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Abstract—Particular applications of computed tomography iterative reconstruction algorithms [9], [10]. For this;D3
r_equire high sli_ce resolutions. The fastest iterative i_mp%menta— textures are usually used in the forward-projection stefhef
tions on graphics cards use 3-D textures to exploit hardware gART algorithm [10] to benefit from the available hardware-

accelerated trilinear interpolation. However, the size of 3-D . .
textures is subject to technical limitations, which makes ttlem accelerated interpolation. Further, Yan et al. [11] showed

inapplicable here. Alternatively a 2-D texture array can beused t0 use 3-D textures in the back-projection step to accelerat
instead of the 3-D texture as in early graphics implementatins. the voxel access.

The additional memory synchronizations cause a significantoss In some applications such as nondestructive testing, 3-D
of performance. ; ; ; ; ; ;

We utilize new features of the recently released CUDA 2.2 breast Ima%;?ognd QIBOBese_ar::h,IthethdeSIrai)le slice rea&lzplut
framework to improve the performance of the Simultaneous May EXCEE X PIXEIS. In the past, memory {im-
Algebraic Reconstruction Technique (SART). In this paper ve itations on the GPU have been the main reason to inhibit
present an enhanced version of our efficient implementatioof their application in these fields. Current high-end graphic
the most time-consuming parts of the iterative reconstrudbn cards offer sufficient memory, e.g4GB on the NVIDIA
algorithm: forward- and back-projection. _ QuadroFX 5800 or NVIDIA Tesla C1060. However, the

We explain the required strategy to adapt the algorithm for usage of 3-D textures for reconstruction of high resolution
the CUDA 2.2 features, in particular the usage of 2-D texture 9 . - ] o ) g -
|Ookups from pitch"near memory_ Fina”y, we Compare the result V0|UmeS IS then St'” techn'ca”y ||m|ted Wh'le th|S corant
to our previous ones with respect to both reconstruction sped  allows reconstruction of cubic volumes of up 38 GB, slice
and technical limitations. The proposed strategy is a new Hance resolutions larger than 2048 voxels are impossible, evireif
between performance and limitations in resolution. volume fits into memory (e.g3072 x 2048 x 50 ~ 1.2 GB).

In this paper we present an approach that makes use of
2-D texture lookups from pitchlinear memory, introduced in
. o . _ CUDA 2.2. Compared to 3-D textures they are allowed to

In the fIG_Id of medlcal imaging two major classes of Ctontain32 k x 16 k float elements. We use a modified version
reconstruction algorithms exist. First, the well known angf our original approach [10] and compare the performance.

wide-spread class of analytical methods, e.g., filtereck-bag-urther, we will show an example of high resolution iterativ
projection (FBP) [1]. These algorithms are primarily used ireconstruction.

commercial CT and C-arm CT due to the fact that a typical
medical environment requires fast reconstructions in otde
save valuable time.

The second class is characterized by an iterative update proThis work is based on our implementation of the SART
cess, e.g., the Simultaneous Algebraic Reconstructiolm-Temethod previously described in [10]. We applied technical
nique (SART) [2]. Statistical iterative reconstructionga changes, which will be also explained in detail after intro-
rithms, e.g., MLEM [3] or OSEM [4], have been used irduction of the method.
molecular imaging scanners for a few years. They incorporat Originating from ART, SART is an iterative method to
the modeling of physical effects and thus provide improveeconstruct a volumetric object from a sequence of alternat
image quality for noisy data. However, the complexity oing volume projections and corrective back-projections [6
iterative methods is a multiple of the complexity of analgti By measuring the difference between the current volume’s
methods. forward-projection and the projections acquired by theeea,

Modern graphics cards offer sufficient compute power @ corrective image can be computed and distributed onto the
overcome this drawback. We previously demonstrated thatlume grid in the back-projection step. Repeating thisewnr
they can be used to accelerate analytical reconstruction tin procedure makes the volume fit to almost all projections
gorithms [5]. Iterative reconstruction performance onpfpias or at least minimizes the error in the case of convergence.
accelerators has also been evaluated since 1998 [6]. The f¥dfering from the original ART, where the volume is corredt
approaches employed shading languages (e.g., OpenGL) @} by ray, SART performs projection-wise corrections.

[8]. In 2007, NVIDIA introduced the Compute Unified Device In theory, the system matrix for the SART defines the
Architecture (CUDA), which simplifies the usage of GPUs foforward- and back-projection such that the methods arestran
general-purpose computing tasks. CUDA popularized GPPesed to each other. In our case, we have used an unmatched
accelerated applications and is widely used in research, famward-/back-projector pair for the iterative reconstian,
particular for the acceleration of compute-intensive pat which has been investigated by Zeng et al. [12]. The au-

I. INTRODUCTION
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, detector B. Forward-projection / Corrective image computation

\ As introduced, SART performs projection-wise corrections
\ of the current volume estimate. The corrective image is
\ computed from the difference between the original progecti

\ and the appropriate simulated X-ray image of the current
z reconstruction estimate. All values in the corrective image

T \ finally multiplied by the relaxation factor [2] before thedba

| N projection step.

\ The previous implementation principles for CUDA 1.1 and
> CUDA 2.0 are illustrated in figures 2 and 3. The proposed
\ CUDA 2.2 technique is shown in figure 5.

\\\ux 4 ~ \\ \\ A realistic simulation of the X-ray imaging process can
volume = - ——_ \\\\ ééﬂ? e be achieved by a ray cast based forward-projection. Rdsearc
- on this grid-interpolated scheme, where the interpolatn

Fig. 1: General perspective geometry of an acquisition dgerformed using a trilinear filter and the integration adiug

vice (the v-axis andz-axis are not necessarily parallel) toto the trapezoidal rule, showed that the root mean square

gether with the parallelization strategy of our back-petin  (RMS) error is comparable to other popular interpolatiod an

implementation on the GPU using CUDA. Tthez plane is integration methods used in computed tomography [13]. This
divided in several blocks to specify a grid configurationd anscheme is our first choice, because it can be ideally mapped
each thread of a corresponding block processes all voxelsidnthe GPU hardware including hardware-accelerated textur
y-direction. access.

relaxation factor
thors demonstrate that an unmatched pair, where the forward
projector is ray-driven while the back-projector is voxel-
driven, can effectively remove ring artifacts compared to a

matched pair. projections

In general, iterative reconstruction algorithms consikt o FP \

. s

a forward-projection and a corrective back-projectionpste

We took the SART method for the performance evaluation | |

of iterative reconstruction, using normal and high resotut ”5:1”; ,,,,, .
| |
| |
| |

N

reconstruction tasks. s A VA
P22t ___ 1 update

| | |

A. Back-projection | S Lo volume
| | |

The back-projection step is voxel driven. This requires the | 75747 R L
calculation of a matrix-vector product for each voxel in @rd
to determine the corresponding corrective projection ealu 2.D texture

We invoke our back-projection kernel on the graphics device . . o
where each thread of the kernel computes the back-projectfdd- 2: CUDA 1.1 - GPU implementation principle: Vol-
of a certain column and volume slice (see figure 1). TH&Ne represented in a 2-D texture by slicgsis forward-

algorithm is shown in algorithm 1. projected (FP). After computing the corrective image and
scaling with the relaxation factor, the back-projectiorP}B

Algorithm 1 Back-projection distributes the result onto the volume. After performing an

J//Host: update the 2-D texture representation of the volume is equal

for all projectionsP; , j =[0...N,[ do to the volume.

Call back-projection kernel;

//Device:

Compute voxel x and z coordinate

for all voxels(x,y,z), y=[0...N,[ do
Compute the coordinate@:, v) of voxel (z,y,z) in
projection P;
Get the projection value at position (2-D texfetch)
Add the weighted value to voxel

end for

end for

The volumetric ray casting principle for the forward-
projection step is illustrated in figure 4 and the algorittsn i
shown in algorithm 2. To determine the attenuation value of a
certain pixel on the detector plane, a ray is drawn pointing
from the X-ray source towards the detector pixel position.
Afterwards, voxel attenuation coefficients inside the wodu
are sampled equidistantly along the ray. These samplingesal
add up to the respective attenuation value in the simulated p
jection. Similar to the back-projection step we use praject
matrices to compute the resulting perspective projection.




To parallelize the forward-projection step, each thread tife bilinear interpolation capability of the GPU. The kdrne
the kernel computes one corrective pixel of a projectiosomputes a linear interpolation between stacked 2-D textur
Analogous to the back-projection step we chose the gmtices ;) (see figure 2). Therefore, two values are fetched
configuration experimentally due to our results [14]. In th&om proximate stack slices with hardware-acceleratadédmsir
implemented kernel we compute the direction vector for iaterpolation and afterwards linearly interpolated intaafre.
specific ray, which is the first step in the inner for loop imMhese sampling steps are substituted by only one hardware-
algorithm 2. Therefore we take the source position vectaccelerated 3-D texture fetch in CUDA 2.0. Since texture
and the 3-D coordinate of the pixel position, compute thmemory is read-only, the back-projection updates the waigi
difference vector, and normalize it. The source position fwolume data kept in global memory. The volume-representing
all rays of a projection is obtained from the homogeneotsxture has to be synchronized with the updated estimate
projection matrix which is designed to project a 3-D point tfigure 2 and 3). Such a synchronization is referred to as a
the image plane. Galigekere et al. [15] have shown how texture update.
reproject using projection matrices.

Algorithm 2 Forward-projection with a ray casting algorithm relaxation factor
/Host: @
for all projectionsP; , j =[0...N,[ do

Compute source position out of projection matrix
Compute inverted projection matrix projections
Call back-projection kernel;
/[Device:
for all rays(u,v) inside the projectior; do
Compute normalized ray direction
[IRAY CASTING
Compute entrance and exit point of the ray
Initialize the pixel value to zero : update
if ray hits the volumehen j
Set sample point to the entrance point L .
while sample point is inside the volund®o L
Get the sample value at current position 3-D texture

{depending on CUDA 1.1, 2.0 and 2.2 stratgy Fig 3. CUDA 2.0 - GPU implementation principle: Volume

Add up this value to the pixel value _represented in a 3-D texture is forward-projected (FP)eAft

Compute new sample point for given step size ¢omputing the corrective image and scaling with the refarat
end while factor, the back-projection (BP) distributes the resultoon

end if , . i _the volume. After performing an update the 3-D texture
I(\jlc;rmahze pixel value to world coordinate system “n't?epresentation of the volume is equal to the volume.
end for

end for

\. .
/‘

) o . So far, the difference in volume representation for the
) In the kernel code, the. mvgrse of the propctmn m_‘"‘,t”?forrective image computation led to two main principles of
is used to get the ray direction out of the pixel positiogspT implementation [10] using CUDA shown in figure 2
in the projection image. The entrance and exit positions ff. cupa 1.1 and figure 3 using CUDA 2.0. After all

the specific ray _int(_) the volume are calculated and s_toreq Strective images have been computed and back-projected
entrance and exit distances with respect to the source@usitsy - 4l iterations the reconstruction finishes by transfegr
Between those points the volume is then sampled equidigtant, o volume to the host system memory.

To get one sampling position, we take the entrance vector
and add the product of direction vector, step size and the
counter variable. The following sampling step itself preve

to be crucial for the algorithm’s efficiency. In order to get volume detector
satisfying results, a sub-voxel sampling is required, Whic sample point
introduces a trilinear interpolation. source ]
The global memory offers write access and thus has a @\ =
higher latency. In contrast read-only texture memory has Foelel ]
conspicuous low latency due to caching mechanisms and direction vector ray [
further offers hardware-accelerated interpolation. IrD&aUL. 1 -

the computation of each sample point intensity is a critical ) o ] o
issue since support for 3-D textures is not provided. ||ﬁ_|g. 4: Ray casting principle with an equidistant sample ste

consequence, a workaround had to be applied that used Ié€-



C. High resolution adaption Volume | 512 x 512 x 350 voxels

Due to the size constraints of 3-D textures they are un-__ Hadware | QuadroFX 5600
suitable for high resolution reconstructions. In April 200 volume 2-D 3-D 2-D pitch-
NVIDIA updated the CUDA framework to version 2.2 and representation (FP)| texturearray texturearray linear texture
introduced 2-D texture lookups from pitchlinear memory. volume global memory | global memory | global memory

They support hardware-accelerated bilinear interpaidiom representation (BP)] _ (linear) (tinean) (spec. arrangem.)

writable global memory. However, the memory consistency device memory
during a kernel execution is not ensured. A 2-D texture is _edured MBl 00 79 350
also limited in size, but the restriction is relaxe@: k x 16 k volume synch.
float elements (overalt GB). needed VES YES NO

_dri _ i i required > > >
Therefore we adapt the voxel-driven back projection (see CUDA version CUDA 1.1 CUDA 2.0 CUDA 2.2
section [I-A). To use 2-D textures we use a method similar to
- . L . SART
our approach shown in figure 2. The implementation is identi- performance in [4] 4234 844 1488

cal, except for an adapted voxel memory address computation

due to the new memory layout, shown in figure 5. TABLE I: Comparison of iterative reconstruction times in
Using writable 2-D texture lookups from pitchlinear memseconds (for 20 iterations each).

ory for the volume representation, we get rid of the time

consuming synchronization of the volume copies in writable

global memory and the read-only texture arrays.
Accessing the sample value in the innermost loop of a

rithm 2 was replaced by a linear interpolation between

Ira%ields a512 x 512 x 350 volume. Table | shows the achieved
2-D texture values that are both bilinearly interpolated qéﬂ

erformance for the different approaches of GPU-based SART
construction, including the benefits and technical Btiins.
sing NVIDIA's most recent GPU generation, Tesla C1060,
he reconstruction time for our new approach is further cedu
from 1488 to 955 secondls

hardware. The volume is represented as a stack of sli€es
organized in the 2-D texture, as is illustrated in figure 5.
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Fig. 5: CUDA 2.2 - GPU implementation principle: Vol-
ume represented in a 2-D texture by slicgsis forward-

projected (FP). After computing the corrective image, the ) i
back-projection (BP) distributes the result onto the vadum Fig. 6: Iterative reconstruction of the Catphan CTP528 phan

representing 2-D pitch-linear texture. tom using simulated projections.

In order to assess image quality of high resolution iteeativ
CT reconstruction, we utilized simulated phantom projetdi
_ . of the Catphan CTP528 phantom, generated with DRASIM.
In order to evaluate the performar_lce of the different injp,q generatedi00 projections of1024 x 128 pixels with a
plementations we extend our experiment from [10], whetgy e size of0.3 x 0.7 millimeters. An iterative reconstruction

we used228 projections repres_enting a short—scan. from_ &f the phantom is shown in figure 6, where all 21 line pairs are
C-arm CT system to perform iterative reconstruction with

a projection size of256 x 128 pixels. The reconstruction ‘!preliminary results

IIl. RESULTS



Hardware Tesla C1060
volume 512 x 512 1024 x 1024 2048 x 2048 3072 x 2048
resolution %100 %100 %100 x50 -
)
voxel size 0.4 x 0.4 0.2 x 0.2 0.1 x 0.1 0.075 x 0.1 F
in mm x0.1 x0.1 x0.1 x0.1 S
2
device memory o0 g'
required [MB] 100 400 1600 1200 g
0,02 o)
SART g
performance in [d] 1166 2407 11353 4951 Ll g

TABLE IlI: Iterative reconstruction setups for the Catpha
CTP528 phantom using NVIDIAs Tesla C1060 and our ne

2
: . ; 2048= @ 3072 x 2048
approach. The performance is measured for 20 iteratiors ee

slice resolution: .5122 ' 10242

Fig. 8: Compared line profiles of the line across the 16-ta lin
pair of the different reconstructions of the Catphan CTP528
phantom.

ear memory to overcome the 3-D texture size limitation
for volume representation. The missing hardware-acdeléra
trilinear interpolation is substituted by linear interatibn in
software between two hardware-accelerated bilinearpoter
tions. Although this approach decreases reconstructierdsp
as anticipated, no volume synchronization procedure ahd on
half the memory (due to writable texture) on the graphics
card are necessary compared to our previous implemergation
[10]. The expectable increase in image quality for a high
resolution reconstruction was validated by the reconstmc
and comparison of the high resolution phantom Catphan
CTP528.
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