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Subtraction methods in angiography are generally applied in order to enhance the visualization of blood
vessels by eliminating bones and surrounding tissues from X-ray images. The main limitation of these
methods is the sensitivity to patient movement, which leads to artifacts and reduces the clinical value
of the subtraction images. In this paper we present a novel method for rigid motion compensation with
primary application to road mapping, frequently used in image-guided interventions. Using the general
igital subtraction angiography
otion compensation

D rigid registration
nterventional angiography
oad mapping

concept of image-based registration, we optimize the physical position and orientation of the C-arm
X-ray device, thought of as the rigid 3D transformation accounting for the patient movement. The reg-
istration is carried out using a hierarchical optimization strategy and a similarity measure based on the
variance of intensity differences, which has been shown to be most suitable for fluoroscopic images. Per-
formance evaluation demonstrated the capabilities of the proposed approach to compensate for potential
intra-operative patient motion, being more resilient to the fundamental problems of pure image-based

registration.

. Introduction

Digital subtraction angiography (DSA) is a powerful technique
or the visualization of blood vessels in the human body comprising
arious applications in medicine. Since blood has almost the same
adio-density as the surrounding tissues, vessels become visible in
-ray images by filling them with a contrast agent. Furthermore,
he image quality can be considerably enhanced through the sub-
raction of a native image acquired without contrast agent from
second image of the vessels that have been filled with contrast

gent. In the resulting image, bones and surrounding tissues are ide-
lly masked out after subtraction, enabling an optimal evaluation
f blood vessels (see Fig. 1(a)).

Besides diagnostic usability, DSA became more important in
mage-guided interventions. Combined with real-time fluoroscopy,

t is applied to facilitate various minimally invasive interventional
rocedures. These include percutaneous transluminal angioplasty
PTA), repair of vascular stenoses aneurysms via stenting and coil-
ng, placement of tranjugular intrahepatic portosystemic shunts
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(TIPS), biopsies, and pain therapy [1]. An important imaging tech-
nique, referred to as road mapping (RM), is used to guide the
advancement of catheters and other devices during minimally
invasive interventions. Continuously acquired native images are
subtracted from a previously acquired fill image (mask), commonly
showing a black catheter advancing through white vessels [2](see
Fig. 2(a)).

Regardless of the application, DSA is based on the assump-
tion that structures surrounding the vessels do not change their
position during acquisition. This was shown to be the main limi-
tation for DSA since this assumption is not valid in a substantial
number of cases due to patient movement during clinical proce-
dures [3–5]. The introduced motion artifacts reduce the quality
of the subtraction images and affect their clinical interpreta-
tion (see Figs. 1b and 2b). Consequently, the image acquisition
process has to be repeated for a significant number of cases,
which represents a drastic disadvantage especially in time criti-
cal image-guided interventions. Furthermore, patients have to cope
with additional stress through contrast agent and radiation expo-
sure.

Since 1980 various approaches have been proposed for the
reduction of motion artifacts in DSA (see Section 2). Their clini-

cal applicability, however, is limited due to various characteristic
restrictions. Patient and acquisition-related solutions, such as
immobilization [6] or ECG gating [7], account only for specific
motion, while image-based methods [8,9] are not robust against
relatively large misalignments.

http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:Razvan_Ionasec.ext@siemens.com
mailto:Benno.Heigl@siemens.com
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Fig. 1. Example of DSA diagnoses. (a) Head vasculature visualization thro

In this paper we present a novel approach for motion artifact
ompensation, primarily designed for RM. Our method combines
he advantages of acquisition-related solutions with image-based
egistration into a motion-compensation framework more resilient
o the fundamental problems of pure image processing techniques.
he misalignment between the native and fill image can be cor-
ected before the digital subtraction if the parameters of the
isturbing motion are known. Assuming the patient movement in
he 3D space is rigid, it can be described by a geometrical transfor-

ation with six parameters (translation and rotation). Within our
pproach, this rigid 3D transformation is represented by the phys-
cal position parameters of a C-arm X-ray acquisition system with
ix degrees of freedom.

Instead of transforming the native image to match the mask
mage, as in classical image-based registration, the position of
he C-arm X-ray system for which the disturbing motion is
ompensated is estimated. Consequently, a new native image
cquired from the estimated position of the C-arm X-ray sys-
em is, in the ideal case, perfectly aligned with the mask image.
he estimation process is performed iteratively through a hier-

rchical optimization strategy, and requires multiple acquisitions
f X-ray images from different positions. Image-based meth-
ds can be independently applied posterior to the proposed
otion-compensation approach to correct potential non-rigid mis-

lignments.

Fig. 2. Example of road mapping (RM). (a) Catheter guidance suppo
igital subtraction angiography and (b) artifacts caused by patient motion.

Our main contributions are as follows:

• The formulation of the artifact correction in DSA as a motion-
compensation problem, which is solved by optimizing the
physical position of the C-arm acquisition system.

• The performance evaluation of six classic intensity-based similar-
ity measures on fluoroscopic images acquired under intervention
circumstances.

• The design and implementation of an efficient hierarchical opti-
mization algorithm for acquisition-based registration approaches
of DSA images.

In the following, the organization of this paper is presented.
Section 2 provides a brief overview on existing artifact correction
methods proposed in the literature. In Section 3 the novel approach
for motion compensation in DSA is described in more detail. Exper-
imental results are presented and interpreted in Section 4. Finally,
in Section 5 presents perspectives for future work and overall con-
clusions.
2. Related work

In most cases, motion artifacts significantly reduce the clinical
relevance of DSA images. Various solutions for this problem were
proposed over the past two decades.

rted through RM and (b) artifacts caused by patient motion.
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.1. Patient and acquisition-related solutions

Straightforward techniques, focused on avoiding patient move-
ent during exposure, have been proposed and applied in some

ases including arms, legs and head immobilization techniques
6]. Although these methods reduce motion artifacts in various
iagnostical procedures, they are not applicable in long-lasting

nterventional procedures.
Motion artifacts caused by the pulsation of vascular structures

an be avoided by using images acquired during the same cardiac
hase [7]. Therefore, the QRS-complex in the ECG-curve is used to
rigger the X-ray exposure. This technique requires special equip-

ent and its not extendable for other movement sources.
Further, motion artifacts can be reduced by automatic re-

asking during acquisition. Oung and Smith [10] used a real-time
otion detector, based on the variance of the histogram of gray val-

es in successive subtraction images, which can be considered as
measure of similarity between mask and fill image. A new mask

mage was acquired as soon as the measure exceeded a predefined
hreshold. This method enables artifact correction only if motion
ccurs before the contrast agent arrives at the vessels of interest.

These solutions have not become widely accepted in clin-
cal environments, mainly because of their limited applicabil-
ty or requirement for special materials and equipments, or
oth.

.2. Image processing solution

Image registration techniques are more likely to be used in
linical practice since satisfying results can be achieved at low com-
utational and material costs. These approaches perform a spatial
ransformation of one image relative to another in order to compute
n optimal alignment, with respect to a given criterion.

The simplest, but also most popular registration method used
n DSA is pixel shifting. According to this technique, the correspon-
ence between the mask and the contrast image is achieved by
anually shifting one image relatively to the other one. Despite

xisting semi-automatic versions, this remains a very rudimentary
ethod especially due to the time-consuming and user-dependent

peration.
In order to obtain more accurate motion correction, registra-

ion techniques have been designed to allow more local control.
eijering et al. [8] proposed a Block-Matching based non-rigid

egistration technique that yielded satisfactory results in DSA reg-
stration tasks. This process involves an edge-based selection of
ontrol points in the mask image for which the displacement is
omputed, taking a small block of certain amounts of pixels around
ach point and searching for the corresponding block in the contrast
mage. The two images are warped according to a displacement
ector field constructed through interpolation. Bentoutou et al.
9] proposed a control point driven registration based on invari-
nts similarity measure. After applying standard edge-detection
pproaches, control points are chosen based on the gradient mag-
itude and some neighborhood windowing. Point correspondence

s achieved through sequentially performed template matching

T3D =

⎛
⎜⎝

cos ˇ · cos � cos ˛ · si
− cos ˇ · sin � cos ˛ · co

sin ˇ
0

sing invariant-based measures. The thin-plate-spline transforma-
ion is applied for the final warping between mask and contrast
mage.

Regardless of specific approaches, pure image-based registra-
ion methods are not completely solving the problems of motion
ging and Graphics 33 (2009) 256–266

artifacts, since these are suffering from three fundamental limita-
tions [8]:

• Overlapped region—Only the overlapped region of two images
can be optimally aligned through image-based registration (see
Fig. 3(a)). The uncorrelated image regions remain misaligned pre-
senting motion artifacts.

• Superimposed structures—Differences of two images can be
caused by displacements of structures which are superimposed
(see Fig. 3(b)). It is practically impossible to correct this type of
appearance changes by deformations of the projection image.

• Aperture problem—The motion of a homogeneous contour is
locally ambiguous due to the limited field of view of the X-
ray detector. Subsequently, the component of the displacement
vector for the tangential direction cannot be determined (see
Fig. 3(c)).

3. Motion-compensation approach

The registration is formulated as a motion-compensation prob-
lem, which can be thought of as a classical pose estimation problem
[11]. Instead of estimating a geometrical transformation, as in
common image-based registration approaches, the pose of the
acquisition system is determined, for which the disturbing motion
artifacts are corrected.

We assume that patient motion do not cause flexible deforma-
tion in the area of interest and consequently can be estimated
accurately enough using a rigid 3D transformation (1), which
includes rotation and translation. This transformation is repre-
sented by the pose of a C-arm X-ray acquisition system with six
degrees of freedom. The pose estimation is formulated as an opti-
mization problem of an objective function defined by a similarity
measure over a six dimensional discrete search space D.

sin ˛ · sin ˇ · cos � sin ˛ · sin � − cos ˛ · sin ˇ · cos � tx

sin ˛ · sin ˇ · sin � sin ˛ · cos � − cos ˛ · sin ˇ · sin � ty

n ˛ · cos ˇ cos ˛ · cos ˇ tz

0 0 1

⎞
⎟⎠ (1)

In order to increase efficiency and accuracy the discrete search
space D has been pruned regarding the maximal practical patient
motion during interventional procedures for each of the six dimen-
sions. The considered intervals are (−5, 5)◦ for the rotation
parameters and (−3, 3) cm for the translation parameters, where
the positioning precision of the C-arm X-ray acquisition system is
0.1◦, respectively centimeters.

The proposed algorithm is demonstrated in Fig. 4. Initially, the
fill (mask) image is acquired preprocessed and stored. Iteratively,
native (live) images are acquired from different positions, and
compared to the mask image using an intensity-based measure.
The algorithm terminates when the global minimum of the mea-
sure is reached. Image-based registration methods can be applied
afterwards for refining potential non-rigid misalignments. Inde-
pendent of a specific approach, these are expected to perform
significantly more accurate applied after the rigid motion was cor-
rected.

3.1. Acquisition system

In order to be adequate for our framework, the X-ray acquisition
system has to fulfill several requirements. Crucial are the six param-

eters of the rigid 3D transformation which have to be mapped to the
degrees of freedom of the acquisition system. The automatic steer-
able C-arm angulations (left/right anterior oblique, caudal/cranial,
and detector rotation) and table movements (longitudinal, trans-
versely and height adjustment) are associated with the rotation
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Fig. 3. (a) Image Image as result of the image-based registration of the images Image1 and Image . Only the overlapped region Region can be aligned correctly, since
R oints P
t ts are
i shifts

a
o
i
t

3

b
c
s
r

res

egion1 and Region2 remain misaligned. (b) The projections p1, p2, and p3 of the p
hat the same effects can be observed if the X-ray source remains fixed and the poin
n the aperture shifts. If the stripes move leftwards the pattern within the aperture

nd translation parameters of the transformation. Moreover, flu-
roscopy acquisition and DICOM compatibility should be granted
n order to enable intra-operative application and online image
ransfer, respectively.

.2. Similarity measure
The optimal solution is computed by minimizing an intensity-
ased similarity measure used to determine the amount of
orrespondence between the fill and the native image. Various
imilarity measures have been proposed in the literature for the
egistration of angiographic images [8,12–16], which however, were
2 overlap

1, P2, and P3 for different positions of the X-ray source. It is important to mention
moving (due to patient motion). (c) If the stripes move upwards the pattern of lines
in the same way.

evaluated and applied to compare high-dose X-ray images used
for diagnoses. In image-guided procedures, appearance changes of
the acquired images are in general more complex depending on
specific interventions and devices used. Furthermore, fluoroscopy
(low-dose image acquisition) is more likely to be used in order
to diminish the patient radiation exposure. With respect to these
facts a suitable similarity measure for fluoroscopic images acquired
during interventional procedures should be robust against the fol-

lowing factors of influence:

• Local gray level changes—caused not only by injected contrast
medium but also by devices introduced during the intervention.
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coarse optimization is finished for the current dimension i.
Fig. 4. Optimization process diagram.

Quantum noise level—higher in fluoroscopy, since radiation dose
is significantly lower compared to normal acquisition procedures.
Additive mean gray-level offsets—caused by the exposure control
of the X-ray acquisition system.

We extended the evaluation of intensity-based similarity mea-
ures to fluoroscopic road-map images and include the following
istance methods:

Sum of squared differences (SSD);
Sum of absolute values of differences (SAVD);
Ratio image uniformity (RIU);
Normalized cross correlation (NCC);
Variance of differences (VOD);
Energy of histogram of differences (EHD).

A detailed presentation of the evaluation is given in Section
.1. We conclude that the VOD (2) is the most adequate measure
o determine the similarity between fluoroscopic images acquired
uring interventional procedures. Its global minimum is closer to

he ground truth, being also more resilient to various noise sources.

VOD(I1, I2(xT )) = A − B

N2
(2)
ging and Graphics 33 (2009) 256–266

A = N
∑

(i,j) ∈ W

(I1(i, j) − I2(xT , i, j))2 (3)

B =

⎛
⎝ ∑

(i,j) ∈ W

(I1(i, j) − I2(xT , i, j))

⎞
⎠

2

(4)

where W is used for a certain window (in our case the entire image),
N represents the number of pixels in W, I∗(i, j) denotes the intensity
of an image I∗ at coordinates (i, j), I∗(xT ) stands for an (live) image
acquired at position xT . The vector xT represents a position of the
C-arm acquisition system expressed as (˛, ˇ, �, tx, ty, tz).

3.3. Optimization and validation

Within the optimization process, the position vector xo
T defined

over the six dimensional discrete search space D, is estimated, for
which the VOD similarity measure assumes a global minimum (5).

xo
T = argminxT ∈ DdVOD(I1, I2(xT )) (5)

where D is the discrete search space and xT ∈ D.
The optimization has to be performed with a minimum of

complexity since each additional iteration-step requires not only
computation time and additional repositions of the acquisition
device, but also increases the radiation exposure time of the
patient. An exhaustive search of the optimum in the discrete space
D requires appreciatively 109 iterations and it is obviously not
applicable. Experimentally it was shown that global optimization
strategies and gradient based methods are not suitable due to the
large number of required iterations.

We propose a hierarchical optimization approach, which com-
bines coarse and fine optimization algorithms as well as allows for
estimation validation. The optimal parameter vector xo

T , which is
to be estimated, is initialized with a given start parameter vector
xs

T , which describes the current position of the acquisition system.
The e1, e2, . . . e6 are the unit vectors and sl

i
, sh

i
are the low respec-

tively high interval boundaries for each dimension i relative to xs
t . As

mentioned the feasible intervals are (−3, 3) and (−5, 5) for trans-
lation and, respectively, for the rotation. The function f (xT ) stands
for dVOD(I1, I2(xT )).

(1) A coarse optimization phase is performed using the golden
section search algorithm [17] adapted for a multidimensional
search space. The following steps are carried out for each
dimension i separately.
(a) An initial bracketing interval (a, b, c) is selected with a = sl

i
,

b = 0 and c = sh
i
.

(b) If the condition f (a · ei + xo
T ) > f (b · ei + xo

T ) < f (c · ei + xo
T ) is

satisfied, the golden section search (step (c)) is performed.
Otherwise, the current bracketing interval is recursively
bisected until the above condition is satisfied. If the brack-
eting interval becomes smaller than �b, the best parameter
p, out of (a, b, c), is selected and xo

T is replaced by p · ei + xo
T .

Since no valid bracketing interval could be found, the coarse
optimization is finished for the current dimension i.

(c) The golden section search is started with the computed valid
bracketing interval (a, b, c). The algorithm terminates when
the bracketing interval size is smaller than �g , with an opti-
mal parameter p (p = b and f (a · ei + xo

T ) > f (b · ei + xo
T ) <

f (c · ei + xo
T )). xo

T is replaced by the vector p · ei + xo
T and the
Parameters: �b, �g .
(2) The Np + 1(Np = 6) starting points needed by the downhill sim-

plex algorithm [18] used in the fine optimization phase, are
computed.
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Fig. 5. The minimum is originally bracketed by points 1,3,2. The function is evaluated
a
r
A

(

(

vl and vh. The evaluated points should be far enough from the
t 4, which replaces 2; then at 5, which replaces 1; then at 6, which replaces 4. The
ule at each stage is to keep a center point that is lower than the two outside points.
fter the steps shown, the minimum is bracketed by points 5,3,6.

(a) The first point of the simplex P0 is the optimal parameter
vector xo

T , computed by the coarse optimization. The other
Np points are mutations of xo

T along each dimension sepa-
rately.

(b) For each dimension i, Pi = d · ei + xo
T . If the Euclidean dis-

tance between xs
T and xo

T , for the current dimension i is
greater than �s then d = dneg, otherwise d = dpos.

Parameters: �s, dneg, dpos.
3) The fine optimization is performed using the downhill simplex

algorithm.
(a) The Np + 1 starting points computed in step (2) are opti-

mized by means of successive reflection and contraction of
the simplex.

(b) If the Euclidean distance between the best and worst point
of the simplex is smaller than �d, the algorithm terminates
and the optimal parameter vector xo

T is replaced with the
best simplex point.
Parameters: �d.
4) Validation of the optimum parameter vector xo

T is performed.
(a) For each dimension i separately, the function f is evaluated

at vl · ei + xo
T and vh · ei + xo

T , and compared to f (xo
T ).

Fig. 6. (Left) The mean distance relative to the ground truth expressed in
ging and Graphics 33 (2009) 256–266 261

(b) If f (xo
T ) is still the minimum for each dimension, the opti-

mization process will finish with the optimal parameter
vector xo

T . Otherwise, for each dimension i where the condi-
tion is not satisfied, xo

T is replaced by vl · ei + xo
T (if f (vl · ei +

xo
T ) < f (vh · ei + xo

T )) or by vh · ei + xo
T (in the other case), and

the steps 1–4 are repeated up to �t times.
Parameters: �t , vl , vh.

3.3.1. Coarse optimization
An approximation of the global minimum is achieved during

the coarse optimization using a multi-dimensional extension of
the golden section search algorithm [17]. Sequentially for each
dimension, the interval bracketing the global minimum is reduced
by 0.61803 each iteration. As the chosen sampling points are
widespread over the search range, this method confers implic-
itly robustness against local minima (see Fig. 5). The parameters
�b and �g of this optimization phase should be small enough in
order to enable an acceptable approximation of the global extreme.
However, if �b and �g are too small, unnecessary iterations are per-
formed, wasting computation time. Based on experimental results
we concluded that an accuracy of 10 units (1◦, respectively 10 mm)
is optimal.

3.3.2. Fine optimization
The coarse estimation is refined during the second optimiza-

tion stage using the Nelder–Mead downhill simplex algorithm [18].
A N + 1simplex, generated from the initial estimation, abridges
iteratively around the minimum following a set of predefined
transformations (reflection, expansion, contraction, and multiple
contraction). The parameters �s, dneg and dpos, which determine
the initial simplex, are chosen to maximize the probability of
the nearest extremum to the simplex to be the global mini-
mum. The �d parameter describes the minimal allowed Euclidean
distance between the best and worst point of the simplex and
thus controlling the precision of the algorithm. Concerning the
positioning precision of the acquisition system, �d was set to
5 units.

3.3.3. Validation
A heuristic validation stage is introduced in order to increase

the robustness of our algorithm by allowing avoidance of subopti-
mal solutions. The target function is evaluated for each dimension
separately at two different points determined by the parameters
computed minimum in order to enable the optimization strat-
egy to escape from a possible local extrema. Since locals observed
during evaluation were not more distant than 10 units (1◦, respec-
tively 10 mm), a step of 15, respectively, −15 units should guarantee

millimeters and 0.1◦ and (right) the mean number of local minima.
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Table 1
Values of the parameters of the optimization algorithm used during the experiments
described in the next chapter.

Parameter Value

�b 12
�g 10
�s 25
�d 5
�t 3
d
d
v
v

t
c
i
6

r

4

A
p
a
o
a
1
a
t
a
o
e
1

F
d
h

neg −13
pos 13
l −15
h 15

he robustness for this problem. The entire optimization process
an be repeated up to �t times, in case of validation failure. �t

s set 3 due to the maximal allowed low-dose exposure time of
min.

The parameters of the algorithm are given in Table 1 and were
emained fixed during the experiments presented in Section 4.

. Experimental results

The experiments were performed on the Siemens AXIOM
rtis d MP C-arm X-ray acquisition system, which is a multi-
urpose C-arm X-ray system with steerable angulations (rotations)
nd table position (translations). Image processing was carried
ut on a separate PC, not part of the AXIOM Artis d MP C-
rm system, with the following configuration: Intel Pentium M
100 MHz Processor, 512 MB RAM, Intel 855GME Graphic Chipset
nd Microsoft Windows XP Professional Edition operating sys-

em. The performance evaluation was performed on 4700 images
cquired from head and abdomen phantoms manufactured out
f real human bones. All images were acquired at a fluoroscopic
nergy level, with a resolution of 720 × 720 and pixel depth of
2 bits.

ig. 7. Measures evaluation for different dimensions. (a) Evaluation of the tx (Table X Tr
imension using the head phantom; (c) evaluation of the ˛ (Alpha Rotat.) dimension usin
ead phantom.
Fig. 8. EHD and VOD evaluation for the ty − ˇ (Table Y Trans.–Beta Rotat.) dimen-
sions and abdomen phantom.
4.1. Similarity measure

The evaluation of the similarity measures was performed on
image series obtained by varying one or two position parameters
while maintaining the others fixed. Such sequences were acquired

ans.) dimension using the head phantom; (b) evaluation of the ty (Table Y Trans.)
g the abdomen phantom; (d) evaluation of the ˇ (Beta Rotat.) dimension using the
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tion im

f
p
s
e

F

Fig. 9. Registration results of the head phantom. (Left) Subtrac
or each of the six dimensions and for both abdominal and head
hantoms. An additional fill image (mask) was captured for each
cenario half-way of the displacement interval and was consid-
red the true registration position. The six similarity measures (SSD,

ig. 10. Registration results of the head phantom. (Left) Subtraction images with motion
ages with motion artifacts and (right) corrected DSA images.
SAVD, RUI, NCC, VOD and EHD) were computed as a function of the
transformation parameters.

The main evaluation criterion is the distance between
the computed global extremum and the ground truth. Fur-

artifacts and (right) failure in motion compensation due to depth misalignment.
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Fig. 11. Registration results of the head and abdomen phantom. (Left)

her, the smoothness and the number of local extrema is
s well crucial for the optimization. A smooth and conver-
ent function without locals is significantly less computational
xpensive to optimize. Fig. 6 summarizes the mean distance
nd number of locals, respectively, for each of the measure-
ents.
As expected, all measures performed similarly well for the trans-

ational dimensions (see Fig. 7(a) and (b)). Appearance changes in
hese dimensions are significant and rather caused by structures’
rrangement than by superimposition, and therefore accurately
nferable though intensity-based measures.

Oppositely, a considerable variations was observed in case of
he rotational dimensions (see Fig. 7(c) and (d)). The SSD and the
AVD functions are noisy showing multiple locals for these cases
nd therefore are not appropriate for our approach. The results for
HD, RIU, NCC and VOD were similar for each evaluation. However,
he noise level of the VOD functions is for almost all cases lower
ompared to that observed for the other functions. Consequently,
e conclude that VOD is the most adequate measure to compare
uoroscopic intra-operative images.

Meijering [8] found out that the EHD measure is the most
ppropriate for DSA diagnostic image registration. Since our evalu-
tion did not illustrate that, we refined our EHD implementation
y increasing the histogram of differences resolution. Nonethe-
ess, no significant improvement could be observed. The evaluation
f the VOD and EHD using the two dimensional dataset con-
rmed the superiority of the former for fluoroscopic images (see
ig. 8).

.2. Registration accuracy
The accuracy of the proposed approach was evaluated by sim-
lating patient motion through displacing the C-arm acquisition
ystem by a random but known value. Starting with this new
osition our framework computes an optimal position which com-
ensates the induced displacement. The position of the C-arm
action images with motion artifacts and (right) corrected RM images.

acquisition system is represented by the vector x∗
T , expressed as

(˛, ˇ, �, tx, ty, tz), where rotation is given in 0.1◦ and translation in
millimeters. The evaluation is performed by comparing the differ-
ences between the initial and computed position parameters, as
well as the differences between the initial and computed subtrac-
tion images.

Fig. 9 shows the results of the registration for the head-phantom,
where only native X-ray images were used. The acquisition system
was initially positioned to comprehend the whole structure of the
phantom, in each case from a different perspective. The left column
shows the misaligned images while the right column the corre-
sponding subtractions after motion compensation. It is important
to notice that the induced motion is higher then under real clin-
ical conditions. Nevertheless, it can be observed that artifacts are
considerably suppressed after registration.

In Fig. 10 the subtraction images before and after registration
are disturbed similarly by major motion artifacts. The estimation of
the pose component tz , which is perpendicular to the X-ray detec-
tor failed affecting the registration. Depth estimation is difficult,
especially if other pose components are misaligned. This effect was
observed only for large depth displacements, which are unusual in
practice.

Fig. 11 shows results of the registration for the head and
abdomen phantom under simulated image-guided intervention cir-
cumstances. A cupreous tube model and a fine cupreous wire were
used to model the blood vessels and respectively the guide wire.
Copper has a higher radio-density than common contrast agents,
which implies a higher gray-level differences between live and
mask images, and consequently a harder registration problem than
in interventions. The left column shows the subtraction images after
patient motion occurs, while the right column shows the subtrac-

tion images after motion compensation. It can be observed that
the artifacts are drastically reduced for both scenarios. As expected,
the guide wire is visible through the blood vessels, confirming the
accuracy of the approach. The quality of the head-phantom image is
considerably better than that for the abdomen-phantom, explained
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ig. 12. The similarity measure and the Euclidean distance between known an cur-
ent optimum as functions of number of evaluations.

y the higher X-ray absorption of the abdominal tissues resulting
nto a higher quantum noise.

Overall, the mean translation and rotation error, measured in the
D space was 10.13 mm and 14.59◦ with a standard deviation of 7.06
nd 7.79, respectively. The error in the subtraction images, which is
ecisive in 2D image registration problems and obtained after the
D projection during acquisition, is significantly lower according to
he results presented above.

Potential artifacts induced by non-rigid motion can be tackled
sing an independent image-based registration approach applied
osterior to our method. These methods are expected to per-
orm significantly more accurate after eliminating the rigid motion
hrough the proposed acquisition-related compensation approach.

The main limitation of the proposed approach is given by
he C-arm X-ray acquisition system. Since common C-arms are
ot designed to perform high precision movements, the position-

ng precision is limited. C-arm bouncing after positioning further
educes accuracy in some cases.

.3. Performance analysis
The number of similarity measure evaluations and the number
f steps performed during the optimization process are the two
haracteristic values of the performance analysis. These coincide
ith the number of repositioning and acquired live images, and
ging and Graphics 33 (2009) 256–266 265

are also directly related to the amount of radiation. On average the
system requires 118 measure evaluations in order to perform the
registration.

Fig. 12 shows the similarity measure and the Euclidean distance
between the known and current optimum as functions of number
of evaluations. The trend of these functions and their correlation
underlines the reliability of the similarity measure as well as the
convergence behavior of the optimization approach.

The main drawback of the proposed method is the amount of
time required to perform one measure evaluation. Within the cur-
rent implementation 15 s are needed on average. The time required
for acquisition system repositioning, image acquisition and trans-
fer represents over 95% of the total time, only the rest is being used
for image processing. Hence, even faster feature-based methods are
not expected to significantly reduce computation time.

5. Summary

This paper presents a novel method for motion artifacts compen-
sation in DSA, primarily designed for image-guided interventions.
The motion compensation is formulated as a classical pose estima-
tion problem solved by combining acquisition-related solution with
image-based registration. Instead of estimating a geometrical trans-
formation, as in common image-based registration approaches,
we determine the pose of the acquisition system, for which the
disturbing motion artifacts are corrected. Independent usage of
image-based registration methods [8,9] is facilitated for the correc-
tion of non-rigid motion artifacts and is expected to perform more
accurate applied posterior to the rigid motion compensation.

In order to estimate the pose of the acquisition system, an
efficient hierarchical optimization algorithm for acquisition-based
registration approaches of DSA was developed. This includes a
coarse optimization based on a multi-dimensional extension of the
golden section search algorithm [17], a simplex estimation refine-
ment [18] and a validation procedure.

The objective function, which relies on variance of differences
(VOD), was chosen after performing a novel validation of intensity-
based similarity measures for fluoroscopic interventional images.

The approach was evaluated using the AXIOM Artis dMP
(Siemens Medical Solutions) C-arm X-ray system, and phantoms of
anatomical parts made of real human bones. The algorithm yielded
robust results for both small and large motion, being more resilient
to the fundamental problems of pure image-based registration.

The proposed method is subject to some limitations. For
instance, the time costs required to perform one measure evalu-
ation are high due to reposition latency of the C-arm acquisition
system. New generation acquisition systems are expected to over-
come this limitation. Likewise, image transfer latency can be
eliminated by integrating our framework into the standard envi-
ronment of the imaging system. Future work will include improving
the registration accuracy via posterior applied image-based regis-
tration methods and clinical validation.
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