. In order to verify the framework, we investigate
measured and simulated CT image data. We use measured
images of a water and an abdomen phantom as well as simu-
lated images of a human thorax with ground truth represen-
tations of the spectral attenuation coefficients. Both data
sources are used to calculate and discuss the main properties
of the LWF. As exemplary applications, we perform beam
hardening corrections to various target energy weightings, a
calculation of an attenuation map for SPECT/CT and
PET/CT as well as a quantitative iodine density estimation.
The resulting attenuation coefficients are compared to the
respective ground truth of the measured and simulated ob-
jects. The algorithmic convergence, as well as the quantita-
tive accuracy and precision are analyzed. A direct material
identification using the LWF result is demonstrated. We con-
clude by summarizing the potential applications of the LSR
framework in quantitative spectral CT.
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FiG. 1. Schematics of an x-ray attenuation measurement.

Il. THEORY

We briefly review the properties of x-ray attenuation mea-
surements in general and the spectral measurement process
in CT in particular. The dilemma between a correct physical
description of the x-ray measurement and the limited mea-
surement information in single-energy CT is discussed. The
local energy weighting in CT is analyzed. We introduce the
LWEF and the LSR framework for quantitative spectral recon-
structions.

Il.A. Spectral CT measurements

Figure 1 depicts the setup of a standard x-ray attenuation
measurement. The source S emits a flux of x-ray quanta at an
object O. The object consists of x-ray attenuating materials.
They are described by the spectral attenuation coefficient
M(E,r) at position r. The detector D registers the quanta that
have passed through the object. Two independent measure-
ments with and without the object are performed. The result-
ing intensities I and I, yield the attenuation A=1/1, € [0,1].
It describes the relative decrease in intensity caused by x-ray
attenuation processes in the object.

In the following, we briefly review the spectral character-
istics of source, object, and detector.

The x-ray source S emits a spectrum S(E) of quanta. Its
physical unit is “quanta per energy,” e.g., number of quanta
per keV. The maximum of the emitted quantum energy E is
limited by the tube acceleration voltage. Figure 2 shows two
typical x-ray source spectra for the tube voltages U,
=80 kV and U,=140 kV. S(E) depends on the x-ray tube
design and parameters like anode angle, anode material, and
prefilters. Several models exist for measuring and computing
S(E) for specific tubes (see, e.g., Refs. 1 and 8).

The object O is described by the spatial distribution of the
spectral attenuation coefficients wu(E,r). They can be factor-
ized into the density p and the mass attenuation coefficient

(u/p)(E.Z),
w(E) =p<f)(E,Z). (1)

The mass attenuation coefficient (u/p)(E,Z) is a charac-
teristic function for a chemical element with atomic number
Z. Precise measurement data are available at numerous lit-
erature sources (see, e.g., Ref. 9). As an example, Fig. 3
shows selected mass attenuation coefficients, including the
elements hydrogen (Z=1), carbon (Z=6), nitrogen (Z=7),
and oxygen (Z=8).
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FIG. 2. Simulated x-ray tungsten tube spectra S;(E) and S,(E) at the tube
acceleration voltages U;=80 kV and U,=140 kV.

Compound matter can be described as a superposition of
elemental mass attenuation coefficients.'” We obtain

M
wE)= pi(f) (E,Z). 2)
i=1

Here, p; are the partial densities of the ith element in
g/cm® and Z; are the respective atomic numbers. We can
describe the x-ray attenuation of arbitrary objects based on
their chemical stoichiometric composition. For example, the
mass attenuation coefficient of water (H,0) is given by

MHQO(E)=%<E)(E,1)+§(E)(E,8). (3)
p 9\p
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FiG. 3. Mass attenuation coefficients (u/p)(E) of selected chemical ele-

ments and the biological compound material femur bone. The mass attenu-
ation coefficient generally decreases with increasing energy E.
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FIG. 4. Detector responsivity D(E) for a 1.4 mm Gd,O,S scintillator CT
detector.

The ICRU Report 46 (Ref. 11) summarizes the chemical
composition and photon cross sections for biological tissue.
Figure 3 includes the mass attenuation coefficient of femur
bone.

The detector D is described by the detector responsivity
D(E). Tt yields the relative signal amount generated by a
quantum of energy E. For an ideal integrating detector, we
could assume D(E)=E. However, for practical detectors
D(E) has a more complex structure. D(E) has to be calcu-
lated or measured for a precise description (see Ref. 12). A
typical D(E) of a Gd,0,S scintillator detector is shown in
Fig. 4.

With these parametrizations of source, object, and detec-
tor we can describe the measurement process. The measured
attenuation A is given by the ratio of the two measured in-
tensities / and I, as

4= L _ JGSEDE)exp(= [1p(E,v)dr)dE @
A [oS(E)D(E)dE '

Here L is the projection path. We can write this as

A=Jm w(E)exp(—f ,u(E,r)dr)dE (5)
L

0

with the definition of the system weighting function,

()= SEDE)

~ [5S(E)D(E")dE' (©)

The SWF can be calculated from parametrizations of S(E)
and D(E) or obtained by transmission measurements. >
Figure 5 shows two SWFs for a typical dual-kVp CT scan.
The corresponding tube and detector parametrizations are
found in Figs. 2 and 4.

For monoenergetic radiation of energy E=E,, we have
w(E)=8(E-E,), and Eq. (5) simplifies to
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FIG. 5. System weighting functions w;(E) and w,(E) according to Eq. (6)
for the two tube spectra in Fig. 2 and the detector responsivity D(E) in Fig.
4. The two weighting functions reflect a common dual-energy measurement
case, often referred to as a dual-kVp CT measurement.

In(A) =- f M(Ep,r)dr. (7)
L

This is equivalent to the Radon transform.'®

Equation (5) and its monoenergetic version [Eq. (7)] re-
veal a basic dilemma of standard single-energy CT imaging:
The physical ground truth values of the scanned object are
the spectral attenuation coefficients w(E,r). The measure-
ment process is correctly described by Eq. (5). However, the
corresponding data w(E,r) cannot be reconstructed from
standard CT measurements. We would require spectrally re-
solved sinogram data A,(E) to fully reconstruct the spectral
coordinate of w(E,r). Even if these were available, quantum
noise would lead to very limited representations of w(E,r).
Thus Eq. (5) actually describes the experimental data cor-
rectly, but the corresponding ground truth variable w(E,r)
cannot be recovered due to missing information.

In single-energy CT this dilemma leads to a common ap-
proximation. The Radon transform and its inverse assume
the linear x-ray physics of Eq. (7) to reconstruct u(r) im-
ages. The errors generated by this approximation are com-
monly referred to as beam hardening artifacts. The underly-
ing model assumes that we can use Eq. (7) as an
approximation for z(r). The x-ray quanta passing through
the object are considered to have an effective energy. When
quanta pass through thick or high atomic number object re-
gions like bone, the effective energy of the detected quanta
increases by several keV due to the characteristics of u(E)
(see Fig. 3). The beam spectrum is hardened. As a conse-
quence, reconstructed m(r) is decreased with increasing
beam hardening.

We can analytically derive the error of the approximation.
Like shown in the Appendix, Eq. (5) can be written as
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(b)

FIG. 6. (a) A simple phantom setup consisting of water (gray), bone (white),
and air (black). (b) Reconstruction of the phantom with visible beam hard-
ening artifacts. We observe a superposition of the typical cupping artifact
caused by the patient water background and the funnel-shaped artifact be-
tween strong bone absorbers.

A=exp(—f ﬁ(r)a’r+R), (8)
L
with
2
R= f w(E)(f ,u(E,r)dr) dE + higher orders. 9)
E L

The first term in R generally leads to an overestimation of
A and a consequent underestimation of u(r) in the recon-
structed image. Figure 6 shows a schematic example in
medical CT.

Beam hardening corrections can alleviate most of these
artifacts in practical single-energy CT. When we assume that
R is small due to limited object attenuations or a beam hard-
ening correction, we obtain an important result. The
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FiG. 7. Computed tomography parallel beam projection geometry.

weighted attenuation coefficient z(r) of a CT image and the
underlying physical ground truth w(E,r) are approximated
by

a(r) = f w(E)u(E,r)dE (10)
0

for small, low attenuation objects.

Note that this is a local relationship at each point r in the
CT data set. It allows us to link measured and reconstructed
CT data to the ground truth object variable u(E,r). Equation
(10) underlines an important fact of single-energy CT imag-
ing. The reconstructed CT attenuations x(r) depend on the
SWF w(E). When we change the x-ray source spectrum char-
acteristics S(E) or use a different detector responsivity D(E),
the reconstructed attenuation values change. Relative con-
trasts of the image are altered. In practice, for waterlike ma-
terials only minor deviations are expected in the CT numbers
due to the water normalization; however, quantitative mea-
sures of attenuation values and contrast of non-water-like
structures may not be identical between CT systems and
techniques.

1I.B. Local weighting function

Figure 7 shows the standard CT projection geometry. A
ray in parallel projection geometry is described by the angle
0 and the distance 7 to the center. Following Eq. (5), we have
the physical projection formula

P{w(E,r)} =~ ln<fw w(E)exp(- Me,f(E))dE> : (11)

0

with the measurement operator P{-} and

M&,z(E) = M(E’la,z(a’))da (12)

—00

as an abbreviation for the spatial path integration. The recon-
structed effective attenuation coefficient is

a(r) = R™{P{u(E.n)}, (13)

with R~'{-} as the inverse Radon transform operator.
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In the following, we derive an iterative scheme to solve
Eq. (13). Compared to typical minimization schemes derived
from A(E,r)=arg min,, | Z(r) - R-Y{P{u(E, , it has
the same mathematical form as Eq. (10). This allows the
direct application of the method to image-based spectral CT
methods like the image-based basis material decomposition,
featuring a high computational efficiency and fast conver-
gence.

We insert a factor 1=[jw(E)dE into Eq. (13) and use that
the projected sinogram data P{u(E,r)} is independent of E.
This yields

a(r) = f w(E)R™{P{u(E,r)}}dE. (14)
0

Expanding with w(E,r)/u(E,r) yields
-1
i(r) = f el (r) W ErdE. (15)

This can be written as
(r) = f Q(E,r) w(E,r)dE, (16)
0

with the local weighting function

-1

A(Er) = i) S BT (7

w(E,r)

Equation (16) connects the spectral attenuation coefficient
to the measured weighted attenuation coefficient. It yields an
image-based quantitative description of the CT measurement
and reconstruction process.

The LWF Q(E,r) given by Eq. (17) describes the effec-
tive spectral weighting at an arbitrary object position. It de-
pends on the scanned object u(E,r), the image reconstruc-
tion process given by R~!{-}, and the measurement process
described by P{-}. The weighting function w(E) is given by
the system weighting function of Eq. (6).

In the derivation of Eq. (17), the weighting function w(E)
was an arbitrary function normalized to one. However, for a
small object we have R™YP{u(E,r)}}~u(E,r) and thus
Q(E,r)=~w(E). This means that Eq. (16) turns into the small
object approximation given by Eq. (10) and w(E) is indeed
given by the CT system weighting function.

I.C. Calculation of the LWF

In practical CT we measure weighted attenuation coeffi-
cients u(r). In order to calculate the LWF, we need an esti-
mate of w(E,r) based on the input data. There are various
ways to produce estimates of w(E,r). In this section we as-
sume that we have performed a dual-energy scan. This yields
two sets of attenuation value data z,(r) and ,(r). We em-
ploy the basis material decomposition * in an image-based
form'® to obtain a parametrization of w(E,r). The well-
known ansatz is given by
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FiG. 8. The LSR procedure is a two-phase update process, starting with an
initial estimation LWF=SWF, updating u"(E,r), updating Q}”(E ,I), up-
dating ,u,(z)(E ,r), etc. After S steps, we obtain an estimate for both the LWF
and the object attenuation coefficient.

M
WED) =3 ¢r)f (). (18)
j=1

This separates the energy-dependent basis functions f;(E)
from the spatially dependent coefficients c¢;(r). The typical
choice for basis functions in medical CT is a set of water and
bone mass attenuation functions.'”*

Incorporating Eq. (18) into Eq. (16) and exchanging the
order of summation and integration yields

wy(r r

(gl( )>=K(Cl( )). (19
Ho(r) cy(r)

The elements of the matrix K are given by

K= f Q(E)f(E)dE. (20)
E

Equation (19) is solved for the coefficients ¢;(r) by invert-
ing K. However, the circular dependency K-—c,(r)
— w(E,r)— Q;(E,r)—K--- has to be resolved. This leads to
a two-phase iterative procedure according to the flowchart
shown in Fig. 8. Initially, we set Q;.kzo)(E ,r)=w(E). With
each iteration step, the algorithm updates the estimates of
w(E.r) and QP(E x).

This procedure is called LSR in the following. It yields an
estimate of both the LWF and u(E,r). We can adapt the LSR
procedure to multichannel spectral CT and basis material de-
composition, i.e., a number of N>2 spectral channels and a
number of M < N basis materials. Note that for medical CT it
is questionable to work with more than two basis materials.
This is due to the fact that the k£ edges of the atoms found in
biological tissues lie below the lower threshold energy of
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around 30 keV in CT imaging, This leads to nonunique at-
tenuation properties of human body materials.

Il.D. Applications

The LSR framework [Egs. (16) and (17)] yields an esti-
mate of the LWF and the object ground truth w(E,r). For
practical quantitative spectral CT applications, three main
fields exist.

The first group of applications targets the obtained u(E,r)
object data. The resulting parameters like basis material co-
efficients can be displayed and analyzed for specific diagnos-
tic tasks. In comparison to existing image-based calculations,
the effects of beam hardening and system energy weighting
properties are incorporated quantitatively into the algorithm.
We investigate the quantitative accuracy and precision in the
experimental section.

It is important to note that the w(E,r) are theoretically
independent of the object self-attenuation effects and charac-
teristics of the reconstruction and measurement process. For
example, the difference in reconstruction kernels between the
two dual-kVp measurements can be incorporated into the
measurement model of Eq. (13). This can improve pixel reg-
istration between the input data sets. Note that the spatial
resolution of the u(E,r) estimate, however, is limited by the
input image discretization.

In practice, accurate descriptions of w(E) and the mea-
surement operator P{-} are required to ensure quantitative
results. Note that the inverse Radon transform operator
R~} enters both the input image reconstruction and the
LWEF calculation in the same way. Due to this, it has no
additional effect on the accuracy and precision of u(E,r).

Scatter radiation can be included in the measurement
model [Eq. (11)] or corrected by an appropriate scatter cor-
rection algorithm. For the dual-kVp experiments carried out
in this paper, scattered radiation plays only a minor role and
is not corrected for.

It should be noted that alternative w(E,r) parametriza-
tions can be employed in the LSR framework. An example is
the image-based RhoZ projection method.?! Here the attenu-
ation coefficient is modeled as

(E,r) =peff<r)<§)<E,zeff<r>>. (21)

In this case we obtain effective density and atomic num-
ber representations (ps,Zer) as a result of the LSR frame-
work.

A second class of applications is energy calibration. Here
new images are calculated, which, for instance, contain the
contrasts of an alternative tube voltage setting. Mathemati-
cally, this corresponds to a predefined, constant energy
weighting w.(E) throughout the whole CT image data. A
number of different target weightings exist: CT beam hard-
ening corrections, for example, typically aim at a constant
system weighting function throughout the image, see, e.g.,
Fig. 5 for the w(E) of CT measurements with 80 and 140 kV
tube voltage settings.
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This can be extended to monoenergetic calibrations with
the target weighting function given by w.(E)=8E—-E;). An
application of monoenergetic attenuation coefficients is con-
trast enhancement for specific tissue differences.

A further energy calibration application is the attenuation
correction in SPECT/CT and PET/CT. Monoenergetic at-
tenuation coefficients at, e.g., 141 and 511 keV for the re-
spective tracer emission lines of *™Tc and '®F-glucose are
required.3

We can express all of the above energy calibration appli-
cations in a common formula

i (r) = j wo(E)u(E.x)dE. (22)
0

Here .(r) are the corrected image data for the LSR-
determined w(E,r) and a chosen target energy weighting
w.(E).

The third field of applications employs the LWF result.
Fundamentally, the LWF offers a deeper understanding of the
energy weighting process in CT. In practice, it allows for a
direct identification of an arbitrary object material. Based on
the LWF and Eq. (16), the measured spectral data z,(r) can
be compared against reference spectral attenuation functions.
This is demonstrated by a proof of concept in Sec. IV D.

lll. MATERIALS AND METHODS

In order to verify the LSR framework, we have applied it
to a number of measured and simulated CT phantom setups.
In the following, we describe the measurement and simula-
tion procedures, the evaluated phantom setups, and the
implementation of the LSR algorithm.

Ill.A. Measurements and simulations

For the measurements a Siemens Definition AS+ CT
scanner (Siemens Healthcare, Forchheim, Germany) was em-
ployed. Two consecutive sequential scans at tube voltages of
80 and 140 kV were performed for each phantom. The tube
current was set to 550 mA s for the 80 kV measurement and
600 mA s for the 140 kV measurement. The rotation time
was set to 0.5 s and 1152 readings were acquired during one
rotation. We used a standard filtered backprojection (FBP)
algorithm with rebinning to parallel beam geometry for re-
construction. For all scans a soft body kernel was used for
reconstructing 32 slices of 1.2 mm thickness.

In order to apply the LSR framework to practical CT mea-
surements, the so-called bow-tie filter at the exit window of
the x-ray tube has to be considered. It typically consists of an
aluminum slab with a central round cavity. The material
thickness is minimal at the center and increases to the full
aluminum thickness toward the edges. This geometry in-
creasingly reduces the primary x-ray intensity—and thus pa-
tient dose—toward the borders of the fan beam. As a second-
ary effect, it changes the spectral composition of the primary
x-ray spectrum. Due to this the effective system weighting
function has the form
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TaBLE I. Measurement and simulation setups A—E used for the LSR valida-
tion. For each setup, the phantom, data generation method and chosen basis
material functions are listed.

Id.  Description Data Source ~ Basis material set

A Upper abdomen phantom Measured Water-bone
B 40 cm water cylinder Simulated Water-bone
C 25 cm water cylinder Measured Water-bone
D  Thorax phantom w/o iodine Simulated Water-bone
E  Thorax phantom with iodine Simulated Blood-iodine
—lj,U«F(E)
w®) S(E)D(E)e 03

[ES(ED(E")e i EVGE!

for the jth sinogram channel, with up(E) as the attenuation
function of the bow-tie filter material (e.g., aluminum) and /;
as its local thickness. It replaces w(E) in Egs. (11)—(17).

As a second source of CT data, we have used simulated
CT images u(r). An analytic forward projector software
implements Eq. (5) to calculate the sinogram from the object
phantom data w(E,r). The simulated CT scanner x-ray ge-
ometry as well as tube and detector properties correspond to
those of the CT scanner used in the measurements. The re-
quired x-ray tube spectra and detector responsivity functions
for 80 and 140 kV tube voltages are shown in Fig. 5. Detec-
tor cross-talk and electronic noise effects were neglected as
they contribute only minor errors in our applications. A stan-
dard filtered backprojection algorithm for indirect fan-beam
data with a cosine filter kernel was used for reconstruction.
The simulation results were limited to a central single slice.

lIl.B. Phantom setups

A total number of five measurement and simulation setups
are used to generate input image data for a verification of
LSR applications. Table I summarizes the chosen configura-
tions A-E.

Configurations A and C are measurement cases. A body
abdomen phantom (A) and a water-filled cylinder with
25 cm diameter (C) were scanned. Configurations B, D, and
E employ simulated data. The phantoms comprise of a water
cylinder of 40 ¢cm diameter (B) and an anthropomorphic tho-
rax phantom consisting of several different body tissue
classes (D and E). Figure 9 shows the phantom setup E. The
tissue classes are defined in Table II. The material composi-
tions are chosen according to Table Al of the ICRU Report
46."" Tissue classes XV-XVII correspond to three blood
classes with slightly different concentrations of the contrast
agent iodine. They are positioned in the heart chambers and
the aorta. All three contain 1.06 g/cm? of blood. Tissue XV
additionally contains 5.42X 1073 g/cm?® of iodine, tissue
XVI 4.76 X 1073 g/cm?, and tissue XVII 3.40X 1073 g/cm?.
For configuration D, all three blood classes containing iodine
are substituted by the standard blood parametrization XIV.



4478

B. Heismann and M. Balda:

FiG. 9. Thorax phantom setup used as setups D and E in Table I. The roman
number annotations indicate specific body materials listed in Tab. II. The
spectral attenuation coefficient u(E,r) is provided for each material type
according to the body compositions in the ICRU report 46. At regions XV—
XVII, setup E contains blood with varying iodine contrast agent concentra-
tions, whereas setup D substitutes the three regions by the standard blood
parametrization XIV.

lll.C. LSR implementation

The LSR implementation is based on the image-based ba-
sis material decomposition given by Eq. (19). Basis material
function pairs of water/femur bone and blood/iodine are
used. The choice between the two sets in Table I aims at a
minimization of systematic model errors. Blood/iodine is
used as soon as iodine contrast agent material is present (cf.
Refs. 17 and 19).
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As the result of the LSR process for setups A—E, we ob-
tain an LWF Q(E,r) and the object representation w(E,r)
after each iteration.

lll.D. Ground truth comparisons

In order to verify the quantitative accuracy and precision
of the LSR framework, we compare application results to
ground truth values at various points throughout this paper.
For a predefined object the ground truth attenuation coeffi-
cient pugp(E,r) is known. It can be expressed by Eq. (2). We
can directly compare the ground truth ugr(E,r) to the LSR
result w(E,r). For energy calibration to a defined weighting
function w,(E) according to Eq. (22), we define the relative
scalar comparison result

_ 1) ~ )] _ |[[GwE)(E.r) - pr(E.r)dE|

o =
Jow (E) ugr(E,r)dE

MGT

(24)

The smaller &, the more accurately the corresponding en-
ergy calibration task was performed. In the following sec-
tion, we use the ground truth comparisons to examine the

qualitative and quantitative characteristics of the results for a
number of spectral CT applications.

TaBLE II. List of body materials used in the thorax phantom setups D and E, with the former shown in Fig. 9. Roman numbers provide an index to each
material. Columns 3 to 12 contain the relative systematic deviation & of the material ground truth to the basis material representation [see Eq. (24)]. Columns
3-7 include the water/bone u(E,r) and columns 8—12 the blood/iodine representations. The respective target energy weighting is given by a tungsten spectrum

with the tube voltage stated in the column title.

Water/bone Blood/iodine

No. Tissue name 60 kV 80 kV 100 kV 120 kV 140 kV 60 kV 80 kV 100 kV 120 kV 140 kV

I Average soft 6.53%X107% 1.83X107° 8.19X10™* 4.06X10™* 4.12x107° 249x107" 3.00X10° 3.09%102 2.01X10% 6.16X 1077
tissue (male)

II  Kidney 2.84X 1073 420%X10° 527X 10 274X 10™* 3.13x 107 6.89x1072 6.32Xx10° 8.58X 103 5.60X 107 1.80X107°

I Liver (healthy) 2.16X 1073 256X 107° 428X 10™* 217X 10™* 2.66X10° 495X 1072 5.67X10° 6.11X 107 3.99X 103 451X 1077

IV Lung (healthy, 1.31X1073 6.20X107% 3.92X10™* 2.15X10™ 6.91X10° 274X 1072 558X 10 339X 1073 224X 1073 625X 107°
inflated)

V  Skeletal muscle 3.19X 1073 4.50x 1077 593X 10* 3.10X10™* 3.11X10° 6.46X102 1.10X 1077 8.06X 107 526X107 2.78X107°

VI Red marrow 1.70X 1072 337X 107% 2.14X 107 1.20X107 1.73X107% 4.15X 107" 4.56X10° 512X 1072 3.32X 1072 5.61X 1077

VII  Bone cortical 6.97x 107 7.20X107° 1.00X 107 5.58x10™* 5.07X10°° 4.04 7.65X 107 695X 107" 491x107" 1.61X107°

VIII Bone cranium  4.97X 1073 2.71X10° 6.74X10™* 3.78X10™* 4.03x 107 3.58 236X10° 593X107" 4.14x 107" 5.61x107°

IX Bone femur 476X 107 7.79% 1077 1.99x 1076 3.82x107% 5.13x107° 2.92 2.39%X10° 459X 107" 3.16X 107" 3.23x107°°
(30 years, male)

X Bonerib2to6 3.12X1073 244X10° 4.02%x10* 2.53X10°* 1.88x107°° 3.08 1.97X10° 4.89%x 107" 3.38x107" 2.58x107°

XI  Bone spongiosa  6.20X 1073 1.92X107% 899X 10™* 542x10™* 2.71xX107° 1.98 6.66X10° 290X 107" 1.96x 107" 2.13x107°

XII Bone humerus  2.31X107% 5.09X107° 3.32x10™* 1.76X10* 7.91x107° 3.27 1.48Xx107° 527x107" 3.65X 107" 4.72Xx107°

XIII Cartilage 8.85X 1073 2.51X10° 1.18X 1073 7.33X10™* 1.21X10° 3.07X107" 3.73X107° 4.02X102 2.63X 1072 246X 107°

XIV  Blood 5.92X1073% 1.83X107° 1.07X1073 647X10™* 242x107° 9.12x107 5.01x107 2.12X107 290X 10% 9.93x 1078

XV Blood (high 1.54 157X 1070 214X 107" 1.44%x 107" 232X10°% 2.67x107 224x107 6.00x107 853X 1077 1.04X 1076
contrast)

XVI Blood (medium 1.40 1.20X107° 1.93X 107" 1.29X 107" 4.55X107° 6.64X107° 326X10° 6.92X107 1.02X10° 227X 107°
contrast)

XVII Blood (low 1.07 532X 107° 1.45X107" 9.65X 1072 1.00X 107 5.79X10° 225X 107° 4.00X 107 2.14X10° 3.40%X107°
contrast)
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FiG. 10. CT image of the upper abdomen phantom and location of the
sample points for the LWF plots in Fig. 11.

IV. RESULTS AND DISCUSSION

We used the measurement and simulation setups A-E
listed in Table I to evaluate the following properties.

First, we assess the basic characteristics of the LWF for an
upper abdomen phantom containing a bone inset and a ho-
mogeneous water phantom. Second, we evaluate the accu-
racy and precision of an LSR-based energy calibration pro-
cedure. Both beam hardening corrections to different x-ray
tube target weightings and an attenuation correction for
SPECT/CT and PET/CT are evaluated. Moreover, the accu-
racy of an iodine contrast agent density estimation is evalu-
ated. Finally, a direct material identification based on the
LWF is demonstrated.

IV.A. Characteristics of the local weighting function

In order to show the basic characteristics of the LWE, it is
evaluated for the measured upper abdomen phantom data
(setup A). Figure 10 shows the 80 kV input image with
markers at different locations within the thorax phantom
slice. Figure 11 shows the corresponding LWFs. Several ef-
fects are visible. The central soft tissue points at pixel indices
(239,259) and (290,276) have a very similar LWF. In com-

0.035F =
r = (147, 205)

r= (239, 259)"
~ — ~r=(276,330)"
=~ r=(290, 276)"

0.03

0.025 -

002} )
,

0.015F /

0.01F / /” \ d
/ \

0.005 /o -

Q(E,r)

20 30 40 50 60 70 80
Energy in keV

FiG. 11. Samples of the local spectral weighting function within the thorax
phantom.
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TaBLE III. Integral values of the SWF and LWFs at different locations
within the 40 cm water cylinder slice.

Distance from cylinder center

(cm) Integral value of the LWF
80 kV system weighting 1.0000
0 0.9533
4 0.9549
8 0.9551
12 0.9656
16 0.9707
20 1.0047

parison to this, the point at (147,205) close to the phantom
border exhibits a reduced LWF. The shape change within the
same tissue class is mainly due to the bow-tie filter. In this
case the LWF values are decreased toward the phantom
boundaries as the beam hardening of the bow-tie filter is
stronger than the object induced beam hardening. Finally, the
point at the spinal bone inset at (276,330) shows a strong
reduction in the LWF for lower energies.

We can further understand this behavior with setup B. It
comprises of a simulation of a 40 cm water phantom. The
x-ray tube bow-tie filter is omitted to obtain the pure object
effect. Table III shows the resulting change in the LWF inte-
gral value for varying distance from the center of the water
cylinder slice. The integral of the LWF at the center is re-
duced by around 5% compared to the edge of the phantom.
Unlike the SWF, the LWF is generally not normalized to 1.
The integral value over energy decreases with increasing
beam hardening. This property reflects the underestimation
of the attenuation values due to beam hardening in the un-
corrected input image.

These basic results indicate that the shape of the LWF is
originally given by the system weighting function. Local
changes in the shape are governed by the attenuation func-
tion of the underlying material. Furthermore, beam harden-
ing mainly affects the integral value of the LWF. This corre-
sponds to the mathematical structure of the LWF definition
(17).

IV.B. Energy calibration

As the first energy calibration experiment, the 80 and
140 kV measurement data of the 25 cm water phantom setup
C are provided to the LSR algorithm. With the resulting
M(E,r) representations an energy calibration according to
Eq. (22) is performed. The target weightings w,.(E) are cho-
sen as the system weighting functions for the 80 and 140 kV
measurements.

The 140 kV beam hardening correction result is shown in
Fig. 12 after the first iteration step. A nearly homogeneous
water value is obtained in the line plot. We can compare the
water values u(r) against the water attenuation function (3)
weighted by the respective target system weighting func-
tions. The average ground truth deviations are 6=2.86% for
the shown 140 kV case and 6=2.05% for the 80 kV case.
Additional iterations do not further improve the accuracy.



4480 B. Heismann and M. Balda: Quantitative image-based spectral reconstruction for computed tomography 4480

0.022 ]

0.02

-1

0.018

0.016 ]

0.014F b

0.012 ]

0.011 b

0.008 b

— Original data ]
— Calibration result after 1st iteration
= = = Ground truth value for water b

0.006 -

weighted attenuation coefficient in mm

0.004 -

0.002 ]

0 50 100 150 200 250
pixel index

FiG. 12. Beam hardening correction result after first iteration compared to
original and ground truth attenuation values. The higher values at the border
of the phantom are caused by the plastic casing of the water phantom.

The remaining ground truth deviations are probably due to
inaccuracies in the system descriptions, especially the param-
eterizations of the system weighting function and the bow-tie
filter. The next section investigates the potential algorithmic
inaccuracies.

In order to evaluate the algorithmic accuracy and preci-
sion, we use the simulated thorax-phantom setup D. For the
simulated data, the measurement system description is
known and accurate by definition. Any remaining ground
truth deviations can be attributed to LSR inaccuracies. The
simulated image data include Poisson quantum noise. It is
determined by maximum input quantum numbers of Nf)l)
=6.38X 10 (80 kV) and N.P'=2.83X 10° (140 kV) per de-
tector pixel reading. This enables us to evaluate the precision
of the LSR iteration results. For the target weighting w (E),
the detector responsivity is kept constant and spectra for the
tungsten tube voltages of 60, 80, 100, 120, and 140 kV are
used. We also evaluate monoenergetic spectra at 141 and
511 keV. This corresponds to the emission energy of *™Tc
and F'® as the most common SPECT and PET tracers. The
resulting image data can be used to perform an attenuation
correction in PET/CT and SPECT/CT.

IV.B.1. Accuracy, precision and convergence

Figure 13 shows the absolute error for average soft tissue
attenuation values after energy calibration with a 80 kV tar-
get weighting. The error is given by the absolute difference
to the ground truth attenuation function which has been
weighted with the same target weightings. The first four LSR
iterations are shown. The mean deviation for each step is
shown as the straight blue line. It describes the systematic
deviation from the ground truth and thus the accuracy of the
obtained soft tissue values. The error bars represent the stan-
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FiG. 13. Absolute error for average soft tissue attenuation values after en-
ergy calibration with 80 kV target weighting.

dard deviation of all soft tissue voxels and the dashed lines
indicate the 25% and 75% quantiles. These values represent
the precision of the obtained values.

The mean error drops strongly in the first LSR iteration
cycle. Here the image inhomogeneities caused by beam hard-
ening are already reduced substantially. After the second it-
eration step the average deviation is completely eliminated.
Further iteration steps do not contribute further accuracy. At
the same time the standard deviation indicated by the error
bars rises. This is due to the image noise which is introduced
by the basis material representations and amplified with each
step. A trade-off between accuracy and precision has to be
defined. For this particular result, one to two iterations are a
reasonable choice to obtain a very good accuracy without a
major sacrifice in precision. From the results we can also
deduce that the convergence rate shows an approximately
exponential behavior.

IV.B.2. Accuracy and convergence for multiple
target weightings and tissue classes

We can extend the findings of the last sections to all 12
material classes present in phantom setup D. Since we focus
on the accuracy and convergence behavior, Poisson noise is
not added to the input data in this case. Figure 14 shows the
relative errors o of the mean attenuation values for all avail-
able tissue classes in the uncorrected image and the first four
iterations. Again, a 80 kV target weighting has been used.

All materials show a convergence behavior similar to the
soft tissue depicted in Fig. 13. Note that the bone materials
require the strongest value shifts as they are affected the
most by beam hardening impacts.

Figure 15 demonstrates convergence and accuracy of an
energy calibration to a monoenergetic 511 keV spectrum.
This is equivalent to the calculation of an attenuation correc-
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FiG. 14. Relative error for energy calibration with 80 kV base and target
weighting (negative values indicate overestimation).

tion map for PET/CT. Again, the LSR process converges
exponentially. There is almost no change in the values after
three to four iterations and the errors are in the same range as
in the 80 kV beam hardening correction case. Similar results
are obtained for a monoenergetic 141 keV target spectrum
(Fig. 16). The results indicate that the calculation of both
PET/CT and SPECT/CT attenuation maps is feasible with
appropriate accuracy.

Figure 16 also summarizes the remaining energy calibra-
tion cases. Relative errors for energy calibrations to all
evaluated target weightings for all available tissue classes are
shown. Only the results for the fourth iteration are displayed.
In general, the error is smaller for soft tissues. All tissues
tend to have smaller errors for higher polychromatic target
energies, whereas the error of the monochromatic 141 keV
spectrum is larger for some tissues. The range of relative
errors is very small for all tissues and mostly below 0.1%.
The comparably high error in the inflated lung tissue is
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FiG. 15. Relative error for energy calibration from 140 kV base to monoen-
ergetic 511 keV target weighting (negative values indicate overestimation).
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FiG. 16. Relative errors for energy calibration of 80 kV input data to target
spectra from 60 to 140 kV and a monoenergetic 141 keV spectrum.

caused by the very low attenuation values and the resulting
high relative error even for minor absolute deviations.

IV.C. lodine density estimation

We evaluate the accuracy of the basis material coefficients
for the iodine filled blood insets in setup E of Table I. The
coefficients should represent the true densities of blood and
iodine since the basis materials exactly correspond to the
mixture materials of the tissue classes. Figures 17(a) and
17(b) show the resulting absolute deviations.

The estimated blood densities range from 1.0601 to
1.0604 with decreasing iodine concentration which equals a
relative error of less than 0.05%. The iodine concentration
values for the three tissue classes are 5.40X 1073 g/cm?
(relative error 0.33%) for high concentration, 4.75
X 1073 g/cm? (relative error 0.19%) for medium concentra-
tion, and 3.42X 1073 g/cm? (relative error 0.005%) for low
concentration.

Interestingly, the model mismatch of the iodine/blood ba-
sis functions to the bone constituents of the phantom (see
Table II) does not influence the quantitative accuracy of the
obtained densities. This is probably due to the fact that the
bone forward projection errors do not contribute substan-
tially. In bone-dominated regions like shoulder or head slice
images, this can potentially lead to more pronounced devia-
tions. A more accurate modeling of the w(E,r) could be
required then.

IV.D. Direct material identification

The previous applications are based on the w(E,r) result
of the LSR procedure. In this section, we demonstrate that
the LWF result can be used for a direct identification of
spectral attenuation functions. Like in the previous section
the analysis of the algorithmic accuracy is the main target.

We can rewrite Eq. (16) as
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FiG. 17. Absolute error for blood and iodine densities in blood-iodine mix-
tures estimated with LSR.

i(r) = fx Q(Er)pu(Ex)dE| = €. (25)
0

For a known LWF Q,(E,r), a measurement result &;(r) can
be compared against a model function w,(E,r). The index i
corresponds to a spectral measurement channel and ¢ is an
index to a list of different spectral attenuation functions. The
resulting ¢€; is a measure for the deviation between the model
function and the CT measurement data. For a dual-energy
measurement, the net deviation can be expressed by, e.g., a
quadratic sum e= \s"ef+e§. When we compare a comprehen-
sive list of materials u(E,r),r=1,...,T against the mea-
surement data, the most probable material can be identified.

We have applied a basic material identification approach
to the thorax phantom case D. The LWF estimates were com-
puted in two LSR iterations with 80 and 140 kV dual-energy
input data. The 80 kV input data is shown in Fig. 18(a). The
identification process was performed on the soft tissue com-
ponents of the phantom. In Table II, this corresponds to the
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(a)

(b)

Fic. 18. (a) 80 kV input image [attuenuation values i(r). C: 0.220 mm™!,
W: 0.012 mm~']. (b) Color-coded identification result. Blue: skeletal
muscle, red: blood, green: liver, and yellow: average soft tissue.

materials “average soft tissue” (I), “liver” (III), “skeletal
muscle” (V), and “blood” (XIV). As shown in Table IV, the
chemical compositions of these materials differ only slightly.

The results of the identification process are presented in
Fig. 18(b). All color-coded voxels were assigned to one of
the reference tissues, i.e., no intermediate probabilities are
shown. We have average soft tissue marked in yellow, liver
tissue shown in green, skeletal muscle in blue, and blood is
marked in red. Overall, a good separation between the tissue
types is achieved, especially considering the significant beam
hardening artifacts in Fig. 18(a) and the small chemical de-
viations of the materials. Errors are mainly present for voxels
affected by partial volume effects as these cannot be covered
by this single voxel oriented approach. Some blood voxels
are erroneously identified as liver tissue due to their particu-
lar similarity in terms of composition and density.

It should be noted clearly that these results represent a
proof of concept. Practical applications are strongly limited
by the input image noise and the associated impact on result
precision as well as the overall system stability. Even in the
absence of noise, the direct material identification cannot dis-
tinguish between two a priori chosen attenuation functions
which yield the same two measurement results.

Still, the results demonstrate that an appropriate algorith-
mic accuracy for demanding soft tissue identification tasks
can be achieved. Beam hardening is treated quantitatively
and the tissue is identified correctly over the whole image
plane. The method does not suffer from transformation non-
linearities or noise correlations typically found in alternative
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TaBLE IV. Chemical composition of soft tissue reference materials, taken from Ref. 11. The table lists mass
percentages of the four main elements H. C. N, and O as well as other elemental contributions. The measured

density is given in the right-most column.

Density
Tissue H C N (¢} Others (g/em™)
Average soft tissue 10.5 25.6 2.7 60.2 0.1 Na, 02 P,03S,0.2 1.030
CL 02K
Liver (healthy) 10.2 13.9 3.0 716 0.2 Na, 03P 038,02 1.060
Cl, 03 K
Skeletal muscle 10.2 14.3 34 71.0 0.1 Na, 0.2 P, 0.3 S, 0.1 1.050
Cl, 04 K
Blood 10.2 11.0 33 745 0.1 Na, 0.1 P, 028,03 1.060

ClL, 0.2 K, 0.1 Fe

indirect segmentation methods, e.g., based on effective
atomic number and density or basis material coefficients.

Note also that the results of this simple approach are
based on per voxel comparisons only. They do not employ
any shape or connectivity information. In practical realiza-
tions, the comparison method can be adapted to a specific
task and additional image processing might be required to
ensure a desired robustness. The distance measures can, for
instance, be used to as input data to a standard organ seg-
mentation algorithm.

V. CONCLUSION

We have introduced a quantitative image-based recon-
struction framework for spectral CT applications. The local
spectral reconstruction yields two results: First, the local
weighting function ((E,r) can be determined. The LWF de-
fines the local weighting of the object ground truth w(E,r) to
measured effective attenuation values u(r). At the same
time, estimates for the attenuation coefficient w(E,r) as the
object’s ground truth are obtained.

The LSR process consists of two nested update loops: An
initial estimate of the LWF is chosen, typically the system
weighting function. Then a quantitative spectral CT method
like the basis material decomposition yields a first estimate
of the spectral attenuation coefficient w(E,r). An updated
LWF is calculated from this and so forth.

In order to evaluate the properties of the LWF and the
accuracy and precision of the obtained spectral attenuation
coefficients, we have analyzed five different practical mea-
surement and simulation setups.

In a first group of evaluations, we have considered the
basic properties of the LWF. As input data, measurement data
of an upper abdomen phantom and simulations of a 40 cm
water phantom were obtained. The results on the measured
abdomen phantom indicate that the basic shape of the LWF
is given by the system weighting function. The LWF is
scaled down by object self-attenuation. Unlike the SWF, the
LWEF is not normalized to 1. For example, its integral value
is found to be reduced by about 5% at the center of the
simulated 40 cm water phantom. This is equivalent to the
reduction in the effective attenuation coefficient in standard
CT images. Furthermore, the LWF is shaped by the spectral
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attenuation coefficient of the local attenuator. The findings
correspond to the mathematical structure of the LWF defini-
tion.

The second group of evaluations covers energy calibration
as a practical application. For a measured 25 cm water phan-
tom, we obtained energy-calibrated effective 80 and 140 kV
images with no beam hardening artifacts. The remaining
ground truth deviations were found to be in the range of
2%-3%. This is a remarkable accuracy considering that mea-
surement impacts like the bow-tie filter beam hardening,
geometrical alignment issues and the uncertainty in SWF
have to be included successfully.

The algorithmic accuracy and precision was further evalu-
ated by simulated data of an anthropomorphic thorax phan-
tom. It is based on geometrical definitions of w(E,r) regions
of body materials. We analyzed the obtained w(E,r) data for
ground truth accuracy and precision. Energy calibrations to
[60,80,100,120,140] kV tube acceleration voltage SWFs
and monoenergetic 141 and 511 keV SWFs prove a conver-
gence to ground truth in the iterative process. The conver-
gence is found to be exponential. However, at the same time
noise is amplified with each iteration step. This degrades the
precision of the obtained w(E,r) parametrization.

The optimum choice of iteration steps depends on the
chosen application. For the homogenization of tissue values
typically found in beam hardening and energy calibration
tasks, one iteration might be enough to yield sufficient re-
sults in many cases. For quantitative spectral applications,
two iterations are probably the optimum choice. Since the
chosen phantom setup reflects typical medical CT objects in
terms of object diameter and material components, we expect
similar convergence results for arbitrary CT slice settings.

As an example for a quantitative spectral CT application
we have performed an iodine density measurement in the
heart chambers and aorta of the simulated thorax phantom.
We find relative deviations in the range of 107> between the
ground truth densities and the estimated iodine concentra-
tions. Finally, it was shown that the LWF result can be used
to perform a direct material identification with appropriate
algorithmic accuracy.

In terms of computational effort, one LSR iteration step
requires one basis material decomposition of the input at-
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tenuation value data, one forward projection per each basis
material coefficient image and one filtered backprojection for
each input weighting. For one to two iteration steps, the total
computational effort is thus estimated to be easily manage-
able in practical applications.

In summary, we have shown that potential applications of
the LSR framework like energy calibration and image-
domain quantitative spectral algorithms are feasible. The ex-
pected algorithmic accuracy in the subpercent range seems to
be sufficient for practical applications. Still, the precision of
the obtained object parametrizations depends on the noise
transfer of the iterative algorithm. For the results of this pa-
per, we find that an optimum trade-off exists where the
ground truth is reconstructed with only a minor precision
decrease. Understanding and controlling the noise transfer of
the algorithm warrants further research. Furthermore, we
have shown that beam hardening corrections, monoenergetic
attenuation coefficient images and attenuation correction
maps for SPECT/CT and PET/CT can be written in one com-
mon energy calibration formula. The LSR framework en-
ables quantitative spectral CT applications in the image do-
main. In particular, we can include the effects of object self-
attenuation as well as the physics of the measurement system
and the reconstruction filter kernel.

APPENDIX: EFFECTIVE ATTENUATION
COEFFICIENTS IN CT

Let us consider Eq. (5)

A= J w(E)exp_f L Exdr g p (A1)
0
in the case of small object attenuations
—f u(Ex)dr=0, VE. (A2)
L

This is a good approximation for small objects and low-Z
absorbers, e.g., small water objects. We expand the exponen-
tial in Eq. (A1) to get

A=JMW(E)<1—J M(E,r)dr
0 L

2

+ (j ,u(E,r)dr) - )dE (A3)

L
take the logarithm
In(A) = ln(l - fOCJ w(E)w(E,r)drdE + lfw w(E)
0 JL 2Jo
2
X(f ,u(E,r)dr) dE — -+ )dE, (A4)
L

and expand In(1-x) for x=~0 using a Taylor series. We ob-
tain
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ln(A)=—fwf w(E)u(E,r)drdE + R, (A5)
0o JL

with the rest term

1~ 2
= Ef w(E)(f ,u(E,r)dr) dE + higher orders. (A6)
0 L

For vanishing object attenuations, R— 0, we get the Radon
transformation formula

In(A) =—f u(r)dr, (A7)
L

a(r) = f w(E)u(E,r)dE. (A8)
0

The approximation of a small object attenuation leads to
both the linear Radon transform approximation and the spa-
tially constant system weighting function w(E) linking a(r)
to w(E,r).
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