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Motivation

• Iterative reconstruction methods can lead to better reconstruction 
results than analytical methods:
• particularly for the case of noisy/incomplete data

• Computational complexity of iterative methods is much higher 
for iterative methods than for standard FBP-type algorithms

• Fast GPU hardware allows for efficient development and evaluation 
of iterative reconstruction approaches

• Focus of this work: approaches to circumvent existing hardware 
limitations
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Outline

• GPU-accelerated SART using CUDA1

• back-projection
• forward-projection

• Limitations

• Possible solutions

• Performance comparison

• Proof of concept
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Iterative reconstruction of the Catphan CTP528 phantom

1Keck, B., Hofmann, H.G., Scherl, H., Kowarschik, M., and Hornegger, J., “GPU-accelerated SART reconstruction using the CUDA 
programming environment,” in [Proceedings of SPIE Conference, Lake Buena Vista 2009], Samei E., Hsieh J., eds., 72582B (2009).
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GPU-accelerated SART

• Back-projection (BP): voxel-driven 
approach (Scherl et al.2)

• Forward-projection (FP): 
• based on ray casting

• CUDA 2.0 supports 3-D textures

• enabled hardware support for 
trilinear interpolation of sample points

• Un-matched pair forward-projector 
and back-projector (Zeng et al.3)

• Texture update procedure:
• copy whole volume into texture (one cuda call)
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original volume data kept in global memory. The volume-representing texture has to be synchronized with the
updated estimate (Figure 5). Such a synchronization is referred to as a texture update.
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Figure 6. GPU implementation principle: Volume represented in a 3D texture is forward-projected (FP). After computing
the corrective image and scaling with the relaxation factor, the back-projection (BP) distributes the result onto the
volume. After performing an update the 3D texture representation of the volume is equal to the volume.

The difference in volume representation for the corrective image computation leads to two major principles
of SART implementation using CUDA shown in Figure 5 for CUDA 1.1 and Figure 6 using CUDA 2.0. After
all corrective images have been computed and back-projected for all iterations the reconstruction finishes by
transferring the volume to the host system memory.

3. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the GPU vs. the CPU we did the following experiment. On the CPU
side we used an existing multi-core based reconstruction framework, while using NVIDIA’s QuadroFX 5600 on
the GPU side. Our test data consists of simulated phantom projections, generated with DRASIM.18 We used
228 projections representing a short-scan from a C-arm CT system to perform iterative reconstruction with a
projection size of 256 × 128 pixels. The reconstruction yields a 512 × 512 × 350 volume. In order to achieve a
sub-voxel sampling in the forward-projection step we used a step-size of 0.3 of the uniform voxel-size. Since the
majority of time in reconstruction is spent on copying the volume data for the reconstructed image from the
global memory to a texture memory in order to use the hardware-accelerated interpolation, we can significantly
reduce this time by performing an ordered subsets method.

Table 1 shows the achieved performance for the CPU-based SART reconstruction as well as for our optimized
GPU implementations using CUDA 1.1 and CUDA 2.0. The former does not need additional memory for the
forward-projection step because there is no texture update, and therefore reconstruction times for the SART and
OS are identical.

In principle, graphics cards have a very high internal memory transfer rate (≈ 62GB/s on the QuadroFX
5600). Since texture memory is not stored linearly, it has to be reorganized for texture representation, which
is the rate-limiting factor using CUDA 1.1. We measured 476 seconds to transfer a 5123 volume 414 times to
the texture stack representation. This is approximately 1.15 seconds for a single texture update. Using 3D
textures in CUDA 2.0 this can be improved by a factor of 10 such that a texture update can be performed in
approximately 0.11 seconds.

2Scherl, H., Keck, B., Kowarschik, M., and Hornegger, J., “Fast GPU-Based CT Reconstruction using the Common Unified Device 
Architecture (CUDA),” in [Nuclear Science Symposium, Medical Imaging Conference 2007], Frey, E. C., ed., 4464–4466 (2007). 
3Zeng, G. and Gullberg, G., “Unmatched projector/backprojector pairs in an iterative reconstruction algorithm,” IEEE Transactions 
on Medical Imaging 19, 548–555 (May 2000). 
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Back-projection using CUDA

Host:
For selected projections Pj

Call kernel;

Kernel:
Compute voxel x and z coordinate;
For all voxels (x,y,z), y=[0 Ny[ ... number of voxels in y-direction

Compute the coordinates (u,v) of voxel (x,y,z) in projection Pj
Get the projection value at position (2-D texfetch)
Add the weighted value to voxel

z

y

x

v

u

X-ray
source

detector

volume

• Whole writable volume 
in device memory

• Current projection / corrective image
in 2-D texture memory
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Forward-projection using ray casting
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Host:
For selected projections Pj

Compute source position out of projection matrix;
Compute inverted projection matrix;
Call kernel;

Kernel:
Compute pixel u and v coordinate and the normalized ray direction;
Compute entrance and exit point of the ray to the volume;
Perform ray casting: see illustration;
Normalize pixel value to world coordinate system units;

source

detector
volume

raydirection vector

sample point

Figure 4. Ray casting principle with an equidistant sample step size.

Corrective image computation

As introduced SART performs a projection-wise correction of the current estimation of the volume. Therefore,
the corrective image has to be computed from the difference between the original projection and the appropriate
simulated X-ray image of the current reconstruction estimate. All values in the corrective image are finally
multiplied by the relaxation factor1 before the back-projection step. The implementation principles for CUDA
1.1 and CUDA 2.0 are illustrated in Figures 5 and 6.

A realistic simulation of the X-ray imaging process can be achieved by a ray cast based forward-projection.
Research on this grid-interpolated scheme, where the interpolation is performed using a trilinear filter and the
integration according to the trapezoidal rule, showed that the root mean square (RMS) error is comparable to
other popular interpolation and integration methods used in computed tomography.16 This scheme is our first
choice, because it can be ideally mapped to the GPU hardware including hardware-accelerated texture access.

Algorithm 1 Forward-projection with a ray casting algorithm
for all projections do

compute source position out of projection matrix
compute inverted projection matrix
for all rays inside the projection do

compute ray direction depending on the image plane
normalize direction vector
//RAY CASTING
compute entrance and exit point of the ray to the volume
if ray hits the volume then

set sample point to the entrance point
initialize the pixel value
while sample point is inside the volume do

add up the computed sample value at current position to the pixel value
compute new sample point for given step size

end while
else

set pixel value to zero
end if
normalize pixel value to world coordinate system units

end for
end for

The volumetric ray casting principle for the forward-projection step is illustrated in Figure 4 and the algorithm
is shown in Algorithm 1. To determine the attenuation value of a certain pixel on the detector plane, a ray is
drawn pointing from the X-ray source towards the detector pixel position. Afterwards voxel intensity values
inside the volume are sampled equidistantly along the ray. These sampling values add up to the respective

• trilinear interpolation of sample points (3-D texture)
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• GPU device memory:
• QuadroFX 5600: 1.5 GB
• QuadroFX 5800 / Tesla C1060: 4 GB

7

• High resolution example from 3-D mammography:
• 3072 ! 2048 ! 50 (" 1.2 GB)
• fits into device memory
• slice resolution exceeds 2048 ! 2048 elements
• ERROR in forward-projection: 3-D texture limitation

16k floats

32
k 

el
em

en
ts

2-D

2048

20
48

20
48

3-D

• Texture size limitations:
• 3-D arrays in CUDA 2.0 and OpenGL: 20483 elements
• 2-D texture arrays in CUDA 2.0: 16k ! 32k float elements 
• 1-D texture arrays in CUDA 2.0: 8k elements
• 1-D linear texture 227 = 5123 elements: (512 MB float)

Limitations



 Page

Benjamin Keck

  

• Forward-projection (FP) from 2-D texture array:

• spread volume slices Si 
into 2-D texture array

• fetch two bilinear interpolated 
(hardware) values from 
proximate slices

• kernel computes sample point 
by linear interpolation (software)

• Texture update procedure:

• slice-wise copy

• slow (~1s for a 5123 vol.)

8

attenuation value in the simulated projection. Similar to the back-projection step we use projection matrices,
instead of assuming an ideal geometry, to compute the resulting perspective projection.

To parallelize the forward-projection step, each thread of the kernel computes one corrective pixel of a
projection. Analogous to the back-projection step we chose the grid configuration experimental due to our
results.12 In the implemented kernel we compute the direction vector for a specific ray, which is the first step
in the inner for loop in Algorithm 1. Therefore we take the source position vector and the 3D coordinate of the
pixel position, compute the difference vector, and normalize it. The source position for all rays of a projection is
obtained from the homogeneous projection matrix which is designed to project a 3D point to the image plane.
Depending on the output format of the projection (2D image- vs. 3D world-coordinates), this matrix has three
or four rows. In the latter case, the vector can be found in the fourth column of the inverted matrix (first three
components). In the case of a 3 × 4 matrix it is possible to drop the fourth column, invert the 3 × 3 matrix and
multiply the inverse with the previously dropped fourth column to get the source position. This holds, because
in case of a perspective projection with projection matrices, this fourth column represents the shift of the optical
center to the origin of the coordinate system. Galigekere et al.17 have shown already how to reproject using
projection matrices.

− ∗
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Figure 5. GPU implementation principle: Volume represented in a 2D texture by slices Sj is forward-projected (FP).
After computing the corrective image and scaling with the relaxation factor, the back-projection (BP) distributes the
result onto the volume. After performing an update the 2D texture representation of the volume is equal to the volume.

In the kernel code, the inverse of the projection matrix is used to get the ray direction out of the pixel position
in the projection image. The entrance and exit positions of the specific ray into the volume are calculated and
stored as entrance and exit distances with respect to the source position. Between those points the volume is
then sampled equidistantly. To get one sampling position, we take the entry vector and add the direction vector
multiplied with the step size times a counter variable. The following sampling step itself proves to be crucial for
the algorithm’s efficiency. In order to get satisfying results, a sub-voxel sampling is required, which introduces a
trilinear interpolation.

The global memory offers write access and thus has a higher latency. In contrast read-only texture memory
has conspicuous low latency due to caching mechanisms and further offers hardware-accelerated interpolation. In
CUDA 1.1 the computation of each sample point intensity is a critical issue since support for 3D textures is not
provided. In consequence, a workaround had to be applied that used just the bilinear interpolation capability
of the GPU. The kernel computes a linear interpolation between stacked 2D texture slices (Sj) (see Figure 5).
Therefore, two values are fetched from proximate stack slices with hardware-accelerated bilinear interpolation
and afterwards linearly interpolated in software. These sampling steps are substituted by only one hardware-
accelerated 3D texture fetch in CUDA 2.0. Since texture memory is read-only, the back-projection updates the

Possible solution I: CUDA 1.1 approach1

1Keck, B., Hofmann, H.G., Scherl, H., Kowarschik, M., and Hornegger, J., “GPU-accelerated SART reconstruction using the CUDA 
programming environment,” in [Proceedings of SPIE Conference, Lake Buena Vista 2009], Samei E., Hsieh J., eds., 72582B (2009).



• FP: 2-D texture from pitchlinear memory:
• CUDA 2.2 feature 

(released May 2009)

• 16k ! 32k float elements (2 GB) 

• hardware-accelerated bilinear interpolation

• linear interpolation in software

• single volume copy: no texture update required

• BP: different memory layout
• adapt memory address computation 

due to chosen layout
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The forward-projection step in [10] was implemented using

3-D textures of CUDA 2.0. Due to the size constraints of 3-D

textures they are unsuitable for high resolution reconstructions.

This could be circumvented using a method similar to our

CUDA 1.1 approach from [10], where we used a 2-D texture

array instead of a 3-D texture to store the volume. However,

this causes a significant loss of performance due to synchro-

nization of the volume copies.

In April 2009, NVIDIA updated the CUDA framework to

version 2.2 and introduced 2-D texture lookups from pitchlin-

ear memory. Thus, a hardware-accelerated bilinear interpola-

tion is supported from writable global memory. However, the

memory consistency during a kernel execution is not ensured.

A 2-D texture is also limited in size, but the restriction is

relaxed: 32 k × 16 k float elements (overall 2GB).

Analogous to our CUDA 1.1 approach from [10], we

implemented a method using a linear interpolation between

two 2-D texture values that are both bilinearly interpolated by

hardware. The volume is represented as a stack of slices (S)

organized in the 2-D texture, as is illustrated in Figure 1.

scaling

2-D pitch-lin. texture

projections

S1 S2 S3

S4 S5 S6

S7 S8 S9

S10 S11 S12

∗−

FP BP

. . .

Fig. 1. GPU implementation principle: Volume represented in a 2-D texture
by slices Si is forward-projected (FP). After computing the corrective image,
the back-projection (BP) distributes the result onto the volume-representing
2-D pitch-linear texture.

III. RESULTS & CONCLUSION

In order to evaluate the performance of the different im-

plementations we extend our experiment from [10], where

we used 228 projections representing a short-scan from a

C-arm CT system to perform iterative reconstruction with a

projection size of 256× 128 pixels. The reconstruction yields

a 512 × 512 × 350 volume. Further, we will show a high

resolution slice of breast tomosynthesis in the final paper in

order to assess image quality. This volume is reconstructed

with a resolution of 1658 × 2870 × 90. The performance

measurements will be updated for recent GPUs, e.g., NVIDIA

Tesla C1060, in the final paper.

Volume 512 × 512 × 350 voxels

Hardware QuadroFX 5600

volume 2-D 3-D 2-D pitch-

representation (FP) texturearray texturearray linear texture

volume global memory global memory global memory

representation (BP) (linear) (linear) (spec. arrangem.)

device memory

required [MB] 700 700 350

volume synch.

needed YES YES NO

required ≥ ≥ ≥

CUDA version CUDA 1.1 CUDA 2.0 CUDA 2.2

SART

performance in [s] 4234 844 1488

TABLE I
COMPARISON OF ITERATIVE RECONSTRUCTION TIMES IN SECONDS (FOR

20 ITERATIONS EACH).

Table I shows the achieved performance for the different

approaches of GPU-based SART reconstruction, including the

benefits and technical limitations.

We have presented an enhanced GPU-accelerated SART

reconstruction for high resolution volumes. We have shown

the advantage of using 2-D texture lookups from pitchlin-

ear memory to overcome the 3-D texture size limitation

for volume representation. The missing hardware-accelerated

trilinear interpolation is substituted by linear interpolation in

software between two hardware-accelerated bilinear interpola-

tions. Although this approach decreases reconstruction speed

as anticipated, no volume sychronization procedure and only

half the memory (writable texture) on the graphics card are

necessary compared to [10].
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• FP: 2-D texture from pitchlinear memory:
• CUDA 2.2 feature 

(released May 2009)

• 16k ! 32k float elements (2 GB) 

• hardware-accelerated bilinear interpolation

• linear interpolation in software

• single volume copy: no texture update required

• BP: different memory layout
• adapt memory address computation 

due to chosen layout

• final memory resort to linear layout
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Experimental setup for performance comparison
10

Volume:
512x512x350

Projections:
228 projections 
à 256x128 pixel

Compared systems:

GPU:
NVIDIA 
QuadroFX 5600

GPU:
NVIDIA 
Tesla C1060

• Performing 20 iterations
• Step size used in ray cast algorithm: 0.3 of uniform voxel size
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Reconstruction time comparison
11

Hardware QuadroFX 5600QuadroFX 5600QuadroFX 5600 Tesla C1060

volume 
representation (FP)

2-D 
texturearray

3-D 
texturearray

2-D pitch-
linear texture

2-D pitch-
linear texture

volume 
representation (BP)

global memory 
(linear)

global memory 
(linear)

global memory 
(spec. 

arrangement)

global memory 
(spec. 

arrangement)

device memory 
required [MB] 700 700 350 350

volume synchr. 
needed YES YES NO NO

required 
CUDA version

" 
CUDA 1.1

" 
CUDA 2.0

" 
CUDA 2.2

" 
CUDA 2.2

SART 
performance in [s]* 4234 844 1488 955

*preliminary results
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Proof of concept

• High resolution phantom:
• Phantomlab Catphan 

CTP 528 
• 21 high contrast line pairs

• SART reconstructions: 
• 400 simulated phantom 

projections à 1024x128 pixel
• 20 iterations

12
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Proof of concept

• High resolution phantom:
• Phantomlab Catphan 

CTP 528 
• 21 high contrast line pairs

• SART reconstructions: 
• 400 simulated phantom 

projections à 1024x128 pixel
• 20 iterations
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Hardware Tesla C1060Tesla C1060Tesla C1060Tesla C1060

volume 
resolution

5122

 x 100
10242

x 100
20482

 x 100
3072 x 

2048 x 50

voxel size 
in mm

0.4 x 0.4 
x 0.1

0.2 x 0.2 
x 0.1

0.1 x 0.1 
x 0.1

0.075 x 0.1 
x 0.1

device memory 
required [MB] 100 400 1600 1200

SART per- 
formance in [s]* 1166 2407 11353 4951

*preliminary results



 Page

Benjamin Keck

  13

Proof of concept

51225122
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Proof of concept

1024210242
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Proof of concept

2048220482
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Proof of concept

3072 x 20483072 x 2048
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Conclusion
14

Thanks for your attention

• enhanced GPU-accelerated SART

• pro/cons of 3-D texture usage

• trade-off solution for high (non-compatible) resolutions

• proof of concept

Thanks to HPMI for the travel grant


