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Abstract—This paper describes a Particle Filter based approach for

estimating the ground plane from an image sequence.  Based on a

Bayesian framework, the Particle Filter provides a robust estimation

of the plane parameters,  since it  can handle non-linearities,  while

allowing a high flexibility for integrating new cues into the system.

Furthermore, the different modes of the resulting probability density

function are segmented by means of a mean-shift algorithm, resulting

in  better  localization  of  the  estimate  with  the  highest  posterior

probability. Our method has been tested on both synthetic and real

world scenarios and has shown to be robust to missing and unstable

measurements. On synthetic data of representative runs the angular

error is well within 0.5° with a standard deviation of less than 0.3°.  

Ground  plane  estimation;  Particle  Filter;  Sequential  Monte

Carlo, Mean Shift

I.  INTRODUCTION

The knowledge of the ground plane parameters is widely
used in automotive vision applications in order to, for example,
restrict  search  areas,  have  a  fast  depth  calculation  of  points
lying on the plane, or segment the road area. When a camera is
stably fixed in the vehicle, the ground plane parameters can be
calculated a priori by means of calibration patterns. However,
such a calibration pre-processing step is not always feasible. A
typical case is a camera mounted in a portable device, e.g. a
mobile  phone  or  navigation  system,  which  is  set  up  in  a
vehicle.  The user may change the position and orientation of
the device, while the provision of calibration patterns in such
case would also  be unacceptable.  In our work,  we  present  a
probabilistic method to automatically estimate the ground plane
parameters  out  of  forward  looking  camera  images  under
vehicle motion. Such a methodology can also be used in fixed-
camera  systems,  providing  important  information  on  the
reliability  of  (as  well  as  adapting)  the  factory  calibrated
parameters over time. 

Ground  plane  estimation  is  often  related  to  ego-motion
estimation in the literature. For solving these problems in a real
world scenario, it is not easy to apply traditional Structure from
Motion algorithms, since the cluttered background present  in
the scenes makes the task of depth estimation more difficult
[4].  Several  researches  proposed  approaches  based  on
optimization techniques [3, 4, 6, 8, 10]. Such algorithms need
to adjust up to eight parameters, and since this is a non-convex
optimization problem it may get stuck in local minimas. These
approaches depend heavily on the quality of the initial guess.
Another  important  aspect  of  iterative  approaches  is  their
inherent  sequential  architecture.  Modern  hardware  systems
maximally  exploit  parallelism,  and  such  kind  of  sequential

processes  limits  the  scope  of  possible  performance
optimizations.

A smaller group of approaches, in which our method can be
included, makes use of a probabilistic framework to robustly
estimate  plane  and  motion  parameters.  Torr  et  al.  [1],  for
example,  showed  that  out  of  multiple  cues  it  is  possible  to
segment  different  planes  in  image  sequences  by means  of a
Bayesian  framework.  Stein  et  al.  [3]  used  a  probabilistic
approach for estimating the ego-motion. The registration error
is  applied  as  the  likelihood  function.  The  algorithm  first
segments the road plane by assigning weights to image patches
according to their likelihood to the motion model. Secondly the
motion  model  is  refined  by  means  of  an  optimization
technique. The authors leave the combination of estimations of
individual patches as future work.

Our  technique  is  based  on  the  Sequential  Monte  Carlo
methodology,  and  more  specifically  on  Particle  Filters.  The
ground plane estimation problem is  expressed in a  Bayesian
framework  and  the  Particle  Filter  is  used  in  obtaining  an
estimate of the probability density functions (pdf). Compared
to simple geometric  solutions,  such probabilistic  frameworks
are usually more robust to noise in the measurements,   since
this is explicitly included in the model. The resulting pdf also
provides important statistics on the reliability of the estimation.
Among the advantages of a Particle Filter-based methodology
are  the  flexibility  to  include  multiple  cues,  the  inherently
parallel architecture (particles do not depend on each other) and
the ability to handle non-linear systems. In our methodology,
we  exploit  the  fact  that  the  ground  plane  parameters  will
change slowly over time. The parameters are then tracked and
the resulting pdf is further  processed through a fast  adaptive
mean shift algorithm to segment the different modes and select
the best candidate for the parameter set. 

II. GROUND PLANE ESTIMATION 

Given a single camera mounted in an unknown position in

a  moving  vehicle,  we  want  to  estimate  the  parameters

describing  the  road  plane  relative  to  the  camera  coordinate

system.  We  assume  perspective  projection  and  a  pinhole

camera model. A 3D world point  aw  is projected to a point

a i  in the image plane as follows:

a i�K �Rw |����w �aw (1)
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where  K  is  the  3×3  matrix  representation  of  the  camera

intrinsic parameters, �Rw |����w �  is a 3×4 matrix transformation

that maps the 3D world point  aw  to the camera coordinate

system, formed by the rotation matrix Rw  and the translation

vector  ����w .  Both  a i  and  aw  are  represented  in

homogeneous coordinates. Given this model and considering a

moving  camera,  one  can  compute  a  geometric  relationship

between two consecutive image planes [8]. In this paper we

are interested  on a  specific  transformation,  the  homography

H , which maps a 2D homogeneous point a�1
 on  the plane

�1  to the homogeneous point a�2
 on the plane �2 . 

a�2
�H a�1

(2)

When  �1  and  �2  are  the  image  planes  at  two  different

viewing positions of a static scene (see Fig. 1), Faugeras and

Lustman  first  showed  in  [12],  that  the  homography  is

described by:

H�K � Rc�
����c

d
����T 	 K

�1
(3)

where  ����  is  the  normal  of  an  inducing  plane  in  the  scene,

located at a distance  d  from the origin of the first camera.

Rc  and ����c  give respectively the rotation and translation of

the camera centers between the two views. From at least four

non-collinear  point   correspondences  on  the  scene,  the

homography  can  be  calculated  by  means  of  a  least  square

approach  [8].  The  parameters  can  be  further  optimized  by

minimizing  the  error  between  the  reference  frame  and  the

second frame warped in terms of the estimated homography.

The  forming  components  of  the  inducing  plane  be

decomposed out of the homography by applying  the methods

described in [11, 12]. 

Our  approach  is  also  based  on  evaluating  this  error,  but  it

evolves  in  the  opposite  direction.  We  randomly  generate

candidates for the parameters and evaluate how each of these

candidates fits the geometric/photometric model. The system

then  concentrates  the  computational  effort  on  the  most

probable  regions,  and  after  a  number  of  frames,  a  refined

estimation of the parameters can be derived.

Fig. 1 – Homography induced by plane

III.  PARTICLE FILTER BASED GROUND PLANE ESTIMATION

A. Bayesian Tracking

We will begin this section with a brief review of Bayesian
Tracking, which can be seen as the analytical basis of Particle
Filtering. The overall goal of Bayesian Tracking is to obtain the

pdf p �xt | z1: t	 describing  the  probability  of  a  dynamic

system to end up in a certain state xt given all the observations

z1 :t�{ z i , i�1, ... , t } up  to  time  t.   This  pdf  can  be

obtained  by  alternating  between  two  steps:  prediction  and
update.  Under  the  Markovian  assumption,

p �x t | x1:t�1	� p � xt | xt�1	 ,  the  prediction  step  can  be

expressed by:

p� xt |z 1: t�1	�


 p � xt | xt�1	 p � xt�1 | z1: t�1	d xt�1

(4)

and the update step by:

p �xt | z1: t	�
p �zt | xt	 p � xt | z1: t�1	

p �zt | z1:t�1	
(5)

Since

p � z t | z1 : t�1	�
 p � zt | x t	 p �x t | z1 : t�1	d x t (6)

is a normalizing constant,  one only needs to model the state

transition  probability   p �xt | xt�1	  and  the  observation

probability  p � zt | xt	  in  order  to  recursively  calculate

p �x t | z1: t	 .

B. Sequential Importance Sampling

Given a  set of samples (particles) �x1
,... , x

N � drawn

according  to  a  pdf p �x 	 ,  it  is  possible  to  discretely

approximate the probability distribution function by:

p �x 	
1

N
�
i�1

N

��x�x
i 	 (7)

where N denotes  the  number  of  samples  and � is  the

dirac delta function. If drawing samples from p �x 	 is not

possible or difficult, but the density function can be evaluated
at a  given point,  one can instead draw the samples  from an

arbitrary  density q �x 	 ,  the  so  called  importance  density

and approximate p �x 	 by:

p �x 	�
i�1

N

�i�� x�x
i	 ,�i�

p� x
i	

q� x
i	

,�
i�1

N

�i�1 (8)
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where �i is the importance weight of the i-th sample. Note,

however,  that  the  support  of q �x 	 has  to  be  equal  to  or

bigger than the support of p �x 	 to be able to represent the

target function. This is known as the principle of importance
sampling  [13].  The  posterior  distribution  can  then  be
approximated by:

p �x t | z1 : t	�
i�1

N

�t

i�� x t�x t

i	 (9)

where  �t
i

is the importance weight of the  i-th particle in the

t-th timestep. If the importance density is constructed such that
it can be factorized in two parts:

q �x t

i | z1 : t	�q �x t�1

i | z1 : t�1	q �x t

i | x t�1

i , z t	 (10)

it can be shown [17], that the corresponding weights of each
sample can be calculated recursively according to

�t

i��t�1

i p � z t | x t

i	 p �x t

i
| x t�1

i 	

q� x t

i
| x t�1

i
, z t	

,�
i�1

N

�t

i�1 (11)

Note  that  as  N �� ,  the  approximation  of  eq.  (9)

approaches  the  true  posterior  density  p �x t | z1 : t	 .  By

choosing

q �x t

i
| x t�1

i
, z t	� p �x t

i
| x t�1

i 	 (12)

equation (11) can be rewritten as:

�t

i��t�1

i
p � zt | x t

i 	 (13)

The process for calculating the posterior distribution is then
achieved  by  recursively  predicting  the  new  state  through

p �x t

i | x t�1

i 	 ,  updating  the  measurements  with

p � z t | x t

i	 and calculating the weights using eq. (13).

C. Sequential Importance Resampling

One  of  the  main  problems  of  the  sequential  importance
sampling  scheme  is  that  the  weights  tend to  become  highly
degenerate  after  some  iterations.  This  means  that  a  small
portion of the particles will  contain nearly all the probability
mass, and therefore the majority of the particles will almost not
contribute  to  the  estimates  [2].  An  idea  for  avoiding  this
problem is to move the particles towards regions with a higher
probability mass. One way to achieve this is to draw a new set
of particles proportionally to their  previous weights.  In other
words, the new set is formed by sampling with replacement N

times from the discrete representation of p �x t | z1 : t	 . Once

the results are i.i.d. samples of the discrete distribution, we can
then set the corresponding weights to 1/N.

D. Effective Sample Size

A good measurement of the degeneracy problem described
above is the effective sample size [13]:

ESS t�
N

1�
1

N
�
i�1

N

�N �t

i�1	2
(14)

The effective sample size can be seen as a measure  of how
many of the samples significantly contribute to the estimated

target  pdf p �x t | z1 : t	 .  Large values  indicate  more

uniformly  distributed  weights,  while  small  values  imply  a
bigger variance on their distribution.

E. Observation and Motion Models

We define a five dimensional state space, which consists of:
two dimensions for the unit normal vector to the ground plane

�� and �� ,  given  in  spherical  coordinates   with  the

length being equal to one; two dimensions for the translation

vector �� and �� ,  also in spherical  coordinates,  whose

magnitude is extracted from the velocity and time data; and one

dimension for the distance d  of the camera from the ground

plane. In order to reduce our search space, we assume, for the
time  being,  no  camera  rotation  between  two  consecutive
frames.  Such an assumption is  valid  for  trajectories with  no
sharp curves. Our i-th particle at time t is then expressed by:

x t

i���� , t

i �� ,t

i
d t

i �� , t

i �� , t

i � (15)

 Given the observation  z t�1 , which in this case is the

Image  I t�1 acquired by the camera  at  timestep t�1 ,

one can estimate
�I t

i

by warping the previous image I t�1

according  to  the  homography  H
x

t

i  given  by  the  i-th

particle x t

i
, and calculated through eq. (3):

�I t

i�W � I t�1 , H
x t

i	 (16)

Upon the arrival of the new observation I t it is possible

to calculate the registration error �R

i
between estimated and

current frames: 

�R

i �
�

M

� I t��I t

i	2

M
(17)
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Algorithm 1 : Iteration of the method

for i = 1:N

Propagate ����x t

i� p� x t

i�x t�1

i 	  

Compute weight ��t

i��t�1

i
p � zt�����x t

i 	

end for

Normalize weights for each particle i
�t

i�
��t

i

�
j�1

N

��t

j

Resample according to normalized weights

Segment x t

i
, i�1,... , N  with FAMS

Select the convergence point of the mode with most particles

as the current estimation x t

IV. RESULTS

We have tested our system on both synthetic and real data.
In the first subsection we concentrate on the comparison of the
estimated values with the available ground truth, while in the
second subsection, we evaluate the system in a real sequence.
A reference implementation of an optimization based approach
is also presented. 

The  registration  cue  based  on  the  homography  mapping
needs to be applied exclusively in points belonging to the road
plane.  For  this  reason,  for  all  the  experiments,  a  rough
segmentation of the road plane is applied. The left picture in
Fig. 5 shows the segmented area overlayed on the driving road.

As  discussed  in  section  III-E,  we  selected  ���
and

���
to be a quarter of our expected range in order to have

the penalty term close to zero in the boundaries of the range.
For our experiments we defined the range to be approximately

±15° around the y-axis. Therefore,  ���
����

�3.75 ° and

x�� , 0� x�� ,0�0 ° .  The standard deviation terms should

be large enough to avoid (or to reduce significantly) the bias
added by the prior cue on the final estimation. Regarding the

covariance  matrix � in  the  propagation  step,  we  set  its

entries such that the standard deviation of the angular error and
distance to the ground are respectively 0.1° and 5mm. These
values should be sufficiently high to cover parameter changes

between two consecutive timesteps.  Finally the gains  �R

and  �� were  empirically  selected  based  on  statistics  of

previous runs. For the experiments they were set respectively
to  2.5×10-4 and  10.  Such  factors  include  information  of  the
confidence of the measurement and determine its influence on
the final estimation.

A. Synthetic Data

Synthetic road scenes were generated with known motion
and plane parameters.  The images simulate  a vehicle driving
20s on a typical road, at a 22 fps camera frame rate. In all the
experiments on simulated data 1000 particles were employed. 

First we evaluated the system with different configurations,
in terms of the relative orientation of the camera to the ground
plane. For each scenario, we have performed ten experiments,
with different seeds for the random number generators, in order
to  analyze  accuracy  of  the  estimated  values  and  the
convergence of the particles. We show in Table 1 the results of
four indicative runs out of 40, one for each test configuration.
The first column shows the ground truth values for the setup.
The following columns present  the mean value and standard
deviation of the pitch and roll angles, as well as of the distance
to the ground. The selected output is the convergence point of
the mode with the most particles,  as segmented by the mean
shift  algorithm.  Each  mean  value  shown  in  the  table  is  the
average  of  single-frame  estimations  over  time.  In  our
experiments we drop the first ten seconds, when the particles
are  still  moving to  their  stationary state.  An example of the
evolution of the estimation is presented in Fig. 3, which shows
the distance to the ground parameter for the first configuration
in Table 1.

All the experiments exhibited very similar results,  with a
maximum  standard  deviation  of  0.215°  for  the  pitch  angle,
0.211°  for  the  roll  angle  and  0.019m  for  the  height.  The
maximum  mean  estimation  error  was  0.170°  for  the  pitch
angle, 0.441° for the roll angle and 0.028m for the height.  To
further  validate  our  stochastic  process,  the  results  of  all  ten
different  runs  for  each configuration,  each initialized  with  a
different seed, were combined. Table 2 shows the average and
standard deviation of the root mean square errors (RMSE) of
the  experiments  for  the  given  configurations.  The  resulting
very small standard deviations show that the method is robust
to the initialization of the particles.

Table 1 – Estimated parameters on synthetic data

Configuration

(Pitch, Roll, Height)

Pitch Roll Height

10°, 0°, 1.25m 9.963°

±0.098°

0.032°

±0.071°

1.244m

±0.014m

0°, -10°, 1.25m 0.006°

±0.068°

-9.584°

±0.193°

1.245m

±0.010m

0°, 0°, 1.40m 0.008°

±0.195°

0.012°

±0.085°

1.386m

±0.016m

10°, -10°, 1.40m 10.028°

±0.067°

-9.641°

±0.181°

1.411m

±0.008m
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Fig. 3 - Evolution of distance to ground estimation over time 

Table 2 – RMSE average and standard deviation

Configuration

(Pitch, Roll, Height)

Pitch Roll Height

10°, 0°, 1.25m 0.083° 

±0.002°

0.058° 

±0.003°

0.013m 

±0.0007m

0°, -10°, 1.25m 0.054° 

±0.001°

0.421° 

±0.008°

0.009m 

±0.0004m

0°, 0°, 1.40m 0.162° 

±0.003°

0.075° 

±0.007°

0.020m 

±0.0034m

10°, -10°, 1.40m 0.061° 

±0.002°

0.367° 

±0.007°

0.012m 

±0.0004m

B. Real Data

In  this  subsection  we  present  how the  proposed  system
behaves  in  a  real  driving  scenario.  As  a  reference  for  the
experiments, the camera intrinsic and extrinsic (related to road
plane)  parameters  were  previously  calibrated.  The  intrinsic

parameters  K are applied to calculate  the homography in

equation  (3).  The  extrinsic  parameters  are  only  shown  as
reference in Table 3. The test sequence consists of 65.5s of a
typical  driving  scenario.  Fig.  4  shows  the  parameter
development  over  time  for  the  whole  video.  The  top  graph
shows the quality of the particle estimations, as given by the
effective sample size measurement. The second subplot depicts
the evolution of the distance between camera and ground plane.
The next plot shows the evolution of the pitch angle estimate,
while information on the roll angle is included at the bottom
graph. 

By  reaching  its  maximum  value,  the  ESS  measurement
clearly  depicts  the  situations  where  the  employed  pre-
processing method fails to estimate a road region (see Fig. 5
right). This is interpreted as a possible failure of a given sensor.
In  this  case  it  is  not  possible  to  calculate  the  observation
probability. All the particles receive the same weight and hence
re-sampling does not occur. The particles are just propagated
due  to  the  noise  model  describing  the  uncertainty  of  the
measurement.  Therefore  estimations  during  this  time  are
discarded. It is important to note that at these failure points, the
particles need time to converge back to their  final stationary
stage.  We, however,  consider  for  the final  estimation all  the
values  in  valid  regions,  segmented  by  means  of  the  ESS
measurement,  and discarded only the first ten seconds of the

sequence  to  be  consistent  with  the  results  of  the  synthetic
analysis. 

Fig. 4 – Parameter evolution over time in a real scenario 

Table  3  shows  the  mean  and  standard  deviation  of  the
derived  parameters  for  the  whole  sequence,  together  with
values  obtained  from  an  off-line  calibration  and  estimates
derived by an optimization method (see sub-section IV-C). The
sequence was tested with 1000 and 10000 particles.   As the
number of particles increases, a better representation of the real
pdf is achieved. The changes on roll and height between both
experiments were mainly caused due to the  higher sensitivity
of  the  methodology  while  running  with  a  larger  amount  of
samples. In a few frames, particles converged faster to a wrong
minima following the measurement error. 

The  method  has  shown  however,  to  be  able  to  robustly
estimate  the  parameters  in  the  big  majority  of  segmented
frames.  At  the  same  time,  it  showed  a  good  resistance  to
problems related to bad distribution of features on the plane
(see center picture  in Fig. 5).  In such a case where features
concentrate in specific areas, e.g. near to the roll axis, it may
happen  that  the  measurement  function   becomes  ill-
conditioned. Big changes of the roll estimation only lead to a
small  change  of the  error  measurement.  In  such a  situation,
noise may have a big influence  on the parameter  estimation
compared  to  geometric  constraints.  In  our  method,  the
smoothing  provided  by  the  Particle  Filter  compensates  for
measurements with high frequency noise. 

Table 3 – Estimated parameters on real data

Pitch Roll Height

Offline Calibration 3.827° 0.676° 1.257m

1000 particles 2.958°

±0.187°

0.250°

±0.600°

1.146m

±0.041m

10000 particles 2.972°

±0.190°

0.047°

±0.750°

1.158m

±0.083m

Optimization Method 2.992°

±0.337°

1.166°

±4.884°

1.087m

0.070m
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Fig. 5 – Frames at times 3.95s, 15.70s and 9.59s

C. Optimization approach

A  direct  comparison  between  an  optimization  based
approach and our methodology is not easily feasible. In order
to  fairly  evaluate  the  strengths  and  weaknesses  of  each
approach,  both  methodologies  need  to  be  tested  on  a  large
number  of  sequences  with  diverse  driving  scenarios.
Furthermore,  there  are  many  different  optimization  based
techniques,  each with  its  own advantages and disadvantages.
To our knowledge, there exists no publicly available dataset of
diverse  road  sequences.  Nonetheless,  a  comparison  with  an
optimization approach applied in our sequence can still provide
an insight on how a Particle Filter method performs relative to
the more widely used optimization-based techniques. 

In our optimization-based implementation we chose to use
well-established sub-processes which, at the same time, fit our
data set (e.g. small set of features, etc.). We applied exactly the
same pre-processing for establishing a search region as we did
in our approach. Within that region a Harris corner-detector [9]
is  applied.  The  detected  corners  are  tracked  between  two
consecutive frames using a sparse iterative implementation of
the  Lukas-Kanade  algorithm  [5].  The  resulting
correspondences are used in calculating the initial homography
as described in [8]. The homography estimate is then optimized
with the Levenberg-Marquardt algorithm as described in [18].
The derived homography is then decomposed to its rotation and
translation  components  by  applying  the  analytical  solution
from Malis [11]. The estimates obtained from our optimization-
based implementation can be seen in Table 3. The presented
values are obtained out of only 13% of all the frames in the
sequence.  The  majority  of  the  frames  were  dropped  by
plausibility and quality checks. Although a direct comparison
would  be  unfair,  these  results  indicate  the  weakness  of  the
forward-looking registration measurement function, a problem
already indicated in [4]. 

V. CONCLUSION

In this paper we have presented a method based on Particle
Filters  for  automatically  estimating  the  ground  plane
parameters from a video sequences and a velocity sensor. We
showed how the probabilistic  nature of the Particle Filters is
well  suited,  in  terms  of  robustness,  to  this  application.
Estimating  the  ground  layer  and  ego-motion  based  on  the
information of the road area is challenging due to the lack of
texture and non-linear perspective distortion. We believe that
the results can be further improved through the use of a better
measurement  function.  An  extension  we  are  currently
investigating  is  the  proposal  of  Ke  and  Kanade  [4].  They
suggest a better estimation of the motion components through

the simulation of an orthogonal projection of the ground plane
area. Furthermore, the entire estimation is currently based only
on information provided by the road itself. It is clear that other
components  in  the  scene,  e.g.  buildings,  vehicles  or  traffic
signs,  shall  provide  important  information  that  can  be
combined for the estimation. 
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