Clinical Evaluation of Endorientation

Gravity related rectification for endoscopic images

September 16th, 2009

Kurt Höller^{1,2}, Armin Schneider², Sonja Gillen², Jasper Jahn³, Javier Guttierrez³, Jochen Penne¹, Thomas Wittenberg³, Joachim Hornegger¹, Hubertus Feußner²

¹ Chair of Pattern Recognition (LME), Friedrich-Alexander University Erlangen-Nuremberg (FAU)

²Workgroup for minimal invasive Surgery (MITI), Klinikum r.d.lsar, Technical University Munich

³Fraunhofer Institute for Integrated Circuits (IIS), Erlangen and Nuremberg

Content

- 1 Introduction/Motivation
- 2 Endorientation approach
 - Angle computation
 - Down sampling
 - Implementation
 - Evaluation
- 3 Summarize
- 4 Outlook

Overview

- 1 Introduction/Motivation
- 2 Endorientation approach
 - Angle computation
 - Down sampling
 - Implementation
 - Evaluation
- 3 Summarize
- 4 Outlook

Time Line

√

From open surgery to NOTES

Surgery can be done as:

- open surgery
 - \rightarrow for hundreds of years
- minimally invasive / laparoscopic surgery
 - \rightarrow since the late 80s
- and through natural orifices
 - \rightarrow "no longer if but when" (W. O. Richards, D. W. Rattner 2005)
- July 22/23, 2005 white paper and foundation of Consortium for Assessment and Research (NOSCAR) on NOTES:
 Natural Orifice Translumenal Endoscopic Surgery

Participating groups with NOTES

Great chance for technical innovations

Figure: Interdisciplinarity of Natural Orifice Translumenal Endoscopic Surgery (NOTES)

Improvements

With Natural Orifice Translumenal Endoscopic Surgery (NOTES)

Expected improvements with NOTES:

- significantly shortened patients' hospital stays
- no sterile operating room (only instruments)
- new dimension for medical care in developing countries

There will be better help for:

- obese patients
- burn injuries
- children

Peroral transgastric route

√

Peranal transcolonic route

Transvaginal route

Peroral transesophageal route

√

Potential barriers to clinical practice

According to the NOTES white paper, New York 2005

Fundamental challenges to the safe introduction of NOTES:

- Access to peritoneal cavity
- Gastric or intestinal closure
- Prevention of infection
- Development of suturing and anastomotic (nonsuturing) devices
- Maintaining spatial orientation
- Development of a multitasking platform
- Management of intraperitoneal complications and hemorrhage
- Physiologic untoward events
- Training other providers

Potential barriers to clinical practice

According to the NOTES white paper, New York 2005

Fundamental challenges to the safe introduction of NOTES:

- Access to peritoneal cavity
- Gastric or intestinal closure
- Prevention of infection
- Development of suturing and anastomotic (nonsuturing) devices
- Maintaining spatial orientation ⇒ item we can support
- Development of a multitasking platform
- Management of intraperitoneal complications and hemorrhage
- Physiologic untoward events
- Training other providers

Overview

- 1 Introduction/Motivation
- 2 Endorientation approach
 - Angle computation
 - Down sampling
 - Implementation
 - Evaluation
- 3 Summarize
- 4 Outlook

Overview

- 1 Introduction/Motivation
- 2 Endorientation approach
 - Angle computation
 - Down sampling
 - Implementation
 - Evaluation
- 3 Summarize
- 4 Outlook

Roll Pitch Yaw description

√

for endoscopic orientation

Roll Pitch Yaw description

√

for endoscopic orientation

Roll Pitch Yaw (DIN 9300 aeronautical standard)

Measurement of gravity

How have rotation parameters Φ , Θ and Ψ of the IMU (Inertial Measurement Unit) to be chosen to get back to a spatial orientation with $\vec{z} \parallel \vec{g}$?

$$\begin{pmatrix} F_{x} \\ F_{y} \\ F_{z} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\Phi) & \sin(\Phi) \\ 0 & -\sin(\Phi) & \cos(\Phi) \end{pmatrix} \cdot \begin{pmatrix} \cos(\Theta) & 0 & -\sin(\Theta) \\ 0 & 1 & 0 \\ \sin(\Theta) & 0 & \cos(\Theta) \end{pmatrix} \cdot \begin{pmatrix} \cos(\Psi) & \sin(\Psi) & 0 \\ -\sin(\Psi) & \cos(\Psi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ g \end{pmatrix} = \begin{pmatrix} -\sin(\Theta)g \\ \sin(\Phi)\cos(\Theta)g \\ \cos(\Phi)\cos(\Theta)g \end{pmatrix}$$
(1)

with Φ : Roll, Θ : Pitch, Ψ : Yaw and $F_{x,y,z}$: measured acceleration, g: gravity

Roll computation

Measurement of gravity

Using the two-argument function atan2 to handle the ambiguity of the arc tangent in a range of $\pm\pi$ one finally can compute **roll** Φ for $F_x \neq \pm g$ and **pitch** Θ for all values:

$$\frac{F_y}{F_z} = \frac{\sin(\Phi)\cos(\Theta)}{\cos(\Phi)\cos(\Theta)} \Rightarrow \Phi = atan2(F_y, F_z)$$
 (2)

$$F_{x} = -\sin(\Theta) \cdot g \Rightarrow \Theta = \arcsin\left(\frac{-F_{x}}{g}\right)$$
 (3)

Limitations

Measurement of gravity

Orientation computation is limited:

- \vec{g} determines just two degrees of freedom \Rightarrow yaw Ψ cannot be computed at any time
- singularity occurs at $F_x = \pm g$ ($\Theta = \pm \pi \rightarrow F_y = F_z = 0$) ⇒ roll Φ can not be computed when the endoscope **points** downward
- no calculation during **high superposed acceleration** ΔF_{absmax} \Rightarrow angle is freezed untill $\Delta F < \Delta F_{absmax}$ is reached again

$$|\sqrt{F_x^2 + F_y^2 + F_z^2 - g}| < \Delta F_{absmax}$$
 (4)

Overview

- 1 Introduction/Motivation
- 2 Endorientation approach
 - Angle computation
 - Down sampling
 - Implementation
 - Evaluation
- 3 Summarize
- 4 Outlook

Down sampling and peak filtering algorithm

Multiple sensor values during a single image frame

Down sampling from 400Hz sensor data to 30Hz video frame rate:

Downsampling process usable for filtering?

Down sampling and peak filtering algorithm

Add weighted values to rotate new image frame

- Weighted Sum:
- less movement influence (weighting)
- noise reduction (more values)

Down sampling

by summing up weighted samples

All n sensor values F_{x_i} , F_{y_i} and F_{z_i} within an image frame with i=1,...,n are summed up and weighted with a factor w_i with maximal weight $\frac{1}{w_0}$:

$$w_i = \frac{1}{w_0 + |g - \sqrt{F_{x_i}^2 + F_{y_i}^2 + F_{z_i}^2}}$$
 (5)

Afterwards the sum has to be normalized by the sum of all weighting factors w_i :

$$\begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = \sum_{i=1}^n \left(\begin{pmatrix} F_{x_i} \\ F_{y_i} \\ F_{z_i} \end{pmatrix} \cdot w_i \right) \cdot \left(\sum_{i=j}^n (w_j) \right)^{-1}$$
 (6)

Overview

- 1 Introduction/Motivation
- 2 Endorientation approach
 - Angle computation
 - Down sampling
 - Implementation
 - Evaluation
- 3 Summarize
- 4 Outlook

Endorientation algorithm

Block diagram with external microcontroller

Figure: Principle of Endorientation algorithm II

Tiny Prototype

Solution for loss of spatial orientation

Circuit board with MEMS chip STM LIS331DL for acceleration measurement and SMD capacitors for power supply HF denoising

- 3-axis MEMS accelerometer
- 0402 10uF/100nF capacitors
- \blacksquare range \pm 2.3g
- overall size 3x7mm
- communication via two-wire I²C interface

Endorientation Hardware: EndoSens

M

External Microcontroller for down sampling and filtering

EndoSens microcontroller implementation of the Endorientation algorithm:

- 8-bit Atmel AVR200 microcontroller
- overall size 35x50mm
- I²C input with 400 samples/s
- internal down sampling and filtering
- USB output with 30 values/s
- powered by USB

Endorientation Hardware

√

Accelerometer - microcontroller - computer - monitor

Overview

- 1 Introduction/Motivation
- 2 Endorientation approach
 - Angle computation
 - Down sampling
 - Implementation
 - Evaluation
- 3 Summarize
- 4 Outlook

Evaluation prototype

external sensor on endoscope's tip

with an animal study

Settings:

- rectal introduced flexible endoscope
- Grasp four different markers in the phantom (right upper, left lower, right lower and left upper quadrant) with trans-abdominal introduced instruments
- Only the original endoscopic view and additionally a rectified horizon were shown alternately
- Surgeon's hand movements were tracked and time was recorded

Results:

- markers were reached in signifcantly less time (by factor 2)
- path lengths were significantly shorter (by factor 2)
- Especially navigation in the lower abdomen is extremely difficult without image rotation (retroflexed position)

Average time comparison without and with image rectification

- Unsupported task:
 - n= 20 times mean $\mu_{
 m orig}=53.95s$ stdd $\sigma_{
 m orig}=41.55s$
- Supported task:

n=20 times mean $\mu_{\rm rect}=29.65$ stdd $\sigma_{\rm rect}=21.15$

Quadrant time comparison without and with image rectification

- μ upper right abdomen 72.00s (±67.13s) vs. 38.8s (±23.27s)
- μ lower right abdomen 62.2s (\pm 40.54s) vs. 24.6s (\pm 12.05s).
- μ lower left abdomen 38.8s (±22.25s) vs. 15s (±9.41s)
- μ upper left abdomen 42.8 $s(\pm 24.89s)$ vs. 40.2 $s(\pm 28.38s)$

Original vs. rectified images: total path length of 650 vs. 317 inches

Surgeon's hands' movements without (left) and with (right) rectification.

Clinical Endosens prototype evaluation

Drop test with animal study

Clinical Endosens prototype evaluation

√

Drop test with animal study

Overview

- 1 Introduction/Motivation
- 2 Endorientation approach
 - Angle computation
 - Down sampling
 - Implementation
 - Evaluation
- 3 Summarize
- 4 Outlook

Conclusion

Challenge:

- ⇒ use of flexible endoscopes with NOTES interventions
- \Rightarrow loss of spatial orientation esp. for surgeons

Idea:

- ⇒ fix a tiny inertial sensor on a flexible endoscope's tip
- ⇒ rectify orientation of endoscopic view, provide a stable horizon

Solution:

- ⇒ sensor board with MEMS accelerometer and I2C communication
- ⇒ EndoSens micro controller board with down sampling, filtering, threshholding and USB communication

Evaluation:

- ⇒ less time, shorter paths, easier handling
- ⇒ interventions with flexible endoscopes easier esp. for surgeons

Overview

- 1 Introduction/Motivation
- 2 Endorientation approach
 - Angle computation
 - Down sampling
 - Implementation
 - Evaluation
 - Summarize
- 4 Outlook

Outlook

Better technical evaluation of down sampling and filtering

- testing algorithms with synthetic data (collision / continuous tremor)
- testing in a surgery simulation area (rotary table)
- mosaiking/stitching based on rectified images
- finding an industrial partner!!!

The End

■ Thank you for your attention!

Any further questions?

