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Nonrigid Registration of Joint Histograms
for Intensity Standardization in Magnetic
Resonance Imaging
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Abstract—A major disadvantage of magnetic resonance imaging
(MRI) compared to other imaging modalities like computed to-
mography is the fact that its intensities are not standardized. Our
contribution is a novel method for MRI signal intensity standard-
ization of arbitrary MRI scans, so as to create a pulse sequence
dependent standard intensity scale. The proposed method is the
first approach that uses the properties of all acquired images
jointly (e.g., T1- and T2-weighted images). The image proper-
ties are stored in multidimensional joint histograms. In order
to normalize the probability density function (pdf) of a newly
acquired data set, a nonrigid image registration is performed be-
tween a reference and the joint histogram of the acquired images.
From this matching a nonparametric transformation is obtained,
which describes a mapping between the corresponding intensity
spaces and subsequently adapts the image properties of the newly
acquired series to a given standard. As the proposed intensity
standardization is based on the probability density functions of
the data sets only, it is independent of spatial coherence or prior
segmentations of the reference and current images. Furthermore,
it is not designed for a particular application, body region or
acquisition protocol. The evaluation was done using two different
settings. First, MRI head images were used, hence the approach
can be compared to state-of-the-art methods. Second, whole body
MRI scans were used. For this modality no other normalization
algorithm is known in literature. The Jeffrey divergence of the
pdfs of the whole body scans was reduced by 45%. All used data
sets were acquired during clinical routine and thus included
pathologies.

Index Terms—General intensity scale, intensity normalization,
magnetic resonance imaging (MRI), nonrigid registration, signal
intensity standardization, whole body MRI.

1. MOTIVATION

AGNETIC resonance imaging (MRI) is the preferred
M imaging modality of the brain and many other body re-
gions due to its excellent soft tissue contrast. Susceptibility ef-
fects and local inhomogeneities of the coil system on the other
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hand can influence signal intensity values. These intensity vari-
ations can be separated into two different classes. The first type
of variation (class I) consists of intensities of the same tissue
class which differ throughout a single volume. In literature, this
is called intensity inhomogeneity and is generally caused by a
gain/bias field. In order to deal with this problem, a variety of
algorithms have been developed in the last decade. All of these
approaches are based on the assumption that the gain field is
very smooth over the whole image domain, and hence, it does
not include high-frequency components. A detailed evaluation
and summary of many types of algorithms for inhomogeneity
correction is given in [1]-[3]. The most frequently used methods
are variations of homomorphic unsharp masking [4], [5], which
directly utilize the smoothness assumption. More sophisticated
algorithms either use a segmentation step [6], [7], or make fur-
ther statistical assumptions about the shape of the intensity prob-
ability distributions of the observed images, or the entropy of the
images [8]-[11].

Furthermore, most of these methods do not explicitly solve
the interscan signal intensity variation problem (class II): in-
tensities vary between different scans with the same acquisi-
tion protocol even for intrapatient studies; thus, a certain mea-
sured intensity cannot be associated with a specific tissue class.
Solving class II problems is called intensity standardization.
After a successful application of an inhomogeneity correction
algorithm all tissue classes with theoretically identical signal
intensities have identical gray values in the images. Unfortu-
nately, it is not possible to assign an anatomical meaning to the
observed signal intensities, as these depend on the acquisition
and the applied bias field correction method. The distinction be-
tween intensity inhomogeneities and a missing standard signal
intensity scale is illustrated in Fig. 1. It can be seen that inho-
mogeneity correction algorithms influence the signal intensities
locally, whereas intensity standardization methods vary intensi-
ties globally.

In this paper, we will focus on the class II problem. In gen-
eral, a standard intensity scale has no direct impact on medical
diagnostics by experts; however, volume renderers cannot use
standard presets (transfer functions) to visualize certain organs
or tissue classes. The physician has to adjust the settings for
every single scan. Furthermore, more sophisticated automatic
segmentation and quantification methods are needed, as they
have to adapt their parameters to the observed image intensi-
ties. Additionally, currently a new class of hybrid imaging sys-
tems combining MR and positron emission tomography (PET)
is being developed. In order to increase the PET image quality,
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Fig. 1. The distinction of both types of variations (interscan and intrascan in-
homogeneities). Upper Row: The left image shows the original FL2D scan of a
patient. The right image shows the same slice after gain field correction. Lower
Row: In the left image a threshold of 580 is applied to the gain field corrected
slice of the upper row. The right image shows a FL2D scan of another patient
after gain field correction and thresholding with the same threshold level (580).

an standardized attenuation correction utilizing the MR data has
to be performed [12]. For this purpose the MR intensities have to
be mapped to attenuation coefficients which correlate to tissue
classes. Hence, a second class of approaches dealing with in-
terscan intensity standardization has been developed by several
authors. Note that although inhomogeneity correction has been
researched considerably [2], intensity standardization has not
received the same attention. How intensity standardization and
bias correction influence each other is evaluated in [13]. The au-
thors conclude that both steps are necessary but the correction
of inhomogeneities has to be done beforehand.

Some intensity standardization methods, like the ones de-
scribed in Nyl et al. [14] and Ge et al. [15], use a 1-D his-
togram matching approach. First, they detect some landmarks
(e.g., percentiles, modes) on a training set of histograms. Then
all detected landmarks are averaged, in order to generate a stan-
dard landmark set. When a new image is acquired, the detected
landmarks of its histogram are matched to the previously com-
puted standard positions. Finally, in order to create a continuous
intensity mapping, the histogram positions between the land-
marks are linearly interpolated. This standardization method has
been evaluated on brain scans but can be potentially applied to
other regions of the body, too. Nevertheless, for every new body
region and protocol, the corresponding histograms have to be
analyzed and appropriate landmarks have to be chosen. Addi-
tionally, the intensities between the landmarks are linearly inter-
polated even though these intensity deformations are nonlinear
in reality.

Another histogram based method is proposed by Pierre Hel-
lier [16] who, given an image, estimates a mixture of Gaussians
that approximates its histogram. The fitting is done utilizing the
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approach presented in [17]. He then computes a polynomial cor-
rection function that aligns the mean intensities of the different
tissue classes. Unfortunately, this approach is restricted to the
head region, as this is the only region where the tissue classes
can be estimated by a few distinct categories. Furthermore, it is
highly dependent on the quality of the Gaussian fit.

Weisenfeld and Warfield propose a combined intensity stan-
dardization and inhomogeneity correction method in [18]. They
estimate a multiplicative correction field that adapts the inten-
sity statistics of an acquired MR volume to a previously created
model. As model they employ the histogram of a previously ac-
quired image with appropriate image properties. The correction
is achieved by minimizing the Kullback—Leibler divergence be-
tween the model and the template intensity distribution. The
standardization method has been evaluated on brain scans but
can be potentially applied to other regions of the body, too. How-
ever, this method can only be applied to single band data sets.

A signal intensity standardization method using spatial tissue
correlations between a reference and a template image is pre-
sented in [19]. In order to match the images, a nonlinear regis-
tration algorithm is used. Once the images are aligned, a scalar
multiplicative correction weight is computed. Though poten-
tially applicable to all body regions, the standardization is highly
dependent on the result of the registration step. Thus, the results
will be worse in regions of the body with significant anatomical
differences and deformations, like the thorax or abdominal area.

Our contribution in this paper is an algorithm which utilizes
all acquired images for intensity standardization by jointly using
the pdfs of the acquired series. A nonparametric normaliza-
tion function is computed between the corresponding intensity
spaces. Although we assume that the intervolume signal inten-
sity variations are independent for all acquired data sets, it is
possible to separately correct tissue classes which have the same
intensity in one image but distinct intensities in the other pulse
sequences. Hence small structures (e.g., lesions) can be inten-
sity standardized more reliably. Furthermore, the introduced ap-
proach does not rely on any assumptions about the shape of the
joint histograms used. Thus, our method is completely indepen-
dent of the application, region of interest and scanning protocol,
as long as there are reference histograms available for the given
task. These can be easily computed by choosing representative
images for the new body regions and/or acquisition protocols.
Because only pdfs are employed, no nonrigid spatial alignment
of the data sets has to be done. For this reason, deformations or
pathologies hardly influence the normalization results. More-
over, the proposed method is the only approach that can deal
with whole body MRI data sets, which have much more com-
plex statistical properties than spatially constrained images, like
the head.

In the following section we present our approach for MRI
signal intensity standardization. We first describe the theoret-
ical principles underlying our method. We conclude the section
by presenting an improvement of our approach regarding com-
plex data sets like whole body MRI images. The next section
is on experimental results. First, we present results of the stan-
dardization of pathological MRI head images. Then, we eval-
uate our method using artificially perturbed images. Finally, we
show the applicability of the proposed approach to whole body

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on February 12, 2010 at 06:58 from IEEE Xplore. Restrictions apply.



JAGER AND HORNEGGER: NONRIGID REGISTRATION OF JOINT HISTOGRAMS FOR INTENSITY STANDARDIZATION 139

MRI scans. We have also included a short overview of nonrigid
registration in the Appendix.

II. INTENSITY STANDARDIZATION

The goal of the proposed intensity standardization approach
is to find a mapping between the intensities of a n-tuple of im-
ages C = (C41,Cy,...,C,), where n is the number of images
acquired with different modalities and a reference n-tuple of
images R = (R, Rs,...,R,) so that an arbitrary intensity
vector 2 € Z™ describes the same tissue class in both sets with
Z™ C IR™ being the intensity space of the image sets. The main
idea of our method is that this mapping can be approximated by
the minimization of the distance between the joint histograms of
the two n-tuples of images. The required joint histograms are of
dimensionality n, corresponding to the number of images. The
domain of the histograms is Z™. In general, however, it can be
scaled to [0;1]™ due to the limited number of gray values ob-
served. Because of signal intensity outliers, we do not use the
full intensity range but the range up to the 99.8% intensity per-
centile. If the difference of the number of gray values in the im-
ages is big, then either the scaling of the intensities or the regis-
tration parameters have to be adapted for each dimension. The
reason for this is that otherwise the smoothing of the mapping
is stronger in the histogram direction with the larger number of
gray values. Note that, at least for real data sets, no plausible
transformation of the relative joint histograms can be found,
such that, the difference is zero, because the volume of tissue
classes in the image tuples C and R differ for interpatient as well
as intrapatient measurements (e.g., anatomical differences, par-
tial volume averaging effects, positioning of the patient). Thus,
the search for a mapping between the intensity spaces is equiva-
lent to finding the transformation 7" between the corresponding
joint histograms which minimizes a given distance measure D

T= arnginD(H(R)7H(C);T) (1

with H(R) and H(C') being the joint histograms of the image
tuples R and C. If the joint histograms are treated as images and
if there are no constraints on 71, this task can be viewed as a non-
rigid image registration problem. Note that, although in theory
histograms of arbitrary dimensionality can be used, in practice
n should be smaller than five. Otherwise, due to the curse of
dimension, the registration results may be no longer satisfac-
tory. Techniques like Parzen estimation can solve the problem
of insufficient samples; however, this leads to high computa-
tional costs.

For image registration a variety of algorithms are available. A
survey about image registration is given in Maintz et al. [20] and
Hill et al. [21]. We employed the variational nonrigid registra-
tion approach which was introduced by Modersitzki et al. [22];
however, other deformable registrations schemes are applicable,
too. The result of this method’s optimization is the transforma-
tion 7' : R™ — IR". In the context of the registration of multi-
dimensional joint histograms, it describes how to transform the
gray values of one n-tuple of images C' such that its intensity
distribution best matches the reference distribution, with respect

to the used distance measure and smoother. The objective func-
tional 7 of the nonrigid registration can be written as

JH(R), H(C);u] = D[H(R), H(C);u] + aS[u]  (2)

with D being the distance measure, S being a smoother, «
defining the influence of the smoother on the optimization, and
u representing the deformation between the joint histograms.
We used the sum of squared differences as distance measure
and a curvature based smoother. A more detailed description
of nonrigid image registration using a variational framework
is given in the Appendix. The intensity standardization can be
done by

Teorr = iorig + u(iorig) = T(iorig) 3)

where i,.;; € I" describes the intensity vector in the original
current image tuple C' and 2., € Z" is the intensity vector in
the corrected images, respectively. A schematic overview of the
standardization process is given in Fig. 2. Here the relationship
between the spatial and the intensity domain is illustrated.

If the computed transformation is applied to the joint pdf p
of the current image tuple, it is not guaranteed that the resulting
function is still a pdf, as the constraint 3__(poT')(z) = 1 might
be invalid. However, as the derived mapping is applied to im-
ages, the resulting pdfs will fulfill the constraint again. Never-
theless, volume preserving nonrigid registration approaches can
be used as well [23].

In a preprocessing step, the joint histograms were equalized
[24]. As the histogram values in areas with small tissue sup-
port are very low, the equalization increases the performance
of the registration of these regions by raising the values there
and suppressing values of areas with high tissue support. This is
very important for data sets acquired with protocols that high-
light small structures (e.g., blood vessels or kidneys in TIRM
images). Without the equalization step, areas in the joint his-
tograms representing such structures are not treated satisfacto-
rily in the registration process, as small histogram values hardly
influence the distance measure. Thus, the registration concen-
trates on structures in the histograms with high tissue support.

For data sets being “statistically simple,” like the head region,
the proposed method returns satisfactory results (see Section
IIT). However, the following problems may arise in more com-
plex data sets: 1) tissue classes with a small number of voxels do
not have enough support to be transformed in a reliable manner;
2) if a previous bias field correction step has failed, the his-
tograms are blurred and the statistical information of a tissue
class is spread to a broad range of gray values. Consequently, it
is no longer possible to find a plausible global transformation of
the intensity vectors. One straightforward solution to this is to
split the data sets into smaller subvolumes. These subvolumes
can then be intensity-standardized separately. However, this can
still lead to problems if the statistical content of a subvolume is
not sufficient for a reliable registration. In order to have suffi-
cient statistical content, a partition should have the same dom-
inating tissue classes as the corresponding partition in the ref-
erence image. Furthermore, the histogram has to have a sim-
ilar morphology as the histograms of the neighboring partitions.
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Fig.2. Schematic illustration of the intensity standardization. First, from the reference images a reference joint histogram is created. This is the training component
of the approach. Then from the current MRI images a joint histogram is generated. In the next step these histograms are nonrigidly registered. Using the gained
transformation function, the current images are standardized. For visualization purposes, the proposed method is shown for n = 2, but it is applicable to any n.

If the sufficient content assumption does not hold, some tissue
classes might be transformed in a false way. Furthermore, due
to the independent standardization of the subvolumes, intensity
discontinuities can occur at the junctions between the partitions
[25].

In order to overcome these drawbacks we propose the fol-
lowing subvolume based technique. The core of our method
is a new distance measure for the registration of the joint his-
tograms which utilizes the statistical information of neighboring
partitions in the joint histograms in regularizing the computed
transformation of the intensities. The modified method can be
summarized as follows. The data is split into K partitions. For
each partition & € {1,...,K} a joint histogram for the cur-
rent and one for the reference volume is created. The parti-
tioning of the input data sets is arbitrary. We use a equidis-
tant partitioning along the z-axis; however, the subvolumes can
also be identified using other strategies (e.g., segmentation).
Each partition is independently registered, but all the remaining
K — 1 partitions are utilized for regularization of the registra-
tion. Consequently, the new distance measure can be described
as a weighted linear combination of the simple distance mea-
sures of all K histograms. Thus, the deformation computed for
partition j depends on all histogram partitions, as it utilizes their
properties as well. This leads to the following distance measure:

K
DI[H(R), H(C);uj] = Y ajx D[H(R®), H(C*); u)]
k=1
“4)
with
.
> a=1 (5)
k=1

where H(R¥) and H(C*) are the reference histogram of sub-
volume % and the current histogram of subvolume &, respec-
tively, u; is the deformation field of partition j corresponding
to the transformation 7; and D is a simple distance measure
as mentioned above. Furthermore, 7 identifies the current sub-
volume and a; 1, is the influence of the force of partition % in the
context of the standardization of subvolume j.

If all a; j are set to aj, = (1/K) the resulting deformation
field of all partitions is the same. Setting a; ; = 1 for all 5 and
a;r = 0,Vj # kresults in a unconstrained nonrigid registration
of the joint histograms of all K blocks. The proposed approach
can still lead to discontinuities at the junctions of the partitions.
However, these can be significantly reduced, depending on the
chosen weighting factors a; ;. Furthermore, these discontinu-
ities can be further reduced by interpolating the computed u;
along the spatial positions of the corresponding intensities. De-
pending on the partitioning of the volume into blocks, different
interpolation schemes have to be applied. As we decompose our
volume along the z-axis only, we apply a cubic B-spline inter-
polation as follows. The number of bins of the single histograms
of the n acquired images is denoted by l1, . .., [,,; thus, the joint
histograms have L = [ x ... x [,, bins. Consequently, the trans-
formation 7; corresponding to the deformation field u;, is sam-
pled at L positions. Thus, n- L splines have to be computed using
standard numerical methods [26]; one for each bin and for each
dimension of the deformation field. Correcting an intensity i,
with z-coordinate z in an image C,,, given an intensity vector
= (i1, . 0m,...,0n) T resultsin

im,corr =l + Sl,’m(z) (©)

where m € {1,...,n} and ! € {1,..., L} corresponds to the

intensity vector ¢. The relationship between the control points of
the splines S; ., the z-coordinate of the volumes and the signal
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intensity transformation is illustrated in Fig. 3. The approach is
summarized in the following algorithm.

Require: H(R*), a;x Vk,j
Ensure: Standard intensity scale
for k = 1to K do
compute current histogram H(C*)
equalize H(C*)
end for
for j = 1to K do
compute u;; the previously computed

histograms H(R*), H(C*) and a;, are
required

end for
for! = 1to L do
for m = 1ton do
compute B-spline S; ,,, using u;
end for
end for
for all voxels do
transform the intensities using the interpolated
transformations; 5; ,, and the z-coordinate
are required.

end for

A further advantage of the proposed intensity standardization
method arises from the use of joint histograms. As only pdfs are
utilized, the standardization results do not become worse if the
region of interest in the two volumes differs slightly. For this
reason just a coarse rigid registration of the reference with the
current image data sets is required in the interpatient case to
generate the K subvolumes for the proposed approach. How-
ever, if this is not done or cannot be guaranteed the joint his-
tograms will not fit and hence the quality of the standardization
will be worse. If the whole statistical information is used at once
(K = 1) then no alignment of the volume sets R and C has to
be done. As a result of the flexibility concerning the region of
interest, the method can deal with anatomical differences in in-
terpatient scans or anatomical changes due to evolving lesions,
for instance. However, if the source and target images are signif-
icantly different anatomically, or if there is a big variance in the
localization of the regions of interest, the registration may fail.
However, a possible solution for increasing the quality of the
standardization results is to introduce additional reference his-
tograms that cover the possible anatomical differences. Hence,

~ Translation

z-Coordinate

Fig. 3. Schematic illustration of the B-spline interpolation of the transforma-
tion vectors. The example uses X = 5 partitions. The planes w;-u5 represent
the magnitude of the deformation in a specific subvolume. The plot shows the
relationship between the control points P; - Ps of the spline S; ., the z-coordi-
nate within the volumes and the magnitude of the translation.

before the signal intensity standardization, the proper set of ref-
erence histograms has to be chosen. This can be achieved, for
instance, by selecting the histograms with a minimal distance to
the current histograms.

III. EXPERIMENTS AND RESULTS

For evaluation of the proposed method various body regions,
pulse sequences and different machines of the same brand were
used. When possible the approach was evaluated using time-to-
time studies (follow-up studies). However, in the case of whole
body MRI, no voxel-wise evaluation was possible, as the de-
formation of the anatomical structures was too large even for
follow-up studies, due to different positioning of the patients,
nonrigid transformations of body regions, partial volume aver-
aging effects, and pathologies.

A. Standardization of MRI Head Images

1) Data Sets: For the evaluation of the proposed inten-
sity standardization method on MRI head data sets T1- and
T2/FLAIR images were used. All data sets were acquired on a
Siemens Symphony 1.5-T scanner. The T2-weighted FLAIR
data sets had a resolution of 408 x 512 X 19, an isotropic
in-plane resolution of 0.43 mm?2, 7.2 mm slice thickness, and
TE = 143 and TR = 9000 ms. The T1-weighted images
had a resolution of 208 x 256 x 19 with an isotropic in-plane
resolution of 0.86 mm?, 7.2 mm slice thickness and TE = 14
and TR = 510 ms. In total 25 volumes from 11 different
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TABLE I
STANDARDIZATION RESULTS OF THE MRI HEAD IMAGES. ABSOLUTE MEAN AND STANDARD DEVIATION
OF THE DIFFERENCE IMAGES WITH AND WITHOUT STANDARDIZATION

FLAIR T1

original standardized original standardized
Volume p | o " o p | o p | o
la 19.94 62.41 | 27.51 62.27 || 90.98 | 57.82 4.65 | 55.01
1b 42.25 66.70 6.30 70.75 || 75.19 | 62.82 3.17 | 61.23
2 89.76 | 100.88 3.64 7299 || 4537 | 61.92 9.36 | 67.46
3 7.09 58.17 1.02 59.00 || 19.24 | 69.83 1.64 | 65.01
4a 80.11 79.58 8.67 5895 || 53.39 | 74.52 0.39 | 77.93
4b 79.36 50.44 2.14 57.64 || 17.79 | 81.75 | 10.18 | 86.32
5 22.82 46.84 0.32 49.50 || 25.49 | 53.70 9.74 | 56.45
6 22.82 34.79 | 13.39 36.37 7.51 | 68.70 1.81 | 61.00
7 106.70 73.07 7.70 7773 || 28.09 | 61.78 4.50 | 58.29
8 38.24 87.34 | 30.33 88.17 || 87.53 | 7591 | 12.27 | 63.13
9 107.80 | 110.41 | 12.48 | 110.74 223 | 96.49 0.90 | 84.50
10 25.05 39.58 1.84 4144 || 1949 | 57.27 5.56 | 60.58
11a 248 56.81 3.02 55.87 || 1549 | 52.84 | 16.53 | 51.74
11b 11.28 47.09 2.72 46.54 8.47 | 47.57 | 15.03 | 47.39

[ Means [| 4684 [ 3641 | 865 [ 9.7 [[ 3545 [ 29.02 | 6.84 | 5.12 |

patients were used where eight subjects had two scans and three
subjects had three scans. All the images were of real patient
data including evolving lesions.

2) Evaluation Method: For the experiments, a single
T1-weighted volume and its corresponding FLAIR data set was
chosen as reference for each patient. Then the follow ups were
standardized to the intensities of the reference volumes. As the
treated body region is small and the pdfs of brain images are
not very complex, the volumes were not partitioned (K = 1).
By subtracting the two image tuples R and C intuitive quality
measures can be computed.

In order to evaluate the intensity standardization the mean
distance and the standard deviation between each patient’s ref-
erence and current volumes were chosen as quality measures.
The systematic error between the reference and the standard-
ized images is expected to be smaller than that between the ref-
erence and the unprocessed images due to the signal intensity
standardization. However, patient data with evolving structures
from clinical routine was used and thus the anatomy of the brain
changed. Consequently the evaluation method has the drawback
that the difference between the volumes will never vanish. The
lesions were removed by a segmentation step beforehand (just
for evaluation, not for the signal intensity standardization step).
Only those voxels that were classified as healthy brain tissue in
both volumes were considered in computing the quality of the
standardization. In order to be able to compute the difference
between the volumes, a rigid registration using normalized mu-
tual information [27] as distance measure had to be utilized, so
that the reference and template volumes match each other.

For the signal intensity standardization, we used the fol-
lowing parametrization for the registration: « 0.001 and
128 bins. As interpolation method, a bi-linear interpolation
was utilized. The histograms were created by a partial volume
technique. This means that the bins were filled relative to the
distance to the intensity vector. This configuration was suitable
for most of the experiments. In some cases the parameter « had
to be slightly adapted.

3) Results: The detailed results of the standardization are
shown in Table I. For the FLAIR images the absolute mean

p = (1/N.) Zjvzl |tej] of all N, experiments using the im-
ages without standardization was prr,a1r = 46.84 and the cor-
responding standard deviation was oppatr = 36.41. Using
the proposed intensity standardization approach the mean was
Wrrar = 8.65 with a standard deviation of ofp oz = 9.17.
For the original T1-weighted images the absolute mean was
wr1 = 35.45 with a standard deviation of op; = 29.02. Using
the intensity standardization the mean was p/r; = 6.84 with
a standard deviation of o/,; = 5.12. Although, in general, the
method significantly decreases the difference, there are a few
cases that this difference may increase. There are two reasons
for this effect. First, the optimization of the registration might
be stuck in a local minimum of the objective function. Second,
if the structure of the histograms does not fit precisely, the re-
sulting intensity mapping might be incorrect. However, this just
happens if the distance between the histograms was small from
the beginning; thus, the resulting differences are still very small.
If the method proposed by Nyl ef al. [14] is employed the re-
sults are: pipy a;p = 10.73, oppajp = 830, ppy" = 11.27,
and o0y = 7.57. As the used images were bimodal, we uti-
lized the second mode as histogram landmark. As mentioned
before, a slight difference between the volume is expected as
the anatomy of the brain changed [28]. Furthermore, we ap-
plied no bias correction method to the head images, because the
intensity inhomogeneities of the acquired images were rather
small. Fig. 4 shows the marginals of the joint histograms of the
T1-weighted head images before and after standardization. The
marginals of the joint histograms correspond to the histograms
of the single volumes. Here six volumes were randomly selected
and standardized to a single reference. The thick line represents
the reference histogram in both plots.

In Fig. 5 the effect of the signal standardization on FLAIR
images is shown. The first row shows the slices from the ref-
erence volume tuple. On the left side the original image slices
are shown. On the right side the processed images are shown.
All images are displayed with the same transfer function; thus,
comparable tissue classes should have similar gray values in the
corrected images. Furthermore, all images are from different ac-
quisitions, whereas the images in the second and third row show
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Fig. 4. Left: the marginals of the T1-weighted head images before standard-
ization. Right: the marginals of the same images after signal intensity standard-
ization. The thick line in both plots represents the reference histogram.

a follow-up study of the same patient. It can be clearly seen
that the intensities are adapted to the intensities of the reference
image.

B. Parametric Perturbation of Intensities

1) Data Sets: In this experiment parametric perturbations
were applied on a pair of T1- and T2/FLAIR weighted im-
ages. They were acquired on a Siemens Symphony 1.5-T
scanner. The T2-weighted FLAIR data set had a resolution of
408 x 512 x 19, an isotropic in-plane resolution of 0.43 mm?,
7.2 mm slice thickness, and TE = 143 and TR = 9000 ms.
The T1-weighted volume had a resolution of 208 x 256 x 19
with an isotropic in-plane resolution of 0.86 mm?, 7.2 mm slice
thickness, and TE = 14 and TR = 510 ms.

2) Evaluation Method: In all experiments in this section the
used image pair was utilized as reference. Then the T1- and the
T2/FLAIR- weighted images were perturbed by a parametric in-
tensity mapping; thus, both data sets are transformed indepen-
dently. With that setting, the joint standardization of all volumes
has no advantage over the separate standardization. In this case
the difference of the proposed method to Nyul’s approach [14] is
reduced to the nonlinearity of our approach and that it is not nec-
essary for us to locate any landmarks in the histograms. In order
to evaluate the standardization methods, the perturbed images
were mapped back to the previously chosen reference data sets.
As a measure for the quality of the standardization, the mean
distance between the reference and the intensity standardized
images was used.

The first intensity mapping we evaluated was

Z‘new = Z.ref . <M . Z.ref + 1) (7)

199.8

with i, being the perturbed intensity, i,¢ the intensity in the
reference image, i99 g the 99.8% percentile of all intensities in
the reference image and x a factor to control the strength of
the perturbation. This means that if x = 1, the intensities do
not change at all. If « is smaller than one then 7,,0v < %ref; if
K > 1 then ipew > %rer- Furthermore, the higher the value of
the initial intensity the larger is the perturbation. We evaluated
the signal intensity standardization for x € [0.3;2.0] for Nyul’s
method [14] and the proposed approach. As the used images
were bimodal, in Nyil’s method the second mode was utilized
as landmark.
Second, we evaluated

inew = iref . <1 +c- sin <f -Zref )) (8)
199.8

Fig. 5. First row: On the left side a slice of the reference T1-weighted volume
is shown, on the right the FLAIR slice, respectively. Left column: the original
FLAIR slices. Right column: the corrected FLAIR slices. All images (except the
T1w slice) are displayed with the same transfer function: center 200 and width
200.

as an intensity mapping. Here the parameter ¢ describes the am-
plitude of the distortion and f its frequency. We evaluated both
algorithms with a frequency of f = 1 and f = 4. For f = 1
we evaluated the amplitude ¢ € [0;0.5]; for f = 4 we chose
¢ € [0;0.35]. An amplitude of ¢ = 0 yields no intensity distor-
tion.
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Fig. 6. The figure shows the effect of the artificial quadratic perturbation on
a T2/FLAIR weighted image. The left image shows a slice of the original
T2/FLAIR weighted volume. The right image shows the result of the quadratic
perturbation. Both images are displayed with the same transfer function: center
300 and width 200.

3) Results: The effect of the quadratic perturbation on the
T2/FLAIR weighted image is shown in Fig. 6. The results are
illustrated in the three plots in Fig. 7. It can be seen that both
approaches decrease the mean distance to the reference images.
However, in general, the proposed algorithm yields better results
than Nyul’s method [14]. Due to the piecewise linear intensity
mapping between the chosen landmarks, the results of Nyul’s
method get worse if the perturbations become more nonlinear.
As the proposed signal intensity standardization method does
not rely on the position of any landmarks, it is much more flex-
ible and can easily adapt the correction to the nonlinearity. If
there are small intensity distortions only, Nyul’s method slightly
outperforms the proposed method. The reason for this is that if
there are hardly any intensity distortions it is easy to exactly
determine the same landmark positions in the histograms. As
the proposed approach does not use any assumptions about the
shape of the histograms and we are using a global regulariza-
tion in the nonrigid registration, small changes in the perturbed
histograms yield global changes in the intensity mapping.

C. Artificial Perturbation of the Intensities of a Certain Tissue
Class in Synthetic Images

1) Data Sets: For this experiment we used synthetic data sets
from the McConnell Brain Imaging Centre (BIC) of the Mon-
treal Neurological Institute, McGill University [29]. The simu-
lated data sets had a resolution of 181 x 217 x 181 and a slice
thickness of 1 mm. We chose the T1w and T2w-images with a
noise level of 3% and no signal intensity inhomogeneities. In
order to evaluate the proposed algorithm, the intensities were
artificially perturbed by a warping of the joint histograms using
thin plate splines. Slices from the synthetic images are illus-
trated in Fig. 8. Fig. 9(a) shows the joint histogram of the orig-
inal T2w and T1w image. In Fig. 9(b) the joint histogram with
the maximal intensity deformation is shown. For the experi-
ments the intensity deformation is varied between no and max-
imal distortion. The major part of the perturbed intensities be-
longs to muscle tissue.

2) Evaluation Method: For the evaluation the mean distance
of the reference image to the standardized intensity transformed
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Fig. 7. The first plot shows the results of the standardization for the quadratic
intensity perturbation of the images. In the second and third block the results for
the sinusoidal perturbation are shown (f = 1 and f = 4). All mean distances
are with respect to the FLAIR images.

Fig. 8. The left image shows the used synthetic T1w image. On the right side
a corresponding T2w slice is shown. The images are taken from the BrainWeb
database [29].
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.

(a) (b)

(© (d)
Fig. 9. Image (a) shows the original joint histogram of the synthetic T2w and
T1w image. The histogram is equalized for presentation. The 2:-direction repre-
sents the T2w image and the y-direction the T1w image. (b) The joint histogram

of the intensity transformed images is shown. (c) The correction result using the
proposed method. (d) The correction result of Nyul’s method [14].

images was chosen. In order to create a set of transformed im-
ages the intensity deformation was scaled between no deforma-
tion and maximal deformation. The measures of the proposed
method were compared to Nyul’s method [14]. Here, we tried
different configurations and found, that using the percentile set
P € {10,20,...,90} where each element p; € P represents a
p;ith percentile in the histogram yields the best results.

3) Results: This experiment demonstrates the main advan-
tages of the signal intensity standardization using all acquired
images jointly compared to the normalization of the images sep-
arately. It can be seen that if just the intensities of a certain
tissue class are deformed, these changes cannot be corrected by
aligning the 1-D histograms to a given reference. The reason for
this is, that the translation of an intensity in the projection re-
sults in the translation of a complete row in the joint histogram.
Thus, not only the disturbed tissue class is modified. The re-
sult of the experiment regarding the T1w image is shown in the
plot of Fig. 10. As illustrated in Fig. 9, the plot shows that the
proposed method outperforms Nyul’s method [14] given the ar-
tificial intensity distortion. Fig. 9(d) shows the standardization
result of the images with maximal intensity deformation. The
intensities of the transformed intensity class were not corrected
properly. Consequently, the mean distances after standardiza-
tion are worse than before. Furthermore, streak artifacts can be
seen at the borders of the percentile positions. Using a contin-
uous transformation instead of the piece-wise linear transfor-
mations could reduce these histogram artifacts. In Fig. 9(c) the
normalization result of the proposed method is shown. The in-
tensity deformation was reduced significantly. However, due to

14 T T T T T T v T
deformed

Nyul -
12} proposed method A

10

Mean Distance

0 01 02 03 04 05 06 07 08 09 1

Deformation

Fig. 10. The plot shows the mean distance of the artificial intensity perturbed
T1w image, the corrected version using Nyul’s method [14] and the standard-
ized images using the proposed method with respect to the degree of the intensity
distortion.

the regularization and the loss of some intensities during the dis-
tortion step, no perfect standardization was reached.

D. Standardization of Head Data Sets Including Artificially
Evolving Pathologies

1) Data Sets: For the evaluation of the influence of patholo-
gies on the proposed signal intensity standardization T2/FLAIR
weighted images and T1 weighted images with contrast bolus
were used. All data sets were acquired on a Siemens Sym-
phony 1.5 T scanner. The T2-weighted FLAIR data sets had a
resolution of 408 x 512 x 19, an isotropic in-plane resolution
of 0.43 mm?2, 7.2 mm slice thickness, and TE = 143 and
TR = 9000 ms. The T1-weighted images had a resolution of
208 x 256 x 19 with an isotropic in-plane resolution of 0.86
mm?, 7.2 mm slice thickness, TE = 14 and TR = 510 ms,
and 14 ml of Magnevist contrast bolus.

2) Evaluation Method: Two evolving pathologies were sim-
ulated in this experiment. First, the ventricles were increased
and second, a lesion within the data set was artificially enlarged.
In order to simulate the growth of the pathologies, a landmark
based nonrigid registration approach was employed. For this
purpose a set of landmarks L = {ly,...,l,}, where [; € R?,
i € {1,...,n}, onthe border of the structure (ventricles/lesion)
were selected in the treated volume pair V. These n landmarks
were manually assigned to new positions L' = {I},...,1,}.
Additionally, for each landmark /; a fixed pair of landmarks at
a distance ¢ outside the structure was introduced to keep the
transformation as local as possible. Finally, the eight corners of
the volume were used as fixed landmarks. Thus, in total 2n + 8
landmarks were utilized. The registration approach makes use
of thin plate splines [30]. After the alignment the landmarks are
matched exactly. The values between the landmarks are inter-
polated smoothly. The result of the registration is a mapping
I : IR® — IR? that describes the transformation of a voxel.
By multiplying T" by a constant factor g, € [0; 1], the resulting
mapping I', generates a new volume pair V', where the size of
the treated structure lies between the size in the original volumes
and the size in the volumes mapped by I'. This is illustrated in
Fig. 11.
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Fig. 11. In the images (a)-(d) the artificial growth of an lesion is shown. (a)
Shows the original FLAIR slice, (d) the maximal deformation, (b) 33% of the
maximal deformation, and (c) 66%, respectively. (e)-(h) Show the artificial
growth of the first two ventricles: (e) original slice, (f) 33%, (g) 66%, and (h)
maximal deformation.

Let V be the original image tuple, V', the volumes with the
artificially enlarged pathologies and R a reference volume tuple
defining the standard intensities. The computed mapping of the
intensity space of a current volume tuple V, to the reference
tuple R is denoted by v, : V, — R. In order to be able to

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 1, JANUARY 2009

compare the result of the signal intensity standardization, the
resulting intensity transformation -, is applied to the original
volume pair V yielding V., = 7,(V). If pathologies have
no influence on the signal standardization, all corresponding
volume pairs V ., should have the same intensities for all voxels.
Let V be the mean of all signal standardized volumes V., . Thus,
the pathology dependency can be measured by the mean dis-
tance y,, and its standard deviation of an observed volume pair
V., to the mean volume pair V.

3) Results: In the experiment using the artificially enlarged
lesion, the volume of the lesion varied between approximately
vg = 38 cm?® for gy = 0 to about v; = 136 cm? for g; = 1.
This corresponded to a lesion to head ratio of about g = 0.02
to 1 = 0.08. The results are illustrated in the upper plots of
Fig. 12. The mean absolute difference of all transformed FLAIR
images yielded pf "™ = 0.26 with a standard deviation of
oFLAIR — (.13; the mean absolute difference of the T1w im-
ages was p1;' 1 = 0.54 with a standard deviation of o't = 0.37.

In the experiment using the artificially increased ventricles,
the volume of the ventricles varied between approximately vy =
85 cm? for go = 0 to about v; = 316 cm? for g; = 1. This
corresponded to a ventricle to head ratio of about 7y = 0.04
to 71 = 0.14. The results are illustrated in the lower plots of
Fig. 12. The mean absolute difference of all transformed FLAIR
images yielded pftA™R = 0.40 with a standard deviation of
oFLAIR — (.23; the mean absolute difference of the T1w im-
ages was 411 = 0.64 with a standard deviation of ¢! = 0.49.

The input images had gray values in the range between zero
and approximately 1200. Thus, the maximal measured intensity
deviations show that the proposed algorithm is robust against
severe pathological changes within the volumes.

E. Standardization of Whole Body Data Sets

1) Data Sets: All data sets were acquired on a Siemens
Avanto 1.5 T whole body MRI scanner. The TIRM images had
a resolution of 512 x 512 x 30 (each block) with an isotropic
in-plane resolution of 0.98 mm? and 5.5 mm slice thickness
and TE = 83, TR = 1660 ms and the FL2D images had a
resolution of 512 x 410 x 30 (each block) with an isotropic
in-plane resolution of 0.98 mm? and 5.5 mm slice thickness
and TE = 4.7 and TR = 291 ms. The size of the composed
whole body images was 542 x 1746 x 20 for both protocols.
Only the composed volumes were used for the experiments.
All images were acquired in clinical routine, thus, including
pathologies. In total nine whole body MRI data sets were
used for evaluation. Two of these were from the same patient,
acquired with a time delay of six months. In order to reduce
the effects of intensity inhomogeneities homomorphic unsharp
masking was employed.

2) Evaluation Method: Due to the anatomical differences
and the large deformations within follow-up studies, no voxel-
wise evaluation method was used. As quality measure the rela-
tive distance between the reference and current joint histogram
before and after the standardization was chosen

r = dAfter (9)

dBefore
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Fig. 12. The plots show the difference of the transformed volumes with dif-
ferent sizes of the structures to the “mean” transformed volume. The first two
ones show the results of the artificially enlarged lesion. The latter two illustrate
the results of an increased ventricle size. The intensity range of the images was
[0,1200].

Consequently, if » < 1 the distance between the images was
reduced and if » > 1 the standardization failed. As distance
measure between the joint histograms the Jeffrey divergence

L

hR h¢
d(H(R),H(C)) = Z <fo log m—l + A log m—l> (10)

i=1

where

_ hE+hf

m; 5 (1)

was used, with h® € H(R) and hY € H(C). Similar to
the Kullback-Leibler—Divergence, the Jeffrey Divergence
measures how efficient, on average, it would be to code one
histogram using the other as code book [31]. Our assumption
is that if the histograms of two images are as close as possible,
a tissue class in both images covers the same intensity range in
both volumes. Hence the distance between the joint histograms
is a good measure for the quality of the results of the signal
intensity standardization.

In the first experiment we evaluated the standardization
quality related to the influence of neighboring histograms on
the regularization. We used a uniform partitioning along the
z-axis. Only direct neighbors to the current histogram are
allowed to affect the registration. For this reason we introduced
an influence parameter 3 € [0; 1] with

B, it j=k
ajr=94 1=-0)/2, if k=j—-1Vk=j+1 (12)
0, else.

where j is the current sub-volume to be registered. Con-
sequently, 5 = 1.0 does not use statistical information of
neighboring histograms and 8 = 0.0 uses neighboring pdfs
only for the standardization. The results showed that the param-
eter (3 has to be chosen between § € [0.5;0.7], depending on
the number of partitions. If fewer partitions are used, then the
influence has to be reduced. Note that, because the first and the
last sub-volume are mirrored, their influence on the registration
result is not just 3 but 3 + (1 — (3)/2. The standardization
results using different numbers of partitions and a varying
parameter [ are illustrated in Fig. 13 (upper plot).

The second experiment deals with the number of partitions to
be used. In order to evaluate this parameter, the best signal inten-
sity standardization result for each number of partitions (the pa-
rameter (3 may vary) is selected. This shows that approximately
ten subvolumes have to be chosen. If more partitions are used
the pdfs cannot be estimated in a reliable manner anymore. If
fewer partitions are used, the standardization is affected by in-
tensity inhomogeneities and small structures are neglected in the
registration. The standardization results are illustrated in Fig. 13
(lower plot).

3) Results: The results of both experiments show that it is
best to use approximately K = 10 partitions. They also show,
that the statistical information of neighboring partitions has a
significant impact on the quality of the standardization of a sub
volume. For the given number of partitions a parameter 3 =~ 0.6
provided the best results. Using the Jeffrey divergence it was
possible to achieve a relative distance of » = 0.567. This means
that the distance between the joint histograms has been reduced
by about 45%. However, it is not possible to achieve signifi-
cantly better results as the anatomical differences between the
data sets are too large. Consequently, even if the signal inten-
sities of all tissue classes are transformed in an ideal manner,
there still have to be differences between the histograms. The
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Fig. 13. The top plot shows the results of the intensity standardization with
respect to the influence parameter 3. The bottom plot illustrates the effect of
different numbers of partitions on the standardization.

results of the whole body signal intensity standardization are il-
lustrated in Fig. 14.

IV. SUMMARY AND CONCLUSION

In this paper, we present a new method for MRI signal in-
tensity standardization of MRI scans. In contrast to most of the
previously published methods, the proposed approach is inde-
pendent from any prior knowledge about the structure of the
data sets and it relies only on the image properties. Hence, no
prior registration or segmentation of the data sets are neces-
sary. Furthermore, the method is independent of the application,
body region and pulse sequence, if reference joint histograms
are available. The most important improvement is that the pro-
posed method utilizes all acquired images jointly and does not
do the standardization of individual images separately. Never-
theless, the proposed signal intensity standardization approach
can also be used for single-feature normalization (n = 1).

The presented standardization method is a reliable way to ad-
just pdfs of multiple series of MRI scans to a pulse sequence de-
pendent, standard signal intensity scale. However, if the image
properties are too distinct, the obtained results may not be sat-
isfying. This is the case, for instance, for volumes disturbed by
a strong bias field. This yields blurred histograms and thus no
reliable registration is possible anymore. In general, however,
the method produces satisfactory results. Thus, postprocessing
methods, like automatic segmentation, the presentation of the
data-sets, or the MR based attenuation correction for PET im-
ages can be done more easily.
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Lastly, the proposed method is the only approach for whole
body intensity standardization known in literature. Whole body
MRI will gain more importance in the future, as it allows fast
imaging of the whole body without the need of repositioning the
patient or the coils. Moreover, it allows screening of patients
with generalizing diseases, like malign lymphoma. However,
due to the large amount of acquired information, (semi) auto-
matic preprocessing and filtering of the data sets is necessary.
A reliable processing of the acquired images needs a general
signal intensity scale, like the Hounsfield units in CT imaging.
For this reason signal intensity standardization of whole body
MRI will gain more importance in the future.

APPENDIX
NONRIGID REGISTRATION

Image registration can be summarized as the problem of
finding a deformation between a reference image A and a cur-
rentimage B so that the deformed template image B, is similar
with respect to a certain distance measure D. In the approach
presented in this article the reference image A corresponds to
the joint histogram H(R) representing an approximation of
the multidimensional density function of R and, respectively,
B = H(C) represents the approximation of the density of C.

The used distance measure depends on the application. The
most common ones are the sum of squared differences (SSD)
for mono-modal applications, the normalized cross correlation
(NCC), and mutual information (MI) for multimodal problems
[32]. Because the function values of the joint histograms have
identical meaning, the usage of SSD is sufficient in this paper.
However, the minimization of the proposed distance measures
yields an ill-posed optimization problem. Further regulariza-
tion terms have to be added to smooth the objective function.
These so-called smoothers restrict the deformation of the cur-
rent image, in general. Mostly either elastic, fluid, curvature, or
diffusion approaches are utilized. Here, the deformation is not
expected to change very fast, thus we chose a curvature based
regularizer.

The minimization problem to be solved can be formulated as
in [22]

JIA, B;u] = D[A, B;u] + aS[u] (13)
where the function u : R"™ — IR"™ corresponds to the deforma-
tion field and n is the dimensionality of the images (in this article
joint histograms). Furthermore, D is the distance measure and
S represents the smoother. The factor « defines the influence of
the regularizer on the objective function. The deformed density
function B, can be computed as B, (z) = B o p(z) with

o(xz) = —u(x) (14)
where z defines a position within the images. As mentioned
before, we use a similarity measure based on SSD to compute
the distance between the joint histograms. In our context this
can be formulated as

1

DSSPIA, Biu] = 3 /Q(BLP(Z) — A(z))%dz. (15)
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Fig. 14. From left to right: slice from the reference T1w volume; slice from the reference TIRM weighted data set. A threshold of 400 was applied to the third,
fourth, and fifth image to better visualize the differences. The third image shows a reference T1w slice, the fourth the original T1w slice of a different patient, and

the fifth image the standardized T1w slice.

It calculates the distance between the functions related to their
function values at a position =, with @ = [0, 1]™ representing
the image domain.

The curvature based regularizer used in this paper can be for-
mulated as

Scurv[u] — %Z/{;(Aul)2 dx (16)
=1

with A being the Laplacian operator. In order to find the min-
imum of the objective function 7, a variational problem of first
order has to be solved. Therefore, the Gateaux derivative has to
be applied to 7. Thus, the variational gradient for the proposed
distance measure yields

75°(z,u(z)) = ADSP[A, Bl
= (By(z) = A(2))VBy(x)  (17)
where the operator dD is the Giteaux derivative.
The derivative dS°""™Y with respect to Neumann boundary
conditions results in
A [y] = SV [u] = A?u. (18)
Using the introduced similarity measures and the proposed
smoother the solution to the variational optimization problem
can be found by solving the Euler Lagrange equation
AcurV[u] _ fSSD(Z, 'u,(z)) =0,

for all z € Q. (19)
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