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Abstract
In this paper we introduce a novel method for the visualization
of speech disorders. We demonstrate the method with disor-
dered speech and a control group. However, both groups were
recorded using two different microphones. The projection of the
patient data using a single microphone yields significant corre-
lations between the coordinates on the map and certain criteria
of the disorder which were perceptually rated. However, projec-
tion of data from multiple microphones reduces this correlation.
Usually, the acoustical mismatch between the microphones is
greater than the mismatch between the speakers, i.e., not the
disorders but the microphones form clusters in the visualiza-
tion. Based on an extension of the Sammon mapping, we are
able to create a map which projects the same speakers onto the
same position even if multiple microphones are used. Further-
more, our method also restores the correlation between the map
coordinates and the perceptual assessment.
Index Terms: visualization, robustness, speech processing.

1. Introduction
The visualization of speakers can reveal the relations between
patients with voice disorders in different graduations [1]. Pro-
jection of new speakers allows to compare them to the other
speakers. This gives a better understanding of the different dis-
orders. Figure 1 shows a map of speakers with different de-
grees of hoarseness. On the top left, speakers with a tracheo-
esophageal substitute voice are located [2]. In these patients,
the larynx was removed due to cancer. The artificial voice of
the laryngectomized speakers can be interpreted as an extreme
form of hoarseness. The average age of the laryngectomees
was about 60 years. At the top right is an age-matched con-
trol group of normal speakers. At the bottom of the map are
speakers with chronic hoarseness. On the bottom right, young
reference speakers are located. Hence, the axes of the map can
be approximately interpreted as the age on the y-axis and the
degree of hoarseness on the x-axis. All data were gathered with
the same microphone with the same recording setup.

A problem for the visualization of speech data is the fact
that the recording conditions have a great impact. The main
factors are the used microphone, the distance between the mi-
crophone and the speaker, and the acoustical properties of the
recording location. If a speaker was recorded simultaneously
by multiple microphones of different quality at different dis-
tances, the points in the map which represent the same speaker
are spread apart. Figure 2 gives an extreme example using the
Sammon mapping: The speakers form two clusters although
the speakers were recorded simultaneously with two different
microphones [3]. This is caused by the acoustic difference be-
tween the microphones which were chosen for the recording.
The corresponding representations of the same speaker are far

Figure 1: Visualization of voice disorders: The properties of the
speakers’ voices are visible in a Sammon map. While the y-axis
contains the age of the speaker, the x-axis can be interpreted as
the degree of hoarseness.
away from each other in this visualization. The dominating fac-
tor is the microphone. In general, all visualizations of data col-
lected in different acoustic conditions show similar effects in
different graduations depending on the discrepancy between the
acoustic properties.

If applied in a medical environment, for example with our
fully automatic Internet speech evaluation software [4], record-
ings are often performed at multiple locations simultaneously,
e.g. in multi-site studies. Therefore, a method is desirable which
removes or reduces these recording mismatches. We propose to
gather a representative amount of calibration data which covers
most of the acoustical variations of the respective voice disor-
der and a matching control group. This kind of calibration data
can then be used to initialize a new location for the visualization
procedure. The set of known calibration data is replayed with a
standardized loudspeaker at a new location. In this manner, the
effect of the new microphone and the recording conditions can
be “learned” and removed from the visualization. New speakers
are then projected into the calibrated visualization using just the
recording of the new location as described in [5].

In order to create a visualization of the data, the dimen-
sion has to be reduced to a two- or three-dimensional space.
As a representation of a speaker we chose the parameters of
a speaker-adapted speech recognizer. Furthermore, the map
should present the recording of one speaker made in differ-
ent environments at the same or at least a very close position,
i.e., minimize the recording influences and therewith restore the
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Figure 2: 51 children recorded simultaneously with two differ-
ent microphones on a Sammon map: remote (rm), and close
talk (ct). ct forms one cluster while the rm forms another clus-
ter. Both clusters contain the same speakers [3].

Table 1: Serious articulation errors after [7]
serious articulation errors

nasalized conso-
nants

the consonants are nasalized, i.e. air
is emitted during the articulation of the
consonants

glottal articulation
(laryngeal replace-
ment)

the closure of the plosives is not done in
a labial but in a glottal manner.

backing to uvular the tongue is shifted backwards towards
the uvula

absent pressure
consonants

plosives are not formed or weakened
during the articulation

meaning of the coordinates.

2. Patients and Methods
2.1. Patients

Data of 31 children with cleft lip and palate (CLP) were
recorded at the University Hospital Erlangen using a dnt Call
4U Comfort head set. Furthermore, a control group with 87
children was recorded with a Plantronics Audio USB 510 head-
set. In order to create matched recordings with both micro-
phones, the data was replayed using a reference loudspeaker and
recorded a second time with the respective other microphone.

An experienced speech therapist annotated all words the
children with CLP spoke according to several criteria. An
overview of the criteria is given in Table 1. The annotation was
performed on word level. In order to get a speaker level result,
the relative number of occurrences of the criteria was counted
to represent the severity of the articulation disorder in the child.
Furthermore, the intelligibility of the children was assessed in
order to obtain a global outcome parameter for each child. This
data set was also investigated in [6] of the automatic detection
of speech disorders.

To create a visualization the first step is to compute char-
acteristic features from individual speech samples. Next, the
dimensionality of those features has to be reduced to two or
three (for 2-D or 3-D visualization). These features are ob-
tained from Gaussian mixture densities of a speech recognizer
which is adapted for each speaker [8]. Then the dimensionality
is reduced with the Sammon mapping [9]. For the Sammon

mapping, an appropriate distance measure has to be chosen.
Shozakai et al. chose the Mahalanobis distance [10] between
the Gaussian densities of the speech recognizer. The resulting
method is called COmprehensive Space Map of Objective Sig-
nal (COSMOS) [11].

2.2. Features for Visualization

We use the parameters of the Gaussian mixture densities of a
speech recognizer as feature vectors for the visualization. Those
densities are adapted with Maximum Likelihood Linear Regres-
sion (MLLR) adaption [8] for use with a semi-continuous Hid-
den Markov Models (SCHMM) speech recognizer that shares
all of its κ = 500 Gaussian densities for all states [12]. The
mixture density fκ(x) is computed as follows:

fκ(x) =
KX

κ=1

αiκNiκ(x) with (1)

Niκ(x) =
1

(2π)M/2|Σiκ|1/2
e
−

1

2
(x − μiκ)�Σ

−1

iκ (x− μiκ)

αiκ is the weight for the Gaussian Niκ(x), μiκ is the mean
vector, Σiκ is the covariance matrix of state i. M denotes the
dimension of the feature vectors (here: M = 24). The sum over
all ακ equals 1.

2.3. A Distance Metric for SCHMMs

For the computation of the distance between two SCHMMs p

and q, there are several applicable metrics. We use the Ma-
halanobis distance [10] as in [13]. Since all codebooks are
adapted from the one original codebook by a linear transfor-
mation (MLLR), the correspondences between the distributions
are known. To calculate the distance between two Gaussian
mixtures, we use

di(p, q) =
KX

κ=1

q
(μ̂iκ(p)− μ̂iκ(q))T Σ

−1(μ̂iκ(p)− μ̂iκ(q))

μ̂iκ(p) = αiκ(p)μiκ(p) (2)
for mixtures which consist of K Gaussians, with weighted
mean vectors μ̂iκ(p) and μ̂iκ(q). Σ is the mean covariance
matrix of all Gaussians of both mixtures [10], and i is the state
number.

Next, the distance between the two SCHMMs has to be
computed as the sum of the distance of all states [1]. That leads
to the overall distance δpq between the SCHMMs p and q:

δpq =

PNs

i=1
di(p, q)

Ns
(3)

where Ns is the number of states. In this manner a symmetric
distance matrix is computed which holds all mutual distances
between the SCHMMs.

2.4. Visualization with a Single Microphone

Next, the data is scaled to 2-D or 3-D using the Sammon map-
ping [9]. It finds the low-dimensional representation which
matches the low-dimensional distances θpq best to the high-
dimensional distances δpq:

eS = s

N−1X
p=1

NX
q=p+1

(δpq − θpq)
2

δpq
(4)
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As low-dimensional distance measure, the Euclidean distance
was chosen. s is a problem-dependent scaling factor, and N is
the number of recordings.

Since our distance measure of the Sammon mapping is
merely dependent on acoustical information, the use of mul-
tiple microphones causes distortions to the mapping as shown
in Figure 2.

2.5. An Extension to the Sammon Mapping

Now we assume that we have a set of calibration data recorded
with each microphone. This kind of data can be generated retro-
spectively with any kind of microphone at any new location. In
order to supply further information to the mapping procedure,
an additional term which punishes distances between matching
speakers is included into the objective function eS Therefore,
the distance between points belonging to the same speaker is
minimized.

G =

0
B@

g11 · · · g1N

...
. . .

...
gN1 · · · gNN

1
CA (5)

gij indicates whether the points, or respectively the high-
dimensional features, belong to the same speaker. Hence,
gij = 1 if the feature vector j corresponds to speaker i, else
gij = 0. Remember that in our study one speaker is recorded
by multiple microphones, so there are more recordings for one
speaker. Furthermore, G is a sparse matrix.

The original error function eS of the Sammon mapping is
altered in such a manner that it considers the distance between
points that belong to the same group. So a new error function
eQ is formed:

eQ = s

N−1X
p=1

NX
q=p+1

»
Qgpqθpq + (1−Q)(1− gpq)

(δpq − θpq)
2

δpq

–

(6)
gpq is the group indicator and Q is a factor which weights the
standard Sammon error and the additional error term. A gradi-
ent descent is applied to minimize the objective function.

2.6. Quality Metrics for Maps

A major criterion for the visualization of the speakers is that
the created map has to be meaningful, i.e., the quality has to
be measured. We decided to use three measurements for the
evaluation:

• Sammon Error eS: The remaining error computed by the
Sammon error function according to Eq. 4. This error is
used to describe the loss of the mapping from the high-
dimensional space to the low-dimensional space. In the
literature this term was shown to be a crucial factor to
describe the quality of a representation [1, 13].

• Grouping Error eGrp: The average distance between
points belonging to the same group (on a map with nor-
malized coordinates in an interval between 0 and 1),
i.e., the average distance between a speaker to his own
representation recorded with a different microphone.

eGrp =
1

N

N−1X
i=1

NX
j=i+1

θijgij (7)

Note that the normalization is just performed with 1

N
due to the sparsity of G. A grouping error of 0.25 cor-

(a) Q = 0

(b) Q = 0.8

(c) Q = 0.9

Figure 3: Extended Sammon mapping on data played back with
two different microphones: On the left the Plantronics Audio
USB 510 microphone is marked with ”X” and “+” marks the
dnt Call 4U Comfort microphone. Each microphone forms a
cluster, although exactly the same speech data is represented.
One the right each speaker is represented with a unique symbol.
The points which represent the same speaker are connected with
a line, i.e., the fewer lines, the fewer the grouping error. With
growingQ the grouping error is reduced. WithQ = 0.9 almost
no lines are visible, i.e., the grouping error is close to zero. Note
that the two clusters in (c) are the patient (bottom right) and the
control group (top left).

responds to an average distance of 25 % of the dimen-
sions of the map between the representations of the same
speaker.

• Regression: The regression between the coordinates of
a map and a given criterion also provides information
on the quality of the map. The regression is computed
as the correlation between the least square optimal pro-
jection of the coordinates of the map to the given crite-
rion, e.g. the intelligibility.

3. Results
With the weight Q, a trade-off between grouping and normal
Sammon mapping is created. As Figure 3 shows, the points
representing the same speaker move together with growing Q.

Figure 4 shows the development of the grouping and the
Sammon error in dependency of Q. The higher Q, the lower is
the group error. The Sammon error increases with growing Q.
At Q = 0.9 a configuration is found where the sum of Sam-
mon and grouping error is minimal as displayed in Figure 3 (c).
Q = 0.9 seems to put most of the weight on the grouping error.
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Figure 4: Development of the Sammon and the grouping error
in dependency ofQ: While the Sammon error increases steadily
with growing Q, the grouping error decreases. With a too high
weight of the grouping error, the coordinates become mere ran-
dom numbers due to the random initialization.

However, if we recall the definition of eQ from Eq. 6, and the
definition of G from Eq. 5 one can easily see that most of the
error sum is caused by the Sammon error and not by the group-
ing error since G contains only N times an entry with gij = 1
and (N2 −N) times gij = 0. So if the average error would be
equal, i.e.,

N−1X
p=1

NX
q=p+1

(δpq − θpq)
2

δpq
≈

N−1X
p=1

NX
q=p+1

θpq (8)

the break-even point between both errors with N ≈ 200 would
be at about Q = 0.99. Hence, with Q = 0.9 the influence of
the Sammon information is still very high.

As shown in Table 2, the visualization of the patient data
shows significant correlations to the criteria “laryngeal back-
ing”, “weakened plosives” and “intelligibility”. However, after
addition of the control group to the visualization the correlations
drop. The use of the extended Sammon mapping with a Q of
0.9 is able to restore most correlations, esp. the main outcome
parameter — intelligibility.

4. Summary
We presented a new method for the robust visualization of
speech data. It is not only able to project corresponding
speakers with respect to different microphones onto the same
position of the map, but also restores the meaning of the
coordinates of the map. An online demo is presented at
http://peaks.informatik.uni-erlangen.de/visualization.
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