
Towards C-arm CT Reconstruction on Larrabee
Hannes G. Hofmann, Benjamin Keck, Christopher Rohkohl, and Joachim Hornegger

Abstract—Reconstruction of 3-D cone-beam CT data is a
computationally complex task. Therefore, many research groups
were and are currently investigating methods for hardware-
acceleration. A novel many-core computing platform—code
named Larrabee—is currently developed by Intel. In this work
we demonstrate how the back-projection step of an FDK-
based reconstruction algorithm can be implemented efficiently
on Larrabee. We introduce relevant features of this upcoming
hardware platform, describe how to port legacy code and show
several Larrabee-specific optimizations.

Index Terms—Back-projection, CBCT, CT, GPU, Larrabee,
Many-core, Multi-core, Reconstruction

I. INTRODUCTION

Modern computing architectures offer a high level of par-
allelism. Current CPUs feature up to six cores per socket,
each one able to process four single precision (SP) floating
point numbers simultaneously. They offer a great deal of
flexibility but are outperformed in terms of peak performance
by modern GPUs. This is owed to the fact that GPUs hold
hundreds of simple processing units. Moreover, their memory
bandwidth is typically much higher due to the use of GDDR
RAM. However, historically their programming model was
rather stiff. Languages and frameworks for general purpose
computing on GPUs (GPGPU) were developed [1]–[3] and
with the advent of CUDA [4] in 2007 GPUs gained even more
popularity.

Recently, Seiler et al. [5] presented details about a novel
computing architecture code named Larrabee which is cur-
rently developed by Intel. Larrabee combines the best of both
worlds. The add-on card consists of several CPUs and some
fixed-function hardware. It can be programmed like a GPU
(i.e. using DirectX and OpenGL) or be programmed natively
and resemble a compute cluster on a card. More details about
the architecture are given in Sect. II-A.

In an interventional environment [6] fast 3-D reconstruction
of tomographic data is highly desirable. In the past, hardware
acceleration of reconstruction methods was investigated by
several groups, e.g. on FPGAs [7], [8], CELL [9], [10] or
GPUs [11]–[13]. Currently the most wide-spread reconstruc-
tion algorithms in clinical C-arm CT belong to the class
of filtered back-projection (FBP), e.g. the Feldkamp-Davis-
Kress (FDK) method [14] for cone-beam data. The most
time consuming part of an FBP reconstruction is the back-
projection step where the volume data is actually computed. It

This work was supported by Intel Corporation.
H. G. Hofmann, B. Keck, C. Rohkohl and J. Hornegger are with

the Chair of Pattern Recognition, Department of Computer Science,
Friedrich-Alexander University Erlangen-Nuremberg, Martensstr. 3, 91058
Erlangen, Germany. Corresponding author: Hannes G. Hofmann (e-mail:
hannes.hofmann@informatik.uni-erlangen.de).

TABLE I
LIST OF ACRONYMS

API Application Programming Interface
CBEA CELL Broadband Engine Architecture
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
FOV Field of View
FPGA Field Programmable Gate Array
GDDR Graphics Double Data Rate memory
GPGPU General-Purpose computing on Graphics Processing Units
GPU Graphics Processing Unit
ISA Instruction Set Architecture
LRBni Larrabee new instructions
SIMD Single Instruction, Multiple Data
SP Single Precision
SSE Streaming SIMD Extensions
TBB Threading Building Blocks
VPU Vector Processing Unit

is both computationally complex and bandwidth demanding—
yet highly parallelizable. Also iterative reconstruction algo-
rithms that contain a back-projection step would benefit from
its acceleration. The outline of this paper is as follows: In
Sect. II we outline the features of Larrabee. Further, we present
the RABBITCT framework which we used to implement our
prototypes and check their correctness. In Sect. III imple-
mentation aspects for the Larrabee programming model are
introduced. It is first explained how to port legacy code. In the
following, several platform-specific optimization strategies are
discussed. We conclude with Sect. IV and provide an outlook
of future developments.

II. METHODS

A. Larrabee

In the following a brief overview of the key facts and rele-
vant new features of the Larrabee platform will be provided.
A more in depth description can be found in Seiler et al. [5].

A single Larrabee core is based on the dual-issue in-order
Pentium design [15]. It is augmented with a 16-wide vector
processing unit (VPU) and offers support for four hardware
threads and 64-bit extensions. Many of those cores are placed
around a ring bus, together with fixed function hardware units
and other agents like memory and I/O interfaces. Each proces-
sor has access to a 256 KB local subset of the global coherent
L2 cache. The Larrabee new instructions ISA (LRBni) [16]
provides some novel instructions that allow to solve problems
that arise from vectorization more efficiently.

Vector masks are 16-bit unsigned integer values where each
bit corresponds to an element of a SIMD vector. Most LRBni
instructions have two variants. The first one operates on all
vector elements equally. The second one takes a vector mask
as additional parameter. Where a mask bit is set to zero, the
corresponding element in the result vector is unchanged. In



turn if it is set to one, the element in the result is updated.
This allows to write vectorized conditional code sections in a
simpler and more efficient way.

Many algorithms compute array indices on the fly and
access non-contiguous memory addresses. The new gather and
scatter instructions allow to load or write 16 elements from or
to 16 different addresses specified in a vector register.

Most graphics cards’ fixed function hardware is replaced
by a software implementation on Larrabee, but it includes
dedicated hardware for texture filtering. In the back-projection
algorithm they can be used to efficiently access the projection
images and perform a bilinear interpolation. In a ray-driven
forward-projection algorithm they may be used to sample the
volume with trilinear interpolation.

Actual Larrabee hardware is not available yet. Develop-
ment was done in collaboration with Intel to validate results.
Therefore, we were able to show the correctness of our
implementations but could not estimate the performance on
the future hardware.

B. RabbitCT

Once we are able to make performance estimates we want
to obtain results which are comparable to other publications.
Therefore, we implemented all prototypes as modules for the
open reconstruction benchmark RABBITCT [17]. It provides
a standardized C-arm CT dataset, well defined problem state-
ments and a framework to support implementing and bench-
marking the back-projection step of the FDK algorithm. In
this paper we utilized RABBITCT to evaluate the correctness
of our Larrabee implementations.

The dataset consists of N = 496 pre-processed projection
images I n ∈ RSu×Sv from a C-arm system (Siemens AG,
Artis Zee) acquired on a 200◦ circular short-scan trajectory.
The size of a projection image is Su = 1248 pixels in width
and Sv = 960 pixels in height. For each projection image a
pre-calibrated projection matrix An ∈ R3×4 is available [18],
[19].

The task for RABBITCT modules is the reconstruction of
an isocentric cubic volume. Three volume resolutions were
chosen to represent different problem sizes with different
computational costs. The side lengths of the volume are
L ∈ {256, 512, 1024} voxels, respectively.

III. IMPLEMENTATION

Our implementations follow the RABBITCT reference im-
plementation. That is, the outermost loop iterates over all
projections, the inner ones traverse the volume in z, y and
x direction respectively. Every voxel is updated exactly once
per projection.

In the first part of this section we explain how we ported
our existing CPU-optimized implementation onto Larrabee and
highlight the changes that were necessary. Next, we describe
how we exploited specific novel features of Larrabee.

A. Enabling legacy code for Larrabee

Larrabee is x86 compatible and can run legacy code after
recompiling it. However, since it is an add-on card that has its

own memory some changes are required. Similar to program-
ming of GPUs, programs are split into two parts that execute
on the host (CPU) and Larrabee device respectively. Memory
allocations from the device memory could theoretically be
done by the device itself. However, Windows Vista’s driver
model requires larger allocations to be done by the host.
Similar to DirectX the host program allocates buffers and adds
them to a context. The device program can subsequently access
them. Host and device can communicate through these buffers
or use a dedicated low latency message passing API.

1) Multi-Threading: After recompiling our scalar OpenMP
implementation—where we had split the z-loop—we could
execute it without further changes. Moreover, an extended
version of Intel’s Threading Building Blocks (TBB) [20]
is supported. Finally, Larrabee provides a task API with a
work-stealing software scheduler. Besides OpenMP we also
developed a RABBITCT module using this task API. We were
able to re-use the same strategy that was used to parallelize
the back-projection on CPUs using TBB.

2) Vectorization: Regarding vectorization, the first differ-
ence between Larrabee and current CPUs is the increased
SIMD width. As mentioned in Sect. II-A there are also
some novel SIMD instructions. Their use will be discussed
in Sect. III-B since we focus on porting existing code here.

LRBni provides 512-bit versions of all SSE instructions that
we used in our optimized CPU implementation. Thus we just
had to do three steps to get our code compiled and running.
• Change data types to new 512-bit types
• Adjust number of loop iterations to new SIMD width
• Update intrinsics’ names

The general rule for the new intrinsics’ names is similar to
SSE: _mm512_<op>_<type>, but it is not guaranteed to
be the final naming convention.

B. Optimizing code for Larrabee

1) Multi-Threading: Larrabee’s task scheduler is able to
handle large numbers of small tasks efficiently. To exploit
this we created more tasks than by just partitioning the z-
loop. Therefore, we also implemented a version where we
parallelized the z- and y-loops and one where all three loops
were split.

Algorithm 1 shows the basic steps performed for each voxel.
The processing thread stalls in line 4 when it waits for memory
access. At that point processing continues with another task
that is ready for execution. Given a sufficient number of
tasks, main memory latency can completely be overlapped by
computation.

2) Vectorization and vector masks: Vectorization is most
efficient in code parts where a lot of computation is done.
Therefore we used it within the x-loop where the actual back-
projection happens including a bilinear interpolation. It iterates
over all voxels in one column (fixed y and z coordinate) and
performs the same computation on each of them. This makes
it just natural to use SIMD here.

While multi-threading was supported by libraries, vector-
ization was done manually. For most parts of the code it
was straightforward and the new multiply-add instruction were



Algorithm 1: Basic steps for back-projection of image I i.

foreach x do1

project voxel onto detector plane;2

(pre-)fetch projection values;3

wait for projection values;4

bilinear interpolation;5

update fFDK(x);6

end7

used wherever possible. However, vectorization is particu-
larly complicated for code sections that contain conditional
branches. For example, the algorithm contains a check if the
current voxel is in the Field-of-View (FOV) of the current
projection before the four neighboring projection values are
read. If a projected coordinate lies outside of the image the
corresponding projection value should be set to zero. The
interpolation and voxel update can then be performed as usual.
Listing 1 shows the scalar version of the code that reads
projection values.

Current SSE VPUs and GPUs cannot branch independently
for individual vector elements. The projected pixel coordinates
of a voxel have to be clamped to the image dimensions to avoid
invalid memory access. After fetching the projection values,
the outliers have to be set to 0. To implement these measures
in SSE we used integer vectors as binary masks as shown in
List. 2. Invalid coordinates are set to (0, 0) in line 7 and in
line 9 outlying pixel values are set to 0. Using the new vector
masks introduced by LRBni it is possible to write the same
code more concise and efficiently (lines 7 and 8 in List. 3).

3) Scatter/gather instructions: Another problem is caused
by the projection geometry. Rays through adjacent voxels do
not necessarily end up in neighboring pixels in the projection
image. This results in non-linear memory accesses when load-
ing the projection values for a vector of 16 voxels. Therefore,
all pixel values had to be fetched in a scalar manner in SSE
and inserted into vectors which were subsequently used to
compute the bilinear interpolation (not shown in List. 2).
Listing 3 shows how we compute the offsets of the pixels’
memory addresses in a vector register (line 7) and use the
new gather instruction to load the required values into another
vector (line 8). The result vector of gather is initialized with
zero and only elements which are not masked by inside
are loaded and updated. The speedup obtained by using gather
depends on the number of required cache lines.

4) Further Optimizations: Further performance gains could
be achieved by pre-fetching values for future loop iterations
or by utilizing the texture sampler hardware. While the first
measure would reduce—or even eliminate—tasks stalling due
to memory latency the latter one would additionally eliminate
the interpolation in line 5 of algorithm 1.

IV. CONCLUSIONS

In this paper we described how to implement the back-
projection step of FDK-based cone-beam reconstruction, an
algorithm with clinical relevance and high demands on com-
putation and memory bandwidth, on Larrabee. We have shown

how to exploit specific features of this upcoming comput-
ing platform like many cores, wide VPUs, new instructions
and fixed function hardware. Larrabee’s programming model
showed to be well suitable for the back-projection problem.
However, we do not have performance measurements from
cycle-accurate simulators or real hardware so far. Therefore,
we cannot make statements about the expected performance
of Larrabee for this specific task. Nor can we make judgments
about the efficiency of our optimizations.

From our experience we can conclude that only little effort
is required to make an existing algorithm run on Larrabee. The
most notable change—for legacy code, not optimization—is
the additional level in the memory hierarchy introduced by the
device memory and the use of buffers to transfer data between
host and Larrabee device. Porting SSE optimized and/or multi-
threaded code (using OpenMP or TBB) requires only little
changes if any. While the maximum speedup gained from
SSE is four, the wider Larrabee VPUs justify the effort of
vectorization instead of simply using more cores. However, to
get best performance one must fully exploit the new features
of this architecture. Manual code optimization using profiling
tools is mandatory.

Other medical imaging tasks like dynamic or iterative recon-
struction methods have irregular data access patterns, too. We
are convinced that with its flexibility, Larrabee is well suited
for many image processing tasks and can deliver significant
performance improvements over existing CPU architectures.
In our future research and with the availability of the first
Larrabee hardware we will further investigate these issues.

ACKNOWLEDGMENT

The authors would like to thank Horst Haussecker and
Victor W. Lee from Intel Corporation for support. Further,
we want to thank the Larrabee support team.

REFERENCES

[1] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: a
system for programming graphics hardware in a C-like language,” in
SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers. San Diego: ACM,
Jul. 2003, pp. 896–907.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: stream computing on graphics
hardware,” in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers. Los
Angeles: ACM, Aug. 2004, pp. 777–786.

[3] D. Luebke, M. Harris, J. Krüger, T. Purcell, N. Govindaraju, I. Buck,
C. Woolley, and A. Lefohn, “GPGPU: general purpose computation on
graphics hardware,” in SIGGRAPH ’04: ACM SIGGRAPH 2004 Course
Notes. Los Angeles: ACM, Aug. 2004, p. 33.

[4] NVIDIA Corp., “NVIDIA CUDA Compute Unified Device
Architecture Programming Guide,” 2007. [Online]. Available:
http://www.nvidia.com/cuda

[5] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A Many-Core x86 Architecture for
Visual Computing,” in SIGGRAPH ’08: ACM SIGGRAPH 2008 papers.
Los Angeles: ACM, Aug. 2008, pp. 1–15.

[6] N. Strobel, O. Meissner, J. Boese, T. Brunner, B. Heigl, M. Hoheisel,
G. Lauritsch, M. Nagel, M. Pfister, E.-P. Rhrnschopf, B. Scholz,
B. Schreiber, M. Spahn, M. Zellerhoff, and K. Klingenbeck-Regn,
Multislice CT, 3rd ed. Springer Berlin Heidelberg, 2009, ch. 3D
Imaging with Flat-Detector C-Arm Systems, pp. 33–51.

[7] M. Churchill, “Hardware-accelerated cone-beam reconstruction on a
mobile C-arm,” in Proceedings of SPIE, J. Hsieh and M. Flynn, Eds.,
vol. 6510, San Diego, Feb. 2007, p. 65105S.



1 // This snippet fetches one pixel
2 if (iu >= 0 && iu < S_u && iv >= 0 && iv < S_v) {
3 return pI_i[iv * S_u + iu];
4 }
5 return 0.0;

Listing 1. Scalar version: Coordinates check, only valid coordinates are accessed, therefore no masking is required.

1 // This snippet fetches one vector of 4 pixels
2 // NOTE: _mm_cmp* insns: true=>0xffffffff, false=>0x0
3 __m128i in_top = _mm_cmpgt_epi32(iv, zero); // analogous for left, right, bottom
4 __m128i in_v = _mm_and_si128(in_top, in_bottom); // analogous for in_u
5 __m128i inside = _mm_and_si128(in_u, in_v); // combine to single mask
6 __m128i idx = _mm_add_epi32(_mm_mullo_epi32(iv, S_u), iu); // compute indices
7 __m128i idx_masked = _mm_and_si128(idx, inside); // set outlier indices to 0
8 // Not shown: load elements sequentially and insert into SSE vector "values"
9 __m128 val_masked = _mm_and_si128(values, inside); // set outlier pixels to 0

10 return val_masked;

Listing 2. SSE version: Coordinates check and masking of invalid coordinates.

1 // This snippet fetches one vector of 16 pixels
2 const int upConv = _MM_FULLUPC_NONE; // no up conversion
3 const int scale = sizeof(float); // element size for gather
4 __mmask in_top = _mm512_cmpnlt_pi(iv, zero); // analogous for left, right, bottom
5 __mmask in_v = _mm512_vkand(in_top, in_bottom); // analogous for in_u
6 __mmask inside = _mm512_vkand(in_u, in_v); // combine to a single mask
7 __m512i idx = _mm512_mask_add_pi(zero, inside, _mm512_mull_pi(iv, S_u), iu);
8 __m512 values = _mm512_vgatherd_loop(zero, inside, idx, (float*) pI_i, upConv, scale);
9 return values;

Listing 3. Larrabee version: Coordinates check, masking of invalid coordinates and loading of pixel values.

[8] X. Xue, A. Cheryauka, and D. Tubbs, “Acceleration of fluoro-CT
reconstruction for a mobile C-Arm on GPU and FPGA hardware: A
simulation study,” in Proc. SPIE, vol. 6142, San Diego, Feb. 2006, pp.
1494–501.

[9] H. Scherl, S. Hoppe, F. Dennerlein, G. Lauritsch, W. Eckert,
M. Kowarschik, and J. Hornegger, “On-the-fly reconstruction in exact
cone-beam CT using the Cell Broadband Engine Architecture,” in 9th
International Meeting on Fully Three-Dimensional Image Reconstruc-
tion in Radiology and Nuclear Medicine, Lindau, Jul. 2007, pp. 29–32.

[10] M. Kachelrieß, M. Knaup, and O. Bockenbach, “Hyperfast parallel-beam
and cone-beam backprojection using the cell general purpose hardware,”
Medical Physics, vol. 34, no. 4, pp. 1474–1486, 2007.

[11] K. Mueller and R. Yagel, “Rapid 3D cone-beam reconstruction with the
Algebraic Reconstruction Technique (ART) by utilizing texture mapping
graphics hardware,” Nuclear Science Symposium, 1998. Conference
Record., vol. 3, pp. 1552–1559, Nov. 1998.

[12] F. Xu and K. Mueller, “Real-time 3D computed tomographic recon-
struction using commodity graphics hardware,” Physics in Medicine and
Biology, vol. 52, no. 12, pp. 3405–3419, 2007.

[13] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, “Fast GPU-Based
CT Reconstruction using the Common Unified Device Architecture
(CUDA),” in Nuclear Science Symposium, Medical Imaging Conference
2007, E. C. Frey, Ed., vol. 6, Honolulu, Oct. 2007, pp. 4464–4466.

[14] L. Feldkamp, L. Davis, and J. Kress, “Practical Cone-Beam Algorithm,”
Journal of the Optical Society of America, vol. A1, no. 6, pp. 612–619,
1984.

[15] D. Alpert and D. Avnon, “Architecture of the pentium microprocessor,”
Micro, IEEE, vol. 13, no. 3, pp. 11–21, Jun. 1993.

[16] Intel Corp., “Prototype Primitives Guide,” 2009. [Online]. Available:
http://software.intel.com/en-us/articles/prototype-primitives-guide/

[17] C. Rohkohl, B. Keck, H. G. Hofmann, and J. Hornegger, “RabbitCT –
An Open Platform for Benchmarking 3-D Cone-Beam Reconstruction
Algorithms,” Medical Physics, vol. 36, no. 9, Sep. 2009.

[18] O. Faugeras, Three-Dimensional Computer Vision (Artificial Intelli-
gence). The MIT Press Cambridge, Nov. 1993.

[19] K. Wiesent, K. Barth, N. Navab, P. Durlak, T. Brunner, O. Schuetz, and
W. Seissler, “Enhanced 3-D-reconstruction algorithm for C-arm systems
suitable for interventional procedures,” IEEE Transactions on Medical
Imaging, vol. 19, no. 5, pp. 391–403, May 2000.

[20] Intel Corp., “Threading Building Blocks,” 2009. [Online]. Available:
http://www.threadingbuildingblocks.org/


