High Resolution Iterative CT Reconstruction using Graphics Hardware

Benjamin Keck^{1,2}, Hannes G. Hofmann¹, Holger Scherl², Markus Kowarschik² and Joachim Hornegger¹

¹ Pattern Recognition Lab (Computer Science 5) Friedrich-Alexander-University Erlangen-Nuremberg, Germany

SIEMENS² Siemens Healthcare, CV, Modical Electronics 21 Medical Electronics & Imaging Solutions, Erlangen, Germany

Motivation

Page 2

- Iterative reconstruction methods can lead to better reconstruction results than analytical methods:
 - particularly for the case of noisy/incomplete data
- Computational complexity of iterative methods is much higher for iterative methods than for standard FBP-type algorithms
- Fast GPU hardware allows for efficient development and evaluation of iterative reconstruction approaches
- Focus of this work: approaches to circumvent existing hardware limitations

Outline

- GPU-accelerated SART using CUDA¹
 - back-projection
 - forward-projection
- Limitations
- **Possible solutions**
- Performance comparison
- **Proof of concept**

Iterative reconstruction of the Catphan CTP528 phantom

¹Keck, B., Hofmann, H.G., Scherl, H., Kowarschik, M., and Hornegger, J., "GPU-accelerated SART reconstruction using the CUDA programming environment," in [Proceedings of SPIE Conference, Lake Buena Vista 2009], Samei E., Hsieh J., eds., 72582B (2009).

GPU-accelerated SART

- Back-projection (BP): voxel-driven approach (Scherl et al.²)
- Forward-projection (FP):
 - based on ray casting
 - CUDA 2.0 supports 3-D textures
 - enabled hardware support for trilinear interpolation of sample points
- Un-matched pair forward-projector and back-projector (Zeng et al.³)
- Texture update procedure:
 - copy whole volume into texture (one cuda call) 3D texture

²Scherl, H., Keck, B., Kowarschik, M., and Hornegger, J., "Fast GPU-Based CT Reconstruction using the Common Unified Device Architecture (CUDA)," in [Nuclear Science Symposium, Medical Imaging Conference 2007], Frey, E. C., ed., 4464–4466 (2007).
³Zeng, G. and Gullberg, G., "Unmatched projector/backprojector pairs in an iterative reconstruction algorithm," IEEE Transactions on Medical Imaging 19, 548–555 (May 2000).

Back-projection using CUDA

Forward-projection using ray casting

For selected projections P_j Compute source position out of projection matrix; Compute inverted projection matrix; Call kernel;

Kernel:

Compute pixel u and v coordinate and the normalized ray direction; Compute entrance and exit point of the ray to the volume; Perform ray casting: see illustration; Normalize pixel value to world coordinate system units;

Limitations

- GPU device memory:
 - QuadroFX 5600: 1.5 GB
 - QuadroFX 5800 / Tesla C1060: 4 GB
- Texture size limitations:
 - 3-D arrays in CUDA 2.0 and OpenGL: 2048³ elements
 - 2-D texture arrays in CUDA 2.0: 16k × 32k float elements
 - 1-D texture arrays in CUDA 2.0: 8k elements
 - 1-D linear texture 2²⁷ = 512³ elements: (512 MB float)
- High resolution example from 3-D mammography:
 - 3072 × 2048 × 50 (≈ 1.2 GB)
 - fits into device memory
 - slice resolution exceeds 2048 × 2048 elements
 - ERROR in forward-projection: 3-D texture limitation

Page

¹Keck, B., Hofmann, H.G., Scherl, H., Kowarschik, M., and Hornegger, J., "GPU-accelerated SART reconstruction using the CUDA

programming environment," in [Proceedings of SPIE Conference, Lake Buena Vista 2009], Samei E., Hsieh J., eds., 72582B (2009).

Benjamin Keck

• Forward-projection (FP) from 2-D texture array:

Possible solution I: CUDA 1.1 approach¹

- spread volume slices S_i into 2-D texture array
- fetch two bilinear interpolated (hardware) values from proximate slices
- kernel computes sample point by linear interpolation (software)
- Texture update procedure:
 - slice-wise copy
 - slow (~1s for a 512³ vol.)

Possible solution II: new approach

• FP: 2-D texture from pitchlinear memory:

- CUDA 2.2 feature (released May 2009)
- 16k × 32k float elements (2 GB)
- hardware-accelerated bilinear interpolation
- linear interpolation in software
- single volume copy: **no texture update required**

BP: different memory layout

 adapt memory address computation due to chosen layout

projections

Possible solution II: new approach

• FP: 2-D texture from pitchlinear memory:

- CUDA 2.2 feature (released May 2009)
- 16k × 32k float elements (2 GB)
- hardware-accelerated bilinear interpolation
- linear interpolation in software
- single volume copy: **no texture update required**

• BP: different memory layout

- adapt memory address computation due to chosen layout
- final memory resort to linear layout

projections

- Performing 20 iterations
- Step size used in ray cast algorithm: 0.3 of uniform voxel size

Compared systems:	
GPU:	GPU:
NVIDIA	NVIDIA
QuadroFX 5600	Tesla C1060

Reconstruction time comparison

Page 11

Hardware	(Tesla C1060		
volume representation (FP)	2-D texturearray	3-D texturearray	2-D pitch- linear texture	2-D pitch- linear texture
volume representation (BP)	global memory (linear)	global memory (linear)	global memory (spec. arrangement)	global memory (spec. arrangement)
device memory required [MB]	700	700	350	350
volume synchr. needed	YES	YES	NO	NO
required CUDA version	≥ CUDA 1.1	≥ CUDA 2.0	≥ CUDA 2.2	≥ CUDA 2.2
SART performance in [s] [*]	4234	844	1488	955

Benjamin Keck

*preliminary results

- High resolution phantom:
 - Phantomlab Catphan CTP 528
 - 21 high contrast line pairs
- SART reconstructions:
 - 400 simulated phantom projections à 1024x128 pixel
 - 20 iterations

• High resolution phantom:

- Phantomlab Catphan CTP 528
- 21 high contrast line pairs

SART reconstructions:

- 400 simulated phantom projections à 1024x128 pixel
- 20 iterations

Hardware	Tesla C1060				
volume resolution	512² x 100	1024 ² x 100	2048 ² x 100	3072 x 2048 x 50	
voxel size in mm	0.4 x 0.4 x 0.1	0.2 x 0.2 x 0.1	0.1 x 0.1 x 0.1	0.075 x 0.1 x 0.1	
device memory required [MB]	100	400	1600	1200	
SART per- formance in [s] [*]	1166	2407	11353	4951	

*preliminary results

512²

Page 13

1024²

2048²

3072 x 2048

Conclusion

- enhanced GPU-accelerated SART
- pro/cons of 3-D texture usage
- trade-off solution for high (non-compatible) resolutions
- proof of concept

Thanks to HPMI for the travel grant

Thanks for your attention