
Putting 'p' in RabbitCT - Fast CT Reconstruction

Using a Standardized Benchmark

Hannes G. Hofmann, Benjamin Keck, Christopher Rohkohl, and
Joachim Hornegger

Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nuremberg
Martensstr. 3, 91058 Erlangen, Germany

{hannes.hofmann,benjamin.keck,christopher.rohkohl,

joachim.hornegger}@informatik.uni-erlangen.de

http://www5.informatik.uni-erlangen.de/

Abstract. Computational architectures and processors are an ever-changing �eld of re-
search and development. Standardized and representable problem-dependent tests are re-
quired to �nd the optimal design of a running system. For the demanding problem of 3-D
cone-beam tomographic reconstruction no such benchmarks are available to the public. We
provide a standardized benchmark environment www.RabbitCT.com which enables the
comparison of di�erent hardware and system con�gurations. In this work we report the
�rst results from a handful of di�erent parallelization approaches. Among them software-
based multi-threading, SIMD optimizations and state-of-the-art graphics cards using the
CUDA programming environment.

Key words: Back-projection, Benchmark, CBCT, CT, GPU, Multi-core

1 Introduction

Clinical applications require fast 3-D reconstruction of tomographic data. There-
fore, means to accelerate the reconstruction is a strong research topic. Currently
the most wide-spread algorithms in clinical X-ray CT reconstruction belong to the
class of �ltered backprojection (FBP), e.g. the FDK method [1] for cone-beam
data. Another class of reconstruction algorithms is based on iterative techniques
which require multiple iterations of back- and forward projections. The latter can
incorporate various corrections and provide superior image quality in certain cases
like sparse or irregular data [2]. The fact that their complexity is a multiple of
the FDK's might be a reason why this class of reconstruction algorithms is less
commonly used in clinical systems.

The backprojection step is complex and bandwidth demanding � yet highly
parallelizable. Hence, both classes of reconstruction algorithms can be accelerated
well.

A manifold of specialized hardware and software techniques exist which can be
applied to a multitude of reconstruction algorithms and acquisition scenarios. How-
ever, there exists no public means for comparing the speed and accuracy across dif-
ferent publications. We have realized the need for a standardized benchmark for re-
construction performance. Therefore, we have initiated RabbitCT [3, 4] which �lls
this gap (see Section 2.4). To test-drive this platform we have implemented a hand-
ful of modules with di�erent parallelization approaches. Besides multi-threading
using di�erent libraries we present a hand-optimized SIMD implementation, a ver-
sion combining both techniques and furthermore a GPU implementation using
CUDA 2.1.



2 Methods and Materials

Over the last few years it became clear that the performance gain of new proces-
sors no longer comes from raising the clock rate. Instead, processor vendors have
shifted paradigms and turn the increasing number of transistors into an increasing
number of cores. Software developers have to write parallel code now to leverage
all the available compute power. Multi-threading libraries (Sect. 2.1) help to utilize
multiple cores. To also exploit the SIMD units on recent processors, the code has to
be vectorized (Sect. 2.2). And �nally, modern graphics cards are real work horses
that can be employed by use of CUDA (Sect. 2.3) and the forthcoming OpenGL.
This section is concluded by a description of our RabbitCT benchmark and the
hardware used for our experiments.

2.1 Multi-Threading Libraries

Several APIs exist which support developers in multi-threaded programming. In
this paper we have evaluated two of them, Intel's Threading Building Blocks
(TBB) [5] and OpenMP [6]. We chose TBB because it will be supported on
Larrabee [7], our next target platform, and OpenMP for its popularity and ease
of use.

OpenMP is well established and supported by major hardware and software
vendors. Code sections that should be executed in parallel are marked with a
preprocessor directive. Thus compiler support is required which is provided with
most modern compilers.

The open source project TBB was founded by its main contributor Intel. TBB
is implemented as a C++ template library. It does not require compiler support
and o�ers plenty of components for parallel programming.

2.2 Vectorization

Modern CPUs feature so-called vector processing units. Instead of performing one
operation on a single element of data they can perform the same instruction on
many elements concurrently, called SIMD (Single Instruction, Multiple Data). Cur-
rent CPUs from AMD and Intel support SSE which can operate on four single pre-
cision �oating point numbers at once. Future chips, e.g. Larrabee, will extend the
SIMD width and be able to process up to 16 single precision elements simultane-
ously [7]. To utilize SIMD instructions, the programmer has to use intrinsics, which
are translated into the corresponding assembler instructions by the compiler. Most
modern compilers also try to automatically vectorize code � with varying success.
The performance bene�t of vectorization is greatest in parts of the program where
many data elements are processed in the same way.

2.3 CUDA 2.1

In 2007, NVIDIA introduced their Common Uni�ed Device Architecture (CUDA)
[8], which was a fundamentally new programming approach at this time, mak-
ing use of the uni�ed shader design of the most current Graphics Processing
Units (GPUs) from NVIDIA. The programming interface allows to implement an
algorithm using standard C language and a few extensions. No knowledge about
graphics programming using OpenGL, DirectX, and shading languages is necessary
any more.



Since then CUDA evolved, up to CUDA 2.1 in the latest release, o�ering a
stable system. It provides access to many hardware features, for the usage of high
performance parallel computation. For example, NVIDIA's QuadroFX 5600, which
we used for our experiments, uses 128 stream processors in parallel and can addi-
tionally bene�t from hardware accelerated features like texture interpolation. Fur-
thermore, CUDA can be used on the latest and future graphics cards by NVIDIA.

Applying the easy to use C-like application programming interface of CUDA,
the following two di�erent parts in each CUDA implementation have to be distin-
guished: A host part, which executes in a CPU thread, and a device part (kernel).
The latter is invoked by the controlling CPU thread, but runs in parallel on the
GPU device. Due to the fact that the kernel can only operate on the graphics
card's memory, the API provides functions for memory management from within
the CPU thread.

2.4 RabbitCT

To evaluate di�erent approaches to exploiting parallelism, we implemented several
modules for the benchmark suite RabbitCT using di�erent optimization tech-
niques. RabbitCT provides a standardized C-arm CT dataset, problem state-
ments and framework to benchmark the performance of the backprojection step
of the FDK algorithm. The dataset consists of N = 496 pre-processed projection
images In ∈ RSx×Sy , n = 1 . . . N from a C-arm system (Siemens AG, Artis Zee)
acquired on a 200◦ circular short-scan trajectory. The size of a projection image is
Sx = 1248 pixels in width and Sy = 960 pixels in height at an isotropic resolution
of 0.32 mm

pixel
.

For each projection image a pre-calibrated projection matrix An ∈ R3×4 is
available. It encodes the perspective projection, in homogeneous coordinates, of a
3-D object point onto the 2-D projection image [9, 10].

The task for RabbitCT modules is the reconstruction of an isocentric cu-
bic volume of 2563 mm3. We de�ned four di�erent problem sizes with di�er-
ent computational costs. The side lengths of the cubic reconstruction are L ∈
{128, 256, 512, 1024} voxels respectively at an isotropic voxel size of RL = 256

L
mm.

2.5 Test Hardware

Sockets Clock
CPU × Cores Speed L2 Cache L3 Cache RAM

Core2Duo T9300 2 2.50GHz 6MB � 4GB
Core2Extreme QX9650 4 3.00GHz 2× 6MB � 4GB
Xeon X7460 4× 6 2.67GHz 12× 3MB 4× 16MB 32GB
Nehalem-EP 2× 4 2.67GHz 8× 256KB 2× 8MB 12GB

Table 1. Speci�cations of our test systems. Missing in this list is the graphics card, see text for details.

The most important speci�cations of our test systems are listed in Table 1.
Note that the machines with Xeon X7460 (Dunnington) and Nehalem processors
were pre-production systems. We expect production hardware to deliver similar
performance levels. Missing in this list is the graphics card used for the CUDA
benchmarks. We used a NVIDIA QuadroFX 5600 installed in a Fujitsu Siemens
Celsius R650 with an Intel Xeon E5410 CPU and 16 GB of main memory.



Nehalem's two major novelties are the QuickPath Interconnect (QPI) which
replaces the legacy Front Side Bus (FSB) and the integrated memory controller
with support for DDR3 SDRAM. These two result in a substantial increase in
main memory bandwidth.

For tests on the Core2Duo (C2D) and Core2Extreme (C2E) systems the MSVC9
compiler was used. The Dunnington and Nehalem systems were benchmarked us-
ing both gcc in version 4.3.3 and the Intel compiler in version 11.0.074.

3 Implementation

Algorithm 1 describes the core part of the FDK algorithm. It is executed for every
projection image In. The three inner loops (i, j, k) traverse the volume in x, y and
z direction and update each voxel exactly once.

Algorithm 1: The backprojection kernel for the n-th projection image.
input : In,An, L,OL, RL, fL
output: updated reconstruction fL

for k = 0 to L− 1 do

z = OL + kRL;
for j = 0 to L− 1 do

y = OL + jRL;
for i = 0 to L− 1 do

x = OL + iRL;

// Update the volume

fL(i, j, k)+ = 1
wn(x,y,z)2

· p̂n(un(x, y, z), vn(x, y, z));

end

end

end

3.1 Multi-Threading

Within one iteration of the projections-loop the FDK algorithm has no competing
write accesses. Therefore, any of the x, y, z loops can be split into disjoint ranges
and executed in parallel.

To reduce the overhead of thread management we decided to parallelize only
the outermost (z) loop. Of course, the actual number of chunks into which the
loop is divided is usually equal to NP , the number of compute cores. This method
will scale up to Nz cores, where Nz is the number of voxels in z-direction (128,
256, 512 or 1024). As NP is typically small compared to Nz, we can be sure that
each task is big enough to compensate the start-up overhead. This strategy was
used for both the OpenMP and TBB implementation.

In our OpenMP implementation we de�ned a parallel work-sharing region
(#pragma parallel for) around the for-loop which iterates in z-direction.

The TBB implementation uses parallel_for as well. But due to the design
of TBB the kernel had to be wrapped in a C++ class which stores the state of the
current task. The TBB scheduler creates one instance of this class per thread and
initializes it with the correct boundaries. Then its operator() method is called
by the scheduler.



3.2 Vectorization

Vectorization is most e�cient in code parts where a lot of computation is done.
The y and z loops do only increment the coordinates but the actual backpro-
jection, including a bilinear interpolation, happens within the x-loop. It iterates
over all voxels in one column (�xed y and z coordinate) and performs the same
computation on each of them. This makes it just natural to use SIMD here.

While multi-threading was supported by the libraries, vectorization was done
manually. For many parts of the code it was straightforward. However, vectoriza-
tion is particularly complicated for code sections that contain conditional branches.
There is a check if the current voxel is in the Field-of-View (FOV) of the current
projection before the projection value is read. If it lies outside, the voxel update
is skipped and processing continues with the next voxel. Since SIMD units can
not branch independently for individual vector elements all voxels have to be up-
dated. To avoid invalid memory accesses the projected coordinates of a voxel are
set to (0, 0) if they lie outside of the projection. After fetching the projection val-
ues, the outliers are set to 0. Both measures can be implemented e�ciently using
multiplicative masks.

Another problem is caused by the geometry. Rays through adjacent voxels do
not necessarily end up in neighboring pixels in the projection image. The result
are non-linear memory accesses when loading the projection values for a vector
of voxels. Therefore, all pixel values have to be fetched in a scalar manner and
inserted into vectors which are then used to compute the bilinear interpolation.

3.3 GPU / CUDA 2.1

In our CUDA 2.1 implementation we invoke our backprojection kernel on the
graphics device. In CUDA the parallelization is originated due to the partition of
the problem into a grid of blocks, while each block consists of a limited number of
threads. Each thread of the kernel computes the backprojection of a certain column
of the volume in y-direction. This means that the volume is parallel processed for
each x-z-coordinate.

This allows to save six multiply-add operations by incrementing the homoge-
neous coordinates with the appropriate column of the projection matrix for neigh-
boring voxels in y-direction. This approach also reduces the register usage down
to 9 registers for a backprojection kernel. The detailed description of the CUDA
implementation can be found in [11].

4 Results

We ran benchmarks for volumes of 1283, 2563 and 5123 voxels. Most emphasis is put
on the results of the largest problem as they are relevant for clinical use. Moreover,
the start-up overhead has more impact on the overall runtime on smaller volume
sizes. Therefore, if not said explicitly we refer to the 5123 volume.

RabbitCT measures the plain backprojection runtime without reading from
and storing to hard disk. We anticipate a situation where we either have su�cient
hard disk speed (e.g. using a RAID system) or get the projections on the �y over
a fast network link. To accomplish this, we tried to load all projections to main
memory before backprojecting all of them. However, due to memory limitations
on some systems, we had to split the projections into four sets and process the



sets sequentially. For the CUDA implementation, the �nal transfer of the recon-
structed volume from the GPU to the host's main memory is not included in the
measurements because typically the volume would be rendered after reconstruc-
tion and could therefore stay on the GPU. The times given in this section are the
mean backprojection time for one projection. Runtimes are actual measurements,
speed-ups comparing di�erent systems are normalized by the CPUs' clock speed.

Core2Extreme Nehalem
Volume Size Runtime Factor Runtime Factor

1283 7.20 1.00× 3.25 1.00×
2563 49.76 6.91× 22.16 6.81×
5123 400.38 55.59× 170.74 52.46×

Table 2. Mean backprojection time in ms on the Core2Extreme and Nehalem systems for di�erent
volume sizes. Speed-ups are relative to the 1283 volume. Implementation: TBB+SIMD.

Table 2 shows how the runtime changes with di�erent volume sizes. Theoret-
ically the complexity is increased by a factor of 8 when the length of the recon-
structed volume is doubled. However, when increasing the volume size from 1283

to 2563 voxels, the factor is signi�cantly less than 8. This indicates that the start-
up overhead is a substantial part of the total computation time in the 1283 case.
In contrast, the factor is almost 8 when doubling cube length again to 5123. The
problem size of 2563 is su�cient to hide the overhead.

Implementation Core2Duo Core2Extreme Nehalem Dunnington

single-threaded 6322.27 5389.05 5041.82 5064.11
SIMD 1789.47 1505.71 1711.64 1694.94
OpenMP 3126.36 1256.71 456.41 229.52
TBB 2683.81 1119.96 447.50 222.32
TBB+SIMD 990.99 400.38 170.74 116.47

Table 3. Mean backprojection time in ms on selected systems for di�erent optimizations. The volume
size was 5123.

Volume Size CUDA Dunnington

1283 4.00 2.70
2563 10.14 13.55
5123 34.50 116.47
10243 � 931.83

Table 4. Mean backprojection time in ms on the GPU and on the fastest CPUs. A volume of size 10243

was not too large to store on the used graphics card.

Table 3 provides an overview over the measurements of all CPU-based imple-
mentations with a 5123 volume on di�erent systems. On the Nehalem and Dun-
nington systems the Intel compiler was used, on the Core2Duo and Core2Extreme
MSVC. The results of the CUDA implementation can be found in Table 4.

Table 5 shows the achieved speed-ups for di�erent optimizations. The speed-
up with OpenMP was 18.8× on the Dunnington system and 10.2× on the 8-core
Nehalem using gcc. The Intel compiler performed even better achieving 22.1×



Core2Duo Core2Extreme Nehalem Dunnington
Implementation Speed-up Speed-up Speed-up Speed-up

single-threaded 1.00× 1.00× 1.00× 1.00×
SIMD 3.53× 3.58× 2.95× 2.99×
OpenMP 2.02× 4.29× 11.05× 22.06×
TBB 2.36× 4.81× 11.27× 22.78×
TBB+SIMD 6.38× 13.46× 29.53× 43.48×

Table 5. Shows impact of di�erent optimizations on the same CPU, for two di�erent CPUs. Speed-up
is relative to single-threaded implementation on same CPU.

Dunnington Nehalem
Implementation Compiler Runtime [ms] Runtime [ms]

OpenMP gcc 269.23 494.95
OpenMP icc 229.52 456.41
TBB gcc 224.23 447.12
TBB icc 222.32 447.50

Table 6. Comparing gcc and the Intel compiler on two systems. The volume size was 5123. Note the
improvement of the OpenMP implementation when using icc.

and 11.1× respectively. As mentioned in Section 3.1 TBB required more e�ort
to implement. But the reward was better performance throughout all our experi-
ments. The speed-up with TBB was 22.6× and 11.3× respectively, also using gcc,
and 22.8×, 11.3× using the Intel compiler. When using MSVC or gcc, the advan-
tage of TBB was between 10 and 20%. Even with the Intel compiler's optimized
OpenMP implementation, TBB is still 2− 3% ahead (cf. Tables 5 and 6).

When evaluating the performance gain from vectorization (cmp. Table 5), one
thing is noticeable. For the Core2* systems, the speed-up is about 3.5×, but for
the Nehalem and Dunnington it's only around 3× (cf. Table 5). Our explanation
is that the Intel compiler does a pretty good job in auto-vectorizing and code
optimization, resulting in a higher baseline. The next thing is that the speed-
up from the TBB implementation to TBB+SIMD is noticeably lower than from
baseline to SIMD. While the Core2* and Nehalem systems achieve only 2.6 to
2.8×, the speed-up is even less on the Dunnington system (1.9×). This is due
to the bandwidth-bound nature of our algorithm. The higher number of threads
consumes the total available memory bandwidth before the peak computation rate
is reached. A similar result could be shown in previous experiments on GPUs (not
yet published).

The results in Table 7 come up to the expectations of the Nehalem platform.
Having only twice as much cores as the Core2Extreme the speed-up was between
2.63 for TBB+SIMD and 3.09× for OpenMP. One could argue that a good part
of this e�ect is due to the Intel compiler. But with gcc the speed-up is 2.58 to
2.85× � still signi�cantly higher than 2×. This is explained by the bandwidth-
boundedness of the algorithm. The higher main memory bandwidth results in
super-linear speed-ups.

As one can see in Table 4 the CUDA implementation su�ers from its start-up
overhead and is considerably slower than the Dunnington system for the volume
size of 1283 voxels. But it is already faster by a factor of 1.34× for 2563 volumes
and gains an even bigger advantage on 5123 volumes where it outperforms the
fastest CPU-based system by a factor of 3.38×.



Core2Duo Core2Extreme Nehalem Dunnington
Implementation Speed-up Speed-up Speed-up Speed-up

single-threaded 1.02× 1.00× 1.20× 1.20×

SIMD 1.01× 1.00× 0.99× 1.00×

OpenMP 0.48× 1.00× 3.09× 6.15×

TBB 0.50× 1.00× 2.81× 5.66×

TBB+SIMD 0.48× 1.00× 2.63× 3.86×
Table 7. Comparing performance of di�erent CPUs. Speed-up is relative to C2E and was normalized
by clock rate.

5 Discussion

Using current libraries, multi-threading can be implemented easily if the problem
has such a promotive nature as the backprojection algorithm. The bottom line
for both multi-threading libraries investigated is that they scale nicely with the
number of cores (when normalized by the clock speed).

Vectorization on the other hand is more di�cult to implement. It is a great way
to get more performance out of existing hardware. But compared to the speed-ups
from multi-threading, the e�ort of vectorization looks not worthwhile. This will
change in the future, when chips with wider SIMD units become available. Our
experiences have shown that the step from 4-wide SIMD to 16-wide requires only
minor modi�cations of the source code.

Di�erent CPUs behave numerically equivalent. The results using SSE instruc-
tions di�er only negligible from scalar computations. This is shown by the worst
mean squared error (MSE) of all CPU implementations, which was only 0.001
(range: 0 . . . 4095). The CUDA implementation deviated from the reference imple-
mentation by about 8.1 HU2. This error is still acceptable for clinical purposes.
Note that since we reconstructed real acquired data we do not even know the true
values. Thus we can not say if the GPU result is better or worse. But this example
shows that the accuracy of di�erent hardware platforms is an issue that should be
further investigated. Accuracy measurements using simulated phantoms would be
required to judge the image quality.

One reason that graphics cards are so fast is that they have fast on-board
memory which o�ers high bandwidth. Its size is typically in the order of 1 or 2 GB.
Volumes that do not �t in this amount of memory have to be split into several parts
which are reconstructed independently. This is not only a cumbersome task but
also involves transfers of huge amounts of data from and to the computer's main
memory. If these transfers cannot be hidden using double bu�ering techniques they
will decrease the reconstruction speed.

6 Conclusion and Outlook

In this paper we have compared �ve di�erent approaches to exploiting the inherent
parallelism of the backprojection algorithm. Each of them shows di�erent potential
for accelerating reconstruction algorithms. Their common denominator is that they
are limited by the main memory bandwidth.

There exist further optimization methods which we did not investigate in this
work. With loop unrolling and software pipelining the compiler and the developer



can try to hide latencies of main memory accesses. Moreover, cache-aware imple-
mentations can take advantage of the large L2 (and L3) caches of the most recent
CPUs. They can keep data close to the compute unit for a longer time and re-use
it more often before it is written back to main memory.

The RabbitCT benchmark framework allows rapid development and assess-
ment of di�erent backprojection implementations. It is a suitable platform for
prototyping and performance comparison of backprojection algorithms. We used
it to evaluate maximum system performance only but more detailed measurements
on scalability with only a small number of threads could be performed as well.

A variety of di�erent hardware architectures exists to date. And the diver-
sity will further increase. Future hardware generations (Intel's Larrabee, AMD's
Fusion) will bring more heterogeneity. This makes it harder for programmers to
exhaust their full power.

Developers are therefore supported by di�erent parties. Modern compilers pro-
vide auto-vectorization options which are improved with every release. Software
vendors develop tools that analyze code for parallelism and suggest threading
strategies. Others provide new tools for debugging of multi-threaded programs.
Besides the two libraries used in this work, more frameworks exist to ease multi-
threaded programming. One example, Cilk++ [12], shows similarities to TBB. A
special compiler transforms annotated sequential code into a parallel program. Se-
quoia [13] on the other hand strives to enable the programmer to create programs
which are aware of the memory hierarchy and make the most of it. However it
seems like this project is not under development any more.

Di�erent libraries and novel platforms will be subject of our upcoming research.
The recent results will be available online at RabbitCT [4]

Acknowledgements. This work was supported by the Regional Computing Cen-
ter Erlangen (RRZE) and Intel Corporation who kindly provided the authors access
to the pre-production systems.

References

1. Feldkamp, L., Davis, L., Kress, J.: Practical Cone-Beam Algorithm. Journal of the Optical Society
of America A1(6) (1984) 612�619

2. Kunze, H., Härer, W., Stierstorfer, K.: Iterative extended �eld of view reconstruction. In Hsieh,
J., Flynn, M.J., eds.: Medical Imaging 2007: Physics of Medical Imaging. Volume 6510 of Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series., San Diego (2007) 65105X

3. Rohkohl, C., Keck, B., Hofmann, H.G., Hornegger, J.: Technical note: Rabbitct�an open platform
for benchmarking 3d cone-beam reconstruction algorithms. Medical Physics 36(9) (2009) 3940�3944

4. Pattern Recognition Lab, Friedrich-Alexander University Erlangen: RabbitCT, Open Platform for
Worldwide Comparison in Backprojection Performance (2009)

5. Intel Corp.: Threading Building Blocks (2009)
6. OpenMP: The OpenMP API speci�cation for parallel programming. Website (2009) Available online

at http://www.openmp.org/.
7. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A.,

Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P.: Larrabee: A Many-
Core x86 Architecture for Visual Computing. In: SIGGRAPH '08: ACM SIGGRAPH 2008 papers,
Los Angeles, ACM (2008) 1�15

8. NVIDIA Corp.: NVIDIA CUDA Compute Uni�ed Device Architecture Programming Guide (2007)
9. Faugeras, O.: Three-Dimensional Computer Vision (Arti�cial Intelligence). The MIT Press Cam-

bridge (1993)
10. Wiesent, K., Barth, K., Navab, N., Durlak, P., Brunner, T., Schuetz, O., Seissler, W.: Enhanced

3-D-reconstruction algorithm for C-arm systems suitable for interventional procedures. IEEE Trans-
actions on Medical Imaging 19(5) (2000) 391�403

11. Scherl, H., Keck, B., Kowarschik, M., Hornegger, J.: Fast GPU-Based CT Reconstruction using
the Common Uni�ed Device Architecture (CUDA). In Frey, E.C., ed.: Nuclear Science Symposium,
Medical Imaging Conference 2007. Volume 6., Honolulu (2007) 4464�4466



12. Frigo, M.: Multithreaded Programming in Cilk. In: Proceedings of the 2007 international workshop
on Parallel symbolic computation, New York, NY, USA, ACM (2007) 13�14

13. Fatahalian, K., Knight, T.J., Houston, M., Erez, M., Horn, D.R., Leem, L., Park, J.Y., Ren, M.,
Aiken, A., Dally, W.J., Hanrahan, P.: Sequoia: Programming the memory hierarchy. In: Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing. (2006)


