Spatial orientation

in Natural Orifice Translumenal Endoscopic Surgery

May 4, 2009

Dipl.-Ing. Kurt Höller

Chair of Pattern Recognition (CS 5)
Friedrich-Alexander-University Erlangen-Nuremberg
Germany

Content

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Chair of Pattern Recognition

√

Friedrich-Alexander-University Erlangen-Nuremberg, Germany

- Head
 - Prof. Dr.-Ing. Joachim Hornegger
- Fields of research
 - Medical image processing
 - Computer vision
 - Speech processing and understanding
 - Digital sports
- Our Staff
 - 4 Professors
 - 50 Researchers
 - 2 Administration Secretaries
 - 2 Laboratory Assistants, 1 Trainee

Background of the MUSTOF project group

√

Our team: Multiple interests, one vision...

- Organizational and personal infrastructure of the group:
 - computer scientists
 - electrical engineers
 - physicists
 - physicians
- Industrial partners:
 - endoscopy
 - camera
 - software

Endoscopic 3-D approaches

State of the Art

Position or distance information can be achieved with

- endoscopic ultrasound (EUS)
- magnetically anchored instruments
- passive optical approaches
 - stereo vision
 - structure from motion
 - shape from shading
- active optical approaches
 - pattern projection
 - time-of-flight hybrid system
- inertial sensors for gravity related rotation correction

First prototype of a 3-D endoscope

√

Based on time-of-flight technology

New 'killer-application'

For Multi-Sensor-Time-Of-Flight (MUSTOF) Technology

- We invented a very useful endoscopic tool
- DFG-Sonderforschungsbereich 603 with laparoscopic cholecystectomy was not continued
- We needed a new killer-application!

⇒ We found one:

New 'killer-application'

√

For Multi-Sensor-Time-Of-Flight (MUSTOF) Technology

'Towards NOTES^{3D}'

Joint funding application at Deutsche Forschungsgemeinschaft (DFG)

Participating institutes:

- LME, Erlangen (Prof. J. Hornegger)
- MITI group, Munich (Prof. H. Feussner)
- CAMP, Munich (Prof. N. Navab)
- LGDV, Erlangen (Prof. G. Greiner)
- MED1, Erlangen (Prof. E.G. Hahn)

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Time Line

M

From open surgery to NOTES

Surgery can be done as:

- open surgery
 - → for hundreds of years
- minimally invasive / laparoscopic surgery
 - \rightarrow since the late 80s
- and through natural orifices
 - \rightarrow "no longer if but when" (W. O. Richards, D. W. Rattner 2005)
- July 22/23, 2005 white paper and foundation of Consortium for Assessment and Research (NOSCAR) on NOTES:
 Natural Orifice Translumenal Endoscopic Surgery

4 D > 4 B > 4 B > 4 B >

NOTES Timeline

√

Starting

Figure: D-NOTES 2007 Mariensee (W. Lamadé, J. Hochberger)

First human NOTES procedure

M

2004, Rao and Reddy, India

Figure: First Human NOTES appendectomy (RAO and Reddy 2004)

Participating groups with NOTES

Great chance for technical innovations

Figure: Interdisciplinarity of Natural Orifice Translumenal Endoscopic Surgery (NOTES)

Benefits

Of Natural Orifice Translumenal Endoscopic Surgery (NOTES)

Expected benefits of NOTES:

- Less pain
- Faster recovery
- Better cosmetic results avoiding skin incisions
- Lower risk for herniation
- No risk for eventration
- Lower risk for adhesions
- Potentially lower risk for wound infection

Improvements

With Natural Orifice Translumenal Endoscopic Surgery (NOTES)

Expected improvements with NOTES:

- significantly shortened patients' hospital stays
- no sterile operating room (only instruments)
- new dimension for medical care in developing countries

There will be better help for

- obese patients
- burn injuries
- children

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Routes through natural orifices

√

Natural Orifice Translumenal Endoscopic Surgery

Peroral transgastric route

√

Natural Orifice Translumenal Endoscopic Surgery

Flexible endoscope through wall of stomach

Figure: Resection of gastric stromal tumor (J.L. Ponsky 2006)

Peranal transcolonic route

Natural Orifice Translumenal Endoscopic Surgery

Transvaginal route

Natural Orifice Translumenal Endoscopic Surgery

Transvaginal route

Figure: Transvaginal Cholecystectomy (R. Zorron, Strasbourg 2007)

Peroral transesophageal route

Natural Orifice Translumenal Endoscopic Surgery

Transesophageal access to the heart

Figure: Transesophageal endoscopic ultrasound-guided access to the heart. The EUS needle after penetration into the left atrium, placed at one leaflet of the aortic valve (A. Fritscher-Ravens 2007).

Possible therapies

Using NOTES technique

First discussed and tried therapies with NOTES:

- liver biopsy (2004)
- tubal ligation (2005)
- cholecystectomy (2005)
- oophrectomy (2005)
- partial hysterectomy (2005)
- gastrojejunostomy (2005)
- lymphadenectomy (2006)
- appendectomy

Figure: Oophrectomy (Wagh 2005)

Possible therapies

Using NOTES technique

Some more actual discussed and tried therapies with NOTES:

- splenectomy (2006)
- nephrectomy
- hernia repair
- hepatectomy
- gastrectomy
- bypass surgery
- peritoneal biopsy
- heart biopsy
- retreatment of diverticulosis fistulae

Figure: Splenectomy (Kantsevoy 2006)

NOTES Publications 2004-2008

Fast growing community

Figure: NOTES Publications in SE (SAGES), GIE (ASGE), Endoscopy (ESGE), DDW

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Access: Keeping the bowel loops apart using fluid

Figure: ISSA for NOTES (D. Wilhelm, A. Meining, A. Schneider, H. Feussner 2007): Lifting Colon

Access: Encircing by a purse string suture

Figure: ISSA for NOTES (D. Wilhelm, A. Meining, A. Schneider, H. Feussner 2007): Purse string suture

Access: Sterilized trocar inserted by perforating the area of rectal wall

Figure: ISSA for NOTES (D. Wilhelm, A. Meining, A. Schneider, H. Feussner 2007): A flexible endoscope can be passed through the sterile interior of the trocar

Access: Inserting the endoscope through the trocar

Figure: ISSA for NOTES (D. Wilhelm, A. Meining, A. Schneider, H. Feussner 2007)

Access: Purse string suture is immediately closed after withdrawal of the trocar

Figure: ISSA for NOTES (D. Wilhelm, A. Meining, A. Schneider, H. Feussner 2007): One or two applications of the linear stapling device

Closure of the access to the abdominal cavity

Gastric or colonic wall incision can be closed using

- Endoclips
- Stapler
- Suturing devices
- Anastomotic devices

W

√

√

W

√

dissolving magnesium spike, H. Feussner 2006

~

dissolving magnesium spike, H. Feussner 2006

√

dissolving magnesium spike, H. Feussner 2006

Stapling devices

Figure: Kaehler: Endoscopic stapler

Suturing devices

Figure: Olympus 'Eagle Claw'

Suturing devices

Figure: USGI Medical: G-Prox

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Potential barriers to clinical practice

According to the NOTES white paper, New York 2005

Fundamental challenges to the safe introduction of NOTES

- Access to peritoneal cavity
- Gastric or intestinal closure
- Prevention of infection
- Development of suturing and anastomotic (nonsuturing) devices
- Maintaining spatial orientation
- Development of a multitasking platform
- Management of intraperitoneal complications and hemorrhage
- Physiologic untoward events
- Training other providers

Potential barriers to clinical practice

According to the NOTES white paper, New York 2005

Fundamental challenges to the safe introduction of NOTES

- Access to peritoneal cavity ⇒ item we can support
- Gastric or intestinal closure
- Prevention of infection
- Development of suturing and anastomotic (nonsuturing) devices
- Maintaining spatial orientation ⇒ item we can support
- Development of a multitasking platform ⇒ item we can support
- Management of intraperitoneal complications and hemorrhage
- Physiologic untoward events
- Training other providers

Development of a multitasking platform

Requirements

Multiple surgery devices and data sources require

- multiple visualization systems:
 - HMD, stereoscopic monitors
 - augmented reality
 - virtual mirror
 - virtual shadows / illumination
- multiple control systems:
 - voice control
 - gesture control
- computer assisted robotic systems

Development of a multitasking platform: NOTES^{3D}

NOTES procedures supported by additional MUSTOF 3-D information

For secure work with computer assisted robotic systems we can support solutions for really important features:

- collision prevention
- motion compensation
- automatic positioning of surgery tools
- image reconstruction for a wider field of view
- virtual rotation of image plane out of the co-axial line

Collision prevention

√

Paketantrag 'Towards NOTES^{3D}'

Dynamic reconstruction

Paketantrag 'Towards NOTES^{3D}'

Development of a multitasking platform

√

As it could look like

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

State of the Art: PMDvision 3kS

Time-of-Flight (ToF) technology

■ Lateral resolution: 64×48 pixel

■ Depth resolution: 3 mm

Wavelength: 870 nm

■ Pixel dimension: $40\mu m \times 40\mu m$

■ Modulation frequency: $20 - 30MHz \ (\Rightarrow \lambda = 15 - 10m)$

■ Frame rate: >15 fps

Figure: ToF-camera and example images

State of the Art

√

Time-of-Flight (ToF) technology

■ Lateral resolution: 176×144 pixel

■ Depth resolution: 2,5 mm

Wavelength: 870 nm

■ Pixel dimension: $40\mu m \times 40\mu m$

■ Modulation frequency: $20MHz \ (\Rightarrow \lambda = 15m)$

■ Frame rate: >25 fps

Figure: ToF-camera and example images

March 1st, 2009: PMDvision Cam Cube

√

Time-of-Flight (ToF) technology

■ Lateral resolution: 204×204 pixel

Depth resolution: 3 mm

■ Wavelength: 870 nm

■ Pixel dimension: $40\mu m \times 40\mu m$

■ Modulation frequency: 20 - 40MHz ($\Rightarrow \lambda = 15 - 7.5m$)

■ Frame rate: >15 fps

Figure: ToF-camera and example images

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Time-of-flight principle

Pulsed modulation

Time-of-flight principle

Continuous wave modulation

"Ladungsschaukel"

charging swing

Illumination requirements

- small light emitting surface
- high power
- fast modulation
- narrow-band for ambient light suppression

accuracy
$$\sim \frac{c}{2f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}} \frac{A}{k_{opt}q_erT}$$

c: relative speed of light k_{opt} : optical system constant f_{mod} : modulation frequency q_e : quantum efficiency

 P_{laser} : power of modulated signal r: target reflectivity

 P_{amb} : ambient light power T: integration time

Illumination requirements

- small light emitting surface
- high power
- fast modulation
- narrow-band for ambient light suppression

accuracy
$$\sim \frac{c}{2f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}} \frac{A}{k_{opt}q_e r T}$$

c: relative speed of light k_{opt} : optical system constant f_{mod} : modulation frequency q_e : quantum efficiency P_{laser} : power of modulated signal r: target reflectivity

 P_{amb} : ambient light power T: integration time

Illumination requirements

- small light emitting surface
- high power
- fast modulation
- narrow-band for ambient light suppression

accuracy
$$\sim \frac{c}{2f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}} \frac{A}{k_{opt}q_e r T}$$

c: relative speed of light k_{opt} : optical system constant f_{mod} : modulation frequency q_e : quantum efficiency P_{laser} : power of modulated signal r: target reflectivity

 P_{amb} : ambient light power T: integration time

Illumination requirements

- small light emitting surface
- high power
- fast modulation
- narrow-band for ambient light suppression

accuracy
$$\sim \frac{c}{2f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}} \frac{A}{k_{opt}q_e r T}$$

c: relative speed of light k_{opt} : optical system constant f_{mod} : modulation frequency q_e : quantum efficiency P_{laser} : power of modulated signal r: target reflectivity P_{amb} : ambient light power T: integration time

Laser diode modulation

√

nonlinear characteristics

- fast modulation up to 500MHz
- high power
- differential resistance
- threshhold current between spontaneous and stimulated emission
- linear mode in the range of *I_{min}* to *I_{max}*

Illumination with Laser Diode and Bias-Tee

Signal with fast modulation (up to 60MHz) and high current (up to 2.25A)

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

A simple problem?

Making an endoscope see 3-D

- Idea: combine ToF-technology and endoscope optic to enable 3-D reconstruction of operation area on-the-fly during minimally invasive surgery.
- Requirements
 - Surgeons: sterilizable; not changing standard operation procedure; enabling Augmented Reality (considering quality and quantity of acquired data for registration purposes with preoperatively acquired data)
 - Endoscope manufacturers: cheap (!); based on available standard endoscope technology; must be easily integrated into current endoscope systems

Idea of MUSTOF

Parallel acquisition with ToF camera and CCD camera

Parallel acquisition of depth and image data combining a ToF and a CCD chip:

<u>Multi-Sensor-Time-Of-Flight</u> (MUSTOF) endoscope

Figure: Paketantrag 'Towards NOTES^{3D'},

Required Methods

Essential algorithms for MUSTOF technology:

- Calibration of ToF camera and CCD camera
- Registration of ToF data and CCD data
- Feature extraction and detection
- Reconstruction of static or almost static 3-D scenes
- Image processing and filtering for higher quality

Required Methods

Calibration and Registration of ToF camera and CCD camera

Figure: Paketantrag 'Towards NOTES 3D '

Required Methods

Reconstruction of static or almost static 3-D scenes

Figure: Paketantrag 'Towards NOTES^{3D},

Navigation support - Orientation

Finding the entry point to the peritoneal cavity

Challenge:

More information on position and orientation of the robotic device or the endoscope

Solution:

- Nonrigid registration of intraoperative 3-D data with preoperative CT or MR data is possible
- Calculated transformation parameters can be used to represent, correct und visualize actual position and orientation

Navigation support - Orientation

Finding the entry point to the peritoneal cavity

Navigation support - Augmented Reality

Finding the entry point to the peritoneal cavity

Challenge:

- Avoid injuries of hidden organs and vessels, e.g. while finding the entry point to the peritoneal cavity
- Knowledge of structures behind the visible wall is needed for a safe incision

Solution:

- Registration with preoperative volumes
- Segmentation of objects of interest in the preoperative volumes
- Adaption of those objects by iteratively computed transformation parameters
- Visualization of hidden organs or vessels in intraoperative endoscopic images by augmented reality

Navigation support - Augmented Reality

₩

Finding the entry point to the peritoneal cavity

Navigation support - Augmented Reality

₩

Finding the entry point to the peritoneal cavity

Navigation support - Off-axis view

Finding the entry point to the peritoneal cavity

Challenge:

 Overcome boundaries of limited field of view like axis in-line view and loss of spatial orientation

Solution:

- 3-D surface knowledge can be used to extend and virtually rotate the field of view
- With a 3-D mosaicking technique, the field of view can be extended by reconstruction of the operation area.

Navigation support - Off-axis view

~

Finding the entry point to the peritoneal cavity

Navigation support - Collision prevention

Finding the entry point to the peritoneal cavity

Challenge:

- Provide a higher grade of safety for automatic tools and robotic devices
- Especially important with multiple instruments through only one flexible endoscope

Solution:

- With real-time distance information efficient collision prevention with tissue or other instruments can be enabled
- Auto-positioning depending on respiration or other patient movements will be very helpful.

Navigation support - Collision prevention

√

Finding the entry point to the peritoneal cavity

√

Liver phantom with gall bladder

√

Liver phantom with gall bladder

√

√

√

√

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Problem of unknown image orientation

√

with flexible endoscopy

Roll Pitch Yaw description

√

for endoscopic orientation

Orientation of endoscope tip

Roll Calculation

How can roll Φ (= orientation of endoscope tip) be calculated out of measured forces on the axes x, y, z and the vector \vec{g} without any further angle information?

 \Rightarrow \vec{x} , \vec{y} and \vec{z} are orthogonal axes of the Cartesian "board navigation system"

Roll Pitch Yaw (DIN 9300 aeronautical standard)

Measurement of gravity

How have rotation parameters Φ , Θ and Ψ of the IMU (Inertial Measurement Unit) to be chosen to get back to a spatial orientation with $\vec{z} \parallel \vec{g}$?

$$\begin{pmatrix} F_{\chi} \\ F_{y} \\ F_{z} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\Phi) & \sin(\Phi) \\ 0 & -\sin(\Phi) & \cos(\Phi) \end{pmatrix} \cdot \begin{pmatrix} \cos(\Theta) & 0 & -\sin(\Theta) \\ 0 & 1 & 0 \\ \sin(\Theta) & 0 & \cos(\Theta) \end{pmatrix} \cdot \begin{pmatrix} \cos(\Psi) & \sin(\Psi) & 0 \\ -\sin(\Psi) & \cos(\Psi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ g \end{pmatrix} = \begin{pmatrix} -\sin(\Theta)g \\ \sin(\Phi)\cos(\Theta)g \\ \cos(\Phi)\cos(\Theta)g \end{pmatrix}$$
(1)

with Φ : Roll, Θ : Pitch, Ψ : Yaw and $F_{x,y,z}$: measured acceleration, g: gravity

Roll computation

Measurement of gravity

Using the two-argument function atan2 to handle the ambiguity of the arc tangent in a range of $\pm\pi$ one finally can compute **roll** Φ for $F_x \neq \pm g$ and **pitch** Θ for all values:

$$\frac{F_y}{F_z} = \frac{\sin(\Phi)\cos(\Theta)}{\cos(\Phi)\cos(\Theta)} \Rightarrow \Phi = atan2(F_y, F_z)$$
 (2)

$$F_{x} = -\sin(\Theta) \cdot g \quad \Rightarrow \quad \Theta = \arcsin\left(\frac{-F_{x}}{g}\right)$$
 (3)

Limitations

Measurement of gravity

Orientation computation is limited:

- \vec{g} determines just two degrees of freedom \Rightarrow yaw Ψ cannot be computed at any time
- singularity occurs at $F_x = \pm g$ ($\Theta = \pm \pi \rightarrow F_y = F_z = 0$) ⇒ roll Φ can not be computed when the endoscope **points** downward
- no calculation during **high superposed acceleration** ΔF_{absmax} \Rightarrow angle is freezed untill $\Delta F < \Delta F_{absmax}$ is reached again

$$|\sqrt{F_x^2 + F_y^2 + F_z^2} - g| < \Delta F_{absmax}$$
 (4)

Endorientation algorithm

Block diagram

Figure: Principle of Endorientation algorithm

First Prototype

Solution for loss of spatial orientation

Circuit board with MEMS chip STM AIS326DQ for acceleration measurement, 10uF/100nF SMD capacitors for power supply HF denoising and 4k7 SMD resistors for I²C adaption

- 3-axis MEMS accelerometer
- 0804 capacitors
- range ±6g
- overall size 12x18mm
- communication via two-wire I²C interface

New smaller Prototype

W

Solution for loss of spatial orientation

Circuit board with MEMS chip STM LIS331DL for acceleration measurement, 10uF/100nF SMD capacitors for power supply HF denoising and 4k7 SMD resistors for I²C adaption

- 3-axis MEMS accelerometer
- 0603 capacitors
- range ±2.3g
- overall size 5x8mm
- communication via two-wire I²C interface

Upcoming Design

√

3mm outer diameter for the use in a endoscopic working channel

Circuit board with MEMS chip STM LIS331DL for acceleration measurement and 10uF/100nF SMD capacitors for power supply HF denoising

- 3-axis MEMS accelerometer
- 0402 capacitors
- range ±2.3g
- overall size 3x7mm
- communication via two-wire I²C interface

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Evaluation prototype

√

external sensor on endoscope's tip

K. Höller

Evaluation prototype

external sensor on endoscope's tip

First results

\sim

Software solution

Figure: Original (I) and rectified (r) image

Clinical Evaluation

Average time comparison without and with image rectification

Clinical Evaluation

Original vs. rectified images: total path length of 650 vs. 317 inches

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Summarize

Applications and Challenges

Supporting problems of **NOTES** will be THE application for endoscopic 3-D systems:

- Access to peritoneal cavity
 - Registering online optic 3-D data with preoperative MR or CT visualized by Augmented Reality
- Maintaining spatial orientation, distance values or other 3-D data
 - collision prevention, motion compensation and automatic positioning of surgery tools
 - reconstruction of static scenes (3-D mosaicking)

Advantages of our MUSTOF technology:

- real-time 3-D information
- hardware with short innovation cycles (ToF-chip)
- real 3-D measurements (not only 3-D impression)

Conclusion

Endoscopic 3-D information (e.g. by MUSTOF) are precondition to

- calculate intra-operative orientation
 ⇒ registrating with pre-operative MR/CT volumes
- avoid injuries of hidden organs and vessels⇒ making them visible by augmented reality
- provide an enhanced field of view
 ⇒ computing off-axis view or reconstructed area by stitching
- to enable collision prevention, motion compensation and automatic positioning of surgery tools
 - \Rightarrow using a real-time distance measurement

Conclusion

Contributions of an Enhanced Endoscopic Engineering (e.g Endorientation):

- Idea:
 - ⇒ tiny chip can be fixed even on a flexible endoscope's tip
 - ⇒ orientation of endoscopic view is rectified
 - ⇒ a stable horizon is provided

Solution:

- \Rightarrow tiny circuit board, I2C communication and register setting
- ⇒ down sampling, filtering and threshholding
- \Rightarrow image rotation and rectification

Evaluation:

- ⇒ interventions easier for surgeons
- ⇒ better video hardware needed

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - NOTES routes and procedures
 - NOTES instruments
 - Challenges with NOTES
- 3 Time-of-Flight (ToF) Endoscopy
 - Time-of-Flight (ToF) principle
 - Idea of MUSTOF
- 4 Biomedical IMU applications
 - Endoscopic image orientation
 - Evaluation
- 5 Summarize
- 6 Outlook

Outlook

Next steps:

- Use new ToF camera with higher resolution (41.000 pixels instead of 3.000 pixels)
- Design rotation correction sensor even smaller (3×6mm)
- Evaluation of accuracy and benefit of both approaches
- Publishing results

The End

- Thank you for your attention!
- Endorientation Demo
- Any further questions?

