
High Resolution Iterative CT Reconstruction using
Graphics Hardware

Benjamin Keck, Hannes G. Hofmann, Holger Scherl, Markus Kowarschik, and Joachim Hornegger

Abstract—Particular applications of computed tomography
require high slice resolutions. The fastest iterative implementa-
tions on graphics cards use 3-D textures to exploit hardware-
accelerated trilinear interpolation. However, the size of 3-D
textures is subject to technical limitations, which makes them
inapplicable here. Alternatively a 2-D texture array can beused
instead of the 3-D texture as in early graphics implementations.
The additional memory synchronizations cause a significantloss
of performance.

We utilize new features of the recently released CUDA 2.2
framework to improve the performance of the Simultaneous
Algebraic Reconstruction Technique (SART). In this paper we
present an enhanced version of our efficient implementationof
the most time-consuming parts of the iterative reconstruction
algorithm: forward- and back-projection.

We explain the required strategy to adapt the algorithm for
the CUDA 2.2 features, in particular the usage of 2-D texture
lookups from pitchlinear memory. Finally, we compare the result
to our previous ones with respect to both reconstruction speed
and technical limitations. The proposed strategy is a new balance
between performance and limitations in resolution.

I. I NTRODUCTION

In the field of medical imaging two major classes of CT
reconstruction algorithms exist. First, the well known and
wide-spread class of analytical methods, e.g., filtered back-
projection (FBP) [1]. These algorithms are primarily used in
commercial CT and C-arm CT due to the fact that a typical
medical environment requires fast reconstructions in order to
save valuable time.

The second class is characterized by an iterative update pro-
cess, e.g., the Simultaneous Algebraic Reconstruction Tech-
nique (SART) [2]. Statistical iterative reconstruction algo-
rithms, e.g., MLEM [3] or OSEM [4], have been used in
molecular imaging scanners for a few years. They incorporate
the modeling of physical effects and thus provide improved
image quality for noisy data. However, the complexity of
iterative methods is a multiple of the complexity of analytical
methods.

Modern graphics cards offer sufficient compute power to
overcome this drawback. We previously demonstrated that
they can be used to accelerate analytical reconstruction al-
gorithms [5]. Iterative reconstruction performance on graphics
accelerators has also been evaluated since 1998 [6]. The first
approaches employed shading languages (e.g., OpenGL) [7],
[8]. In 2007, NVIDIA introduced the Compute Unified Device
Architecture (CUDA), which simplifies the usage of GPUs for
general-purpose computing tasks. CUDA popularized GPU-
accelerated applications and is widely used in research, in
particular for the acceleration of compute-intensive parts of

iterative reconstruction algorithms [9], [10]. For this, 3-D
textures are usually used in the forward-projection step ofthe
SART algorithm [10] to benefit from the available hardware-
accelerated interpolation. Further, Yan et al. [11] showedhow
to use 3-D textures in the back-projection step to accelerate
the voxel access.

In some applications such as nondestructive testing, 3-D
breast imaging and in research, the desirable slice resolution
may exceed2000 × 2000 pixels. In the past, memory lim-
itations on the GPU have been the main reason to inhibit
their application in these fields. Current high-end graphics
cards offer sufficient memory, e.g.,4 GB on the NVIDIA
QuadroFX 5800 or NVIDIA Tesla C1060. However, the
usage of 3-D textures for reconstruction of high resolution
volumes is then still technically limited. While this constraint
allows reconstruction of cubic volumes of up to32 GB, slice
resolutions larger than 2048 voxels are impossible, even ifthe
volume fits into memory (e.g.,3072 × 2048× 50 ≈ 1.2 GB).

In this paper we present an approach that makes use of
2-D texture lookups from pitchlinear memory, introduced in
CUDA 2.2. Compared to 3-D textures they are allowed to
contain32 k×16 k float elements. We use a modified version
of our original approach [10] and compare the performance.
Further, we will show an example of high resolution iterative
reconstruction.

II. M ETHOD & I MPLEMENTATION

This work is based on our implementation of the SART
method previously described in [10]. We applied technical
changes, which will be also explained in detail after intro-
duction of the method.

Originating from ART, SART is an iterative method to
reconstruct a volumetric object from a sequence of alternat-
ing volume projections and corrective back-projections [6].
By measuring the difference between the current volume’s
forward-projection and the projections acquired by the scanner,
a corrective image can be computed and distributed onto the
volume grid in the back-projection step. Repeating this correc-
tion procedure makes the volume fit to almost all projections
or at least minimizes the error in the case of convergence.
Differing from the original ART, where the volume is corrected
ray by ray, SART performs projection-wise corrections.

In theory, the system matrix for the SART defines the
forward- and back-projection such that the methods are trans-
posed to each other. In our case, we have used an unmatched
forward-/back-projector pair for the iterative reconstruction,
which has been investigated by Zeng et al. [12]. The au-

detector

source
X-rayvolume

x

y

z

u

v

Fig. 1: General perspective geometry of an acquisition de-
vice (the v-axis andz-axis are not necessarily parallel) to-
gether with the parallelization strategy of our back-projection
implementation on the GPU using CUDA. Tthex-z plane is
divided in several blocks to specify a grid configuration, and
each thread of a corresponding block processes all voxels in
y-direction.

thors demonstrate that an unmatched pair, where the forward-
projector is ray-driven while the back-projector is voxel-
driven, can effectively remove ring artifacts compared to a
matched pair.

In general, iterative reconstruction algorithms consist of
a forward-projection and a corrective back-projection step.
We took the SART method for the performance evaluation
of iterative reconstruction, using normal and high resolution
reconstruction tasks.

A. Back-projection

The back-projection step is voxel driven. This requires the
calculation of a matrix-vector product for each voxel in order
to determine the corresponding corrective projection value.
We invoke our back-projection kernel on the graphics device,
where each thread of the kernel computes the back-projection
of a certain column and volume slice (see figure 1). The
algorithm is shown in algorithm 1.

Algorithm 1 Back-projection
//Host:
for all projectionsPj , j = [0 . . .Np[do

Call back-projection kernel;
//Device:
Compute voxel x and z coordinate
for all voxels(x, y, z), y = [0 . . .Ny[do

Compute the coordinates(u, v) of voxel (x, y, z) in
projectionPj

Get the projection value at position (2-D texfetch)
Add the weighted value to voxel

end for
end for

B. Forward-projection / Corrective image computation

As introduced, SART performs projection-wise corrections
of the current volume estimate. The corrective image is
computed from the difference between the original projection
and the appropriate simulated X-ray image of the current
reconstruction estimate. All values in the corrective image are
finally multiplied by the relaxation factor [2] before the back-
projection step.

The previous implementation principles for CUDA 1.1 and
CUDA 2.0 are illustrated in figures 2 and 3. The proposed
CUDA 2.2 technique is shown in figure 5.

A realistic simulation of the X-ray imaging process can
be achieved by a ray cast based forward-projection. Research
on this grid-interpolated scheme, where the interpolationis
performed using a trilinear filter and the integration according
to the trapezoidal rule, showed that the root mean square
(RMS) error is comparable to other popular interpolation and
integration methods used in computed tomography [13]. This
scheme is our first choice, because it can be ideally mapped
to the GPU hardware including hardware-accelerated texture
access.

− ∗

2-D texture

volume

projections

S1

S2

S3

S4

FP

BP

update

. . .

relaxation factor

Fig. 2: CUDA 1.1 - GPU implementation principle: Vol-
ume represented in a 2-D texture by slicesSi is forward-
projected (FP). After computing the corrective image and
scaling with the relaxation factor, the back-projection (BP)
distributes the result onto the volume. After performing an
update the 2-D texture representation of the volume is equal
to the volume.

The volumetric ray casting principle for the forward-
projection step is illustrated in figure 4 and the algorithm is
shown in algorithm 2. To determine the attenuation value of a
certain pixel on the detector plane, a ray is drawn pointing
from the X-ray source towards the detector pixel position.
Afterwards, voxel attenuation coefficients inside the volume
are sampled equidistantly along the ray. These sampling values
add up to the respective attenuation value in the simulated pro-
jection. Similar to the back-projection step we use projection
matrices to compute the resulting perspective projection.

To parallelize the forward-projection step, each thread of
the kernel computes one corrective pixel of a projection.
Analogous to the back-projection step we chose the grid
configuration experimentally due to our results [14]. In the
implemented kernel we compute the direction vector for a
specific ray, which is the first step in the inner for loop in
algorithm 2. Therefore we take the source position vector
and the 3-D coordinate of the pixel position, compute the
difference vector, and normalize it. The source position for
all rays of a projection is obtained from the homogeneous
projection matrix which is designed to project a 3-D point to
the image plane. Galigekere et al. [15] have shown how to
reproject using projection matrices.

Algorithm 2 Forward-projection with a ray casting algorithm
//Host:
for all projectionsPj , j = [0 . . .Np[do

Compute source position out of projection matrix
Compute inverted projection matrix
Call back-projection kernel;
//Device:
for all rays(u, v) inside the projectionPj do

Compute normalized ray direction
//RAY CASTING
Compute entrance and exit point of the ray
Initialize the pixel value to zero
if ray hits the volumethen

Set sample point to the entrance point
while sample point is inside the volumedo

Get the sample value at current position
{depending on CUDA 1.1, 2.0 and 2.2 strategy}
Add up this value to the pixel value
Compute new sample point for given step size

end while
end if
Normalize pixel value to world coordinate system units

end for
end for

In the kernel code, the inverse of the projection matrix
is used to get the ray direction out of the pixel position
in the projection image. The entrance and exit positions of
the specific ray into the volume are calculated and stored as
entrance and exit distances with respect to the source position.
Between those points the volume is then sampled equidistantly.
To get one sampling position, we take the entrance vector
and add the product of direction vector, step size and the
counter variable. The following sampling step itself proves
to be crucial for the algorithm’s efficiency. In order to get
satisfying results, a sub-voxel sampling is required, which
introduces a trilinear interpolation.

The global memory offers write access and thus has a
higher latency. In contrast read-only texture memory has
conspicuous low latency due to caching mechanisms and
further offers hardware-accelerated interpolation. In CUDA 1.1
the computation of each sample point intensity is a critical
issue since support for 3-D textures is not provided. In
consequence, a workaround had to be applied that used just

the bilinear interpolation capability of the GPU. The kernel
computes a linear interpolation between stacked 2-D texture
slices (Si) (see figure 2). Therefore, two values are fetched
from proximate stack slices with hardware-accelerated bilinear
interpolation and afterwards linearly interpolated in software.
These sampling steps are substituted by only one hardware-
accelerated 3-D texture fetch in CUDA 2.0. Since texture
memory is read-only, the back-projection updates the original
volume data kept in global memory. The volume-representing
texture has to be synchronized with the updated estimate
(figure 2 and 3). Such a synchronization is referred to as a
texture update.

− ∗

3-D texture

volume

projections
FP

BP

update

relaxation factor

Fig. 3: CUDA 2.0 - GPU implementation principle: Volume
represented in a 3-D texture is forward-projected (FP). After
computing the corrective image and scaling with the relaxation
factor, the back-projection (BP) distributes the result onto
the volume. After performing an update the 3-D texture
representation of the volume is equal to the volume.

So far, the difference in volume representation for the
corrective image computation led to two main principles of
SART implementation [10] using CUDA shown in figure 2
for CUDA 1.1 and figure 3 using CUDA 2.0. After all
corrective images have been computed and back-projected
for all iterations the reconstruction finishes by transferring
the volume to the host system memory.

source

detector
volume

raydirection vector

sample point

Fig. 4: Ray casting principle with an equidistant sample step
size.

C. High resolution adaption

Due to the size constraints of 3-D textures they are un-
suitable for high resolution reconstructions. In April 2009,
NVIDIA updated the CUDA framework to version 2.2 and
introduced 2-D texture lookups from pitchlinear memory.
They support hardware-accelerated bilinear interpolation from
writable global memory. However, the memory consistency
during a kernel execution is not ensured. A 2-D texture is
also limited in size, but the restriction is relaxed:32 k× 16 k

float elements (overall2 GB).
Therefore we adapt the voxel-driven back-projection (see

section II-A). To use 2-D textures we use a method similar to
our approach shown in figure 2. The implementation is identi-
cal, except for an adapted voxel memory address computation
due to the new memory layout, shown in figure 5.

Using writable 2-D texture lookups from pitchlinear mem-
ory for the volume representation, we get rid of the time
consuming synchronization of the volume copies in writable
global memory and the read-only texture arrays.

Accessing the sample value in the innermost loop of algo-
rithm 2 was replaced by a linear interpolation between two
2-D texture values that are both bilinearly interpolated by
hardware. The volume is represented as a stack of slices (S)
organized in the 2-D texture, as is illustrated in figure 5.

scaling

2-D pitch-lin. texture

projections

S1 S2 S3

S4 S5 S6

S7 S8 S9

S10 S11 S12

∗−

FP BP

. . .

Fig. 5: CUDA 2.2 - GPU implementation principle: Vol-
ume represented in a 2-D texture by slicesSi is forward-
projected (FP). After computing the corrective image, the
back-projection (BP) distributes the result onto the volume-
representing 2-D pitch-linear texture.

III. R ESULTS

In order to evaluate the performance of the different im-
plementations we extend our experiment from [10], where
we used228 projections representing a short-scan from a
C-arm CT system to perform iterative reconstruction with
a projection size of256 × 128 pixels. The reconstruction

Volume 512× 512× 350 voxels

Hardware QuadroFX 5600

volume 2-D 3-D 2-D pitch-
representation (FP) texturearray texturearray linear texture

volume global memory global memory global memory
representation (BP) (linear) (linear) (spec. arrangem.)

device memory
required [MB] 700 700 350

volume synch.
needed YES YES NO

required ≥ ≥ ≥

CUDA version CUDA 1.1 CUDA 2.0 CUDA 2.2

SART
performance in [s]1 4234 844 1488

TABLE I: Comparison of iterative reconstruction times in
seconds (for 20 iterations each).

yields a512× 512× 350 volume. Table I shows the achieved
performance for the different approaches of GPU-based SART
reconstruction, including the benefits and technical limitations.
Using NVIDIA’s most recent GPU generation, Tesla C1060,
the reconstruction time for our new approach is further reduced
from 1488 to 955 seconds1.

Fig. 6: Iterative reconstruction of the Catphan CTP528 phan-
tom using simulated projections.

In order to assess image quality of high resolution iterative
CT reconstruction, we utilized simulated phantom projections
of the Catphan CTP528 phantom, generated with DRASIM.
We generated400 projections of1024 × 128 pixels with a
pixel size of0.3× 0.7 millimeters. An iterative reconstruction
of the phantom is shown in figure 6, where all 21 line pairs are

1preliminary results

Hardware Tesla C1060

volume 512 × 512 1024× 1024 2048 × 2048 3072× 2048

resolution ×100 ×100 ×100 ×50

voxel size 0.4× 0.4 0.2× 0.2 0.1× 0.1 0.075× 0.1

in mm ×0.1 ×0.1 ×0.1 ×0.1

device memory
required [MB] 100 400 1600 1200

SART
performance in [s]1 1166 2407 11353 4951

TABLE II: Iterative reconstruction setups for the Catphan
CTP528 phantom using NVIDIA’s Tesla C1060 and our new
approach. The performance is measured for 20 iterations each.

Fig. 7: Iterative reconstructions details of the 16-th linepair
of the Catphan CTP528 for different slice resolutions: top-left
5122 pixels, top-right10242 pixels, bottom-left20482 pixels,
the highest resolution3072 × 2048 on the bottom right. The
visualized yellow line across the elements illustrates theline
used for the line profiles.

visible. The different resolution and reconstruction setups are
detailed in table II including the performance measurements.
Due to the2 GB memory limitation of 2-D texture lookups
from pitchlinear memory, the number of slices for the highest
resolution of3072× 2048 pixels is reduced to50 slices.

To proof the expectable increase in image quality, the
reconstruction results of the 16-th line pair of the phantom
is illustrated for each setup in figure 7. Finally, an attenuation
coefficient comparison for the lines (marked yellow) is shown
in the line profiles (see figure 8).

IV. CONCLUSIONS

We have presented an enhanced GPU-accelerated SART
reconstruction for high resolution volumes. We have shown
the advantage of using 2-D texture lookups from pitchlin-

0

0,01

0,02

0,03

0,04

0,05

a
tte

n
u
a
tio

n
 c
o
e
ffi
c
ie
n
t

slice resolution: 512
2
 1024

2
 2048

2
 3072 x 2048

Fig. 8: Compared line profiles of the line across the 16-th line
pair of the different reconstructions of the Catphan CTP528
phantom.

ear memory to overcome the 3-D texture size limitation
for volume representation. The missing hardware-accelerated
trilinear interpolation is substituted by linear interpolation in
software between two hardware-accelerated bilinear interpola-
tions. Although this approach decreases reconstruction speed
as anticipated, no volume synchronization procedure and only
half the memory (due to writable texture) on the graphics
card are necessary compared to our previous implementations
[10]. The expectable increase in image quality for a high
resolution reconstruction was validated by the reconstruction
and comparison of the high resolution phantom Catphan
CTP528.

ACKNOWLEDGMENTS

This work was supported by Siemens AG, Imaging & IT
Division, Medical Electronics & Imaging Solutions.

REFERENCES

[1] H. Turbell, “Cone-beam reconstruction using filtered backprojection,”
Ph.D. dissertation, Dept. Elect. Eng., Linköping University, Sweden,
Mar. 2001.

[2] A. Andersen and A. Kak, “Simultaneous Algebraic Reconstruction
Technique (SART): A superior implementation of the ART algorithm,”
Ultrasonic Imaging, vol. 6, no. 1, pp. 81–94, January 1984. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6WXM-
4C52HCN-25/1/a52bef081f65f9da0e626f2ec5cd00ba

[3] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for
emission tomography,”Medical Imaging, IEEE Transactions on, vol. 1,
no. 2, pp. 113–122, Oct. 1982.

[4] H. Hudson and R. Larkin, “Accelerated image reconstruction using
ordered subsets of projection data,”Medical Imaging, IEEE Transactions
on, vol. 13, no. 4, pp. 601–609, Dec 1994.

[5] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, “Fast GPU-Based
CT Reconstruction using the Common Unified Device Architecture
(CUDA),” in Nuclear Science Symposium, Medical Imaging Conference
2007, E. C. Frey, Ed., vol. 6, Honolulu, Oct. 2007, pp. 4464–4466.

[6] K. Mueller and R. Yagel, “Rapid 3D cone-beam reconstruction with the
Algebraic Reconstruction Technique (ART) by utilizing texture mapping
graphics hardware,”Nuclear Science Symposium, 1998. Conference
Record., vol. 3, pp. 1552–1559, Nov. 1998.

[7] K. Mueller, F. Xu, and N. Neophytou, “Why do Commodity Graphics
Hardware Boards (GPUs) work so well for acceleration of Computed
Tomography?” inSPIE Electronic Imaging Conference, vol. 6498, San
Diego, Feb. 2007, (Keynote, Computational Imaging V).

[8] M. Churchill, “Hardware-accelerated cone-beam reconstruction on a
mobile C-arm,” inProceedings of SPIE, J. Hsieh and M. Flynn, Eds.,
vol. 6510, San Diego, Feb. 2007, p. 65105S.

[9] M. Knaup, S. Steckmann, and M. Kachelriess, “Gpu-based parallel-beam
and cone-beam forward- and backprojection using cuda,” inNuclear
Science Symposium Conference Record, 2008. NSS ’08. IEEE, Oct.
2008, pp. 5153–5157.

[10] B. Keck, H. Hofmann, H. Scherl, M. Kowarschik, and J. Hornegger,
“GPU-accelerated SART reconstruction using the CUDA programming
environment,” inProceedings of SPIE, E. Samei and J. Hsieh, Eds., vol.
7258, Lake Buena Vista, 2009.

[11] G. Yan, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image
reconstruction using GPU hardware,”Journal of X-Ray Science and
Technology, vol. 16, pp. 225–234, Jul. 2008.

[12] G. Zeng and G. Gullberg, “Unmatched projector/backprojector pairs in
an iterative reconstruction algorithm,”IEEE Transactions on Medical
Imaging, vol. 19, no. 5, pp. 548–555, May 2000.

[13] F. Xu and K. Mueller, “A comparative study of popular interpolation
and integration methods for use in computed tomography,”Biomedical
Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on,
pp. 1252–1255, April 2006.

[14] A. Weinlich, B. Keck, H. Scherl, M. Korwarschik, and J. Horneg-
ger, “Comparison of High-Speed Ray Casting on GPU using CUDA
and OpenGL,” inHigh-performance and Hardware-aware Computing
(HipHaC 2008), R. Buchty and J.-P. Weiss, Eds., Como (Italy), 2008,
pp. 25–30.

[15] D. H. R. Galigekere, K. Wiesent, “Cone-Beam Reprojection Using
Projection-Matrices,”IEEE Transactions on Medical Imaging, vol. 22,
no. 10, pp. 1202–1213, 2003.

