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Abstract

The dichromatic reflectance model has been successfully
applied on different tasks in color research, such as color
constancy and highlight or shadow segmentation. In its
original version, it incorporates only one direct illuminant.
In this work, we analyze a recently published model, the
Bi-Illuminant Dichromatic Reflectance Model (BIDR) pro-
posed by Maxwell et al., that extends the dichromatic re-
flectance model for a very general ambient term. The pro-
posed method can represent optical phenomena like inter-
reflections and inhomogeneous ambient light. We will show
that this new model is sufficiently general, in the sense that
it encompasses established variations and extensions to the
dichromatic reflectance model.

1. Introduction
Understanding scene reflectance provides useful insights

for many computer vision tasks. Complex lighting envi-

ronments introduce difficult problems in higher level vision

tasks such as object recognition or tracking. The presence

of different illumination conditions, highlights, shadows or

interreflections may change the appearance of objects dra-

matically. With insights from reflectance analysis, a way

is sought to make these tasks more robust to a variety of

real-world conditions.

Many approaches to reflectance analysis build on ma-

chine learning, e.g. [1, 4, 8, 17]. By definition, the success

of these methods is closely tied to the employed training set.

In comparison, physics-based approaches try to explicitly

model reflectance properties according to their physical be-

havior. One of the most prominent models in physics-based

reflectance analysis is the dichromatic reflectance model by

Shafer [22]. For a single dominant light source, it assumes

that irradiance can be decomposed into a linear combination

of specular and diffuse reflectance components. Due to its

relative simplicity and usefulness, many researchers devel-

oped algorithms that built on top of this model, e.g. [14, 23].

However, the most widely used physics-based method-

ologies are difficult to transfer to real-world scenarios: since

reflectance phenomena are explicitly modeled, the prob-

lem of estimating scene properties is typically undercon-

strained. One real-world example is the presence of shad-

ows, where a model with only one dominant light source

fails. Shadow areas are typically assumed to be illuminated

by ambient light, which can be treated as a second, extended

light source with special properties. For example in out-

door scenes, the sky acts as a second light source, which

shifts the illuminant color approximately towards blue due

to Rayleigh scattering [6].

Since shadows are a common error source for higher

level computer vision tasks, several groups addressed the

problem of shadow segmentation or removal. One approach

is to deduce rules for shadow regions from observations.

Gershon et al. related ambient reflected intensities and dif-

fuse reflected intensities [11]. Funka-Lea and Bajcsy ex-

tracted several cues for shadow and penumbra detection [9].

Barnard and Finlayson [3] proposed a methodology for de-

tecting shadow edges from a database of intensity ratios

between shadow and non-shadow areas. Shadow removal

is done by Finlayson et al. with a calibrated camera [7].

Other shadow removal work, like that of Levine and Bhat-

tacharyya [17], is based on machine learning. Finally, there

is also a large body of work on shadow invariant color fea-

tures, e.g. by Gevers and Smeulders et al. [12], Salvador et
al. [21] and van de Weijer and Schmid [25].

Multiple illuminants have sometimes been explicitly ex-

ploited for the recovering of scene information. For these

methods, two images are taken: the first one being only illu-

minated by ambient light, the second one with an additional

flash light that is mounted on the camera. By studying the
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relationship of the two differently illuminated scenes, un-

der few additional constraints, the color of the scene illu-

minant and the albedos of the objects in the scene can be

estimated [5, 18]. The core of these methods is the compu-

tation of a synthetic, flash-only illuminated image from the

two input images. From the different reflectance behavior

in the flash-only and the ambient illuminated image, con-

clusions about the missing scene information can be drawn.

Despite the ubiquity of images that involve multiple illumi-

nation sources, the single light source model is still exten-

sively used.

In this work, we analyze a recently published exten-

sion by Maxwell et al. [19] of the dichromatic reflectance

model [22], the Bi-Illuminant Dichromatic Reflectance

Model (BIDR). It adds a comprehensive ambient term to

the original dichromatic reflectance model. The model

can also integrate a representation for interreflections in

the dichromatic reflectance model. Although interreflec-

tions have previously been studied by several authors (see

e.g. [2, 16, 10]), most often they are ignored due to their

great complexity. We assume that with the BIDR, it is

possible to consider their effects within a well-established

physics-based reflectance model.

To the best of our knowledge, although Maxwell et al.
proposed the BIDR, the model has not yet been fully an-

alyzed. In this work, we examine the side effects caused

by the addition of a general ambient term. For many typical

computer vision tasks, only a single image with a mixture of

ambient and direct light is available. Hence, it is crucial to

understand the reflectance of an image which is illuminated

by ambient and direct light at the same time. As shown in

Fig. 1, understanding the properties of the BIDR could help

in finding new algorithms for applications such as shadow

segmentation, material classification and color constancy.

We will also show how commonly used simplifications

on the ambient term can be incorporated into the extended

model. We will demonstrate the effects of several parame-

ters in the extended model, and show a connection between

the extended model and the shadow detection or removal al-

gorithms by Barnard and Finlayson [3], Maxwell et al. [19]

and Lu and Drew [18] as practical ways to overcome the

inherent difficulties with the general formula. This imposes

also a taxonomic structure on the existing algorithms with

respect to the BIDR, as sketched in Fig. 1.

The outline of the paper is as follows: In section 2, we in-

troduce the dichromatic reflectance model and its extension

for a comprehensive ambient term. In section 3, we show

how the different factors in the extended model influence

each other and what conclusions can be drawn within this

model. We show how the model can be practically applied

by discussing related algorithms [3, 19, 18] in section 4. We

present our own experiments in section 5, which show that

the ambient and direct light can mix nonlinearly in practice.

Figure 1. The BIDR serves either as starting point for scene mod-

eling, or as the end point in a taxonomy of reflectance analysis

algorithms.

We conclude the paper with perspectives for future research

directions in section 6.

2. Reflectance Models

The dichromatic reflectance model assumes a single

dominant point light source that uniformly illuminates the

scene. It states that on dielectric surfaces, the radiance L is

a linear combination of specular and diffuse reflectance:

L(λ, i, e) = Ls(λ, i, e) + Ld(λ, i, e) (1)

where λ is the wave length, i = (φi, θi) is the vector of the

angles between the surface normal and the incident light,

and e = (φe, θe) is the vector of the angles between the

surface normal and the viewing position. Ls is the radiance

of the specular reflectance (also known as surface or inter-

face reflectance), and Ld is the body (or diffuse) radiance.

Ls and Ld can further be decomposed into the achromatic

surface geometry ms(i, e) and md(i, e), the incident light

e(λ) and the specular and diffuse chromatic parts ρs(λ) and

ρd(λ) of the reflectance function:

L(λ, i, e) = ms(i, e)ρs(λ)e(λ) + md(i, e)ρd(λ)e(λ) (2)

In RGB-space, pixels that exhibit only diffuse re-

flectance form a distinct line, and pixels that exhibit a mix-

ture of diffuse and specular reflectance form a slim triangle.

As shown in Fig. 2, the axis of elongation of the specular tri-

angle intersects the diffuse line at the higher intensity part

of the line [13].

This model has been widely used for specularity based

illumination estimation, color segmentation and specular-

ity segmentation (see e.g. [13, 14, 23, 24]). A common

limitation for the application in real-world scenes is the as-

sumption of a single light source. If a scene contains either

multiple direct illuminants or noticeable ambient lighting,

which is typically the case in real-world scenarios, these in-

fluences appear as noise in the model. Instead of treating

them as noise and trying to work around them, we believe
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Figure 2. T-Shape according to Klinker and Shafer [13]. Diffuse

pixels form a straight line (horizontally displayed), specular pixels

form a sharp triangle on top of this line.

that it is helpful to address more complex lighting environ-

ments explicitly in a principled manner.

In this work, we follow this approach. Recently,

Maxwell et al. [19] present a natural extension to the dichro-

matic reflectance model for a comprehensive ambient term,

the Bi-Illuminant Dichromatic Reflectance Model:

L(λ, i, e) =
Lds(λ, i, e) + Ldd(λ, i, e) + Las(λ, i, e) + Lad(λ, i, e)

(3)

where Lds(λ, i, e) = Ls(λ, i, e) and Ldd(λ, i, e) =
Ld(λ, i, e) form the specular and diffuse component of the

direct light in accordance with equation (1). Las(λ, i, e) and

Lad(λ, i, e) are the new ambient term for specular and dif-

fuse reflectance, respectively. Las(λ, i, e) and Lad(λ, i, e)
are defined as

Las(λ, i, e) =
∫
Ω

ms(i, e)ρs(λ)ea(λ, i)di (4)

Lad(λ, i, e) =
∫
Ω

md(i, e)ρd(λ)ea(λ, i)di (5)

Analogously to equation (1), ms(i, e) and md(i, e) de-

scribe the specular and diffuse geometry and ea(λ, i) the

color of the ambient incident light, with respect to the angle

of incidence i: for instance, differently colored interreflec-

tions can influence the ambient term from different angles

of incidence. Ω is the hemisphere of all possible orienta-

tions of the surface normal. The full expansion of the ex-

tended dichromatic reflectance model is

L(λ, i, e) =
ms(i, e)ρs(λ)ed(λ) + md(i, e)ρd(λ)ed(λ)+∫
Ω

ms(i, e)ρs(λ)ea(λ, i)di+∫
Ω

md(i, e)ρd(λ)ea(λ, i)di .

(6)

Figure 3. Interreflections between balls under sunlight. The ma-

jority of interreflections is diffuse. Specular highlights caused by

interreflections are framed in green.

In this formulation, the ambient term acts as a special

type of light source. Unlike direct illumination, ambient il-

lumination is the result of interreflections. Light from all

directions, and of possibly different color spectra, mixes

in a point and forms the color of the ambient illuminant.

Therefore, ea(λ, i) additionally depends on the angle of in-

cidence.

Typically, if an ambient term within the dichromatic re-

flectance model is considered in the literature, it is a diffuse

only term. Fig. 3 shows an example for diffuse and specu-

lar interreflections. Specular interreflections are framed in

green. Most interreflections result from diffuse reflection.

By adding a specular ambient term to the model, it is pos-

sible to also model specular interreflections. More gener-

ally, expressing the ambient term as a special light source

(over an integral) implicitly offers a model for interreflec-

tions within the dichromatic reflectance model.

In practice, a full exploitation or extraction of the in-

tegral is seldomly possible, since the problem is severely

under-constrained. However, we further analyze the model

to gain insights on how the different terms interact with each

other. In order to maximize the practical use of this model,

it is especially important to understand how an image un-

der a combination of direct and ambient lighting is formed.

In this work, we focus on diffuse pixels, since the interac-

tion of direct and ambient light has the biggest impact un-

der diffuse lighting conditions. Although this examination

is somewhat limited, we justify it by claiming that for many

applications it is valid to assume that specularities dominate

the color of a pixel. Furthermore, for describing the effects

of introducing the ambient integral in the next section, it

suffices to restrict the presentation to the diffuse terms.
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Figure 4. Ambient, diffuse and combined reflectance observed

from two objects in RGB-space. Let e1 the ambient illuminant

and e2 the direct illuminant. Note that the diffuse-only and the

ambient-only pixels can (up to geometric variations) be matched

on each other via rotation and scaling around the origin. For the

mapping, the pixels with combined diffuse and ambient illumina-

tion require a translation additionally to rotation and scaling.

3. BIDR-based Scene Analysis

We illustrate the effects of the ambient integral in the

BIDR. We believe that the extended model is helpful to the

understanding of more complex realistic scenes, where ef-

fects from direct and ambient illumination can be observed.

In the most general form, the two illuminants are very hard

to separate. Therefore, we demonstrate properties of the

diffuse part of the extended model. Starting with diffuse

reflectance of either solely a direct illuminant or ambient

lighting, the discussion progresses towards the full BIDR

model step by step.

3.1. Direct Illuminant

Diffuse pixels under a single direct illuminant are known

to form a straight line in RGB-space [22]. The radiance is

simply

L(λ, i, e) = md(i, e)ρd(λ)e(λ) , (7)

such that for a single object under uniform illumination, the

geometry term acts as a scaling factor for pixels on a straight

line between the origin and ρd(λ)e(λ).
Another point of view is a fixed geometry term and

changes in either the illumination e(λ) or the reflectance

ρd(λ). These then rotate and scale the object in RGB-space

with the center of rotation and scaling at the origin. For two

objects in a scene, if either e(λ) or ρd(λ) are fixed, the other

factor can be related between the two objects by estimating

rotation and scaling.

Fig. 4 shows an example for the rotation and scaling of

directly lit pixels. If the direct illuminant is e2, the red and

blue pixels ρ1e2 and ρ2e2 can (up to local variations in the

geometry) be mapped on each other by rotating and scaling

the pixels with respect to the origin.

3.2. Isotropic Ambient Light

A diffuse ambient illumination is more complex, since

geometry and the incident light are bound in the integral

over the hemisphere Ω,

L(λ, i, e) =
∫
Ω

mad(i, e)ρd(λ)ea(λ, i)di . (8)

In general, color and energy of the illuminant ea(λ, i)
may vary over different spots on the hemisphere. These two

factors are additionally coupled with the geometry term,

and only ρd(λ) can be easily factored out. This renders

the integral very difficult to handle in the general case,

where the ambient points can be almost arbitrarily spread

in RGB space. For practical use, the typical assumptions

made for simplification are that the illumination is isotropic

and therefore uniformly colored over the hemisphere. Un-

der these assumptions md and the energy of ea(λ) form a

line in RGB-space starting in the origin. This is analogous

to the case of direct light as discussed above. As shown in

Fig. 4, if e1 is the ambient illumination, ρ1e1 and ρ2e1 can

be mapped on each other via rotation and scaling around the

origin.

3.3. Direct Illuminant and Isotropic Ambient Light

A typical scene contains both direct and ambient light.

In the following, we refer to such a scene as the combined
scene. According to the model, the RGB values of the com-

bined scene are given as the sum of the RGB values of the

scene if it would be captured under direct-only light and

ambient-only light. As stated above, under the assumption

of isotropic and uniformly colored lighting in the ambient

term, both illuminants form lines in RGB-space that run

through the origin. These lines span a plane in RGB-space

that also contains the RGB values of the scene under direct

and ambient light.

Fig. 4 illustrates how ambient and diffuse lighting are

combined. Both ambient and direct term can significantly

influence the combined scene. Since both terms may theo-

retically scale in an arbitrary fashion, the range of possible

RGB values in the combined scene is quite large.

As done previously with only one light source, we now

consider the mapping of two objects with different albedo in

RGB-space. Even with the constraints of isotropic and ho-

mogeneously colored illumination in the ambient term, ro-

tation and scaling around the origin (as in the one-illuminant

case) do not suffice to perform the mapping of the two ob-

jects under two illuminants. Due to the addition of the sec-

ond illuminant, translation is required as well as rotation

and scaling.
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Figure 5. Ambient offset according to Shafer [22]. In this case, dif-

fuse and specular pixels span a plane, which is offset by a constant

ambient term A.

3.4. Unconstrained Ambient Illuminantion

In the most general case of diffuse lighting, we face an

even harder problem. Here, the observed RGB values do

not lie on a plane anymore. The integral of the ambient term

introduces infinitely many unknowns, the ambient lighting

may be seen as a combination of infinitely many illuminants

or interreflections.

4. Incorporation of Existing Models
The explicit inclusion of the ambient term can be made

algorithmically feasible by adding further constraints to the

scene. On the converse, existing methodologies can be clas-

sified relative to the extended dichromatic reflectance model

according to their constraints on the ambient term. As a side

effect, this imposes a taxonomy on the existing methodolo-

gies and allows to categorize them according to their con-

straints within a common framework. In the following, we

show how different existing approaches for shadow detec-

tion and illuminant estimation can be incorporated in the

model.

4.1. Constant Ambient Term

The easiest way to incorporate the ambient term is to

set it constant (see e.g. [20, 22]). In this case, equation (3)

simplifies to

L(λ, i, e) = Lds(λ, i, e) + Ldd(λ, i, e) + A(λ) , (9)

which does not change the T-shape according to the dichro-

matic reflectance model, but shifts the offset of the shape

from the origin to A(λ), as shown in Fig. 5. The direct pix-

els and the specular pixels can be separated, e.g. by princi-

pal component analysis [20]. Additionally, the intersection

of the diffuse part with the RGB cube can be used as a con-

straint on the color of the ambient illuminant.

4.2. Attenuation of the Direct Illuminant

A straightforward constraint is demonstrated by Barnard

and Finlayson [3]: for the detection of shadows, the

ratios of color channels between shadowed and non-

shadowed areas are trained. The ratios are defined as fol-

lows: Let (RS , GS , BS) and (RN , GN , BN ) the RGB-

representations of a shadowed and non-shadowed pixel, re-

spectively. The computed ratio is

r =
(

RN

RS + RN
,

GN

GS + GN
,

BN

BS + BN

)
. (10)

Effectively, equation (10) models the relative attenuation

in every color channel for shadow pixels. This can be ex-

pressed in terms of the extended dichromatic reflectance

model: in equation (6), the illuminant ed(λ) can be split

into a chromatic part cd(λ) and an energy part Ed(λ),

ed(λ) = cd(λ) · Ed(λ) . (11)

The ratio between the shadowed and non-shadowed pix-

els corresponds to a specific scaling of Ed(λ), which effec-

tively puts a weight on the direct illuminant:

L(λ, i, e) =
Ed(λ) · (ms(i, e)ρs(λ)cd(λ) + md(i, e)ρd(λ)cd(λ))+
Las(λ, i, e) + Lad(λ, i, e)

(12)

Furthermore, for establishing equivalence, it is necessary

to neutralize the integrals in the ambient term such that the

geometry term can be canceled out by the ratio. This means

that both specular components must be excluded, and the

diffuse ambient lighting environment needs to be isotropic.

4.3. Simplifying Geometry

As soon as the ambient term is added to the dichromatic

reflectance model, geometry adds further complexity to the

reflectance, which is difficult to handle. In general, since

it is part of the integral, it can not be easily factored out

or cancelled. Therefore, application-specific reasonable as-

sumptions have to be made.

A dichromatic shadow removal technique was presented

by Maxwell et al. [19]. Directly lit pixels exhibit a weighted

sum of direct and ambient illumination, full shadows are as-

sumed to be lit by ambient light only. Under the assumption

of homogeneous isotropic ambient lighting and Lambertian

surfaces, geometry is cancelled in the ambient term. There-

fore, the ambient term depends only on the albedo of the

object. The idea is to consider the distribution C of diffuse

pixels in RGB-space.

C = md(i, e)ρd(λ)(cd(λ) · Ed(λ) ) + αρd(λ) , (13)

where α =
∫
Ω

md(i, e)ed(λ, i)di reduces for a single ma-

terial to a constant under the given restrictions. Note that
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ed(λ) is replaced according to equation (11). Considering

a single material, the only variable factor in equation (13)

is md(i, e)Ed(λ). Therefore, after taking the logarithm of

the diffuse and ambient component in equation (13), a line

in log-space is formed. Pixels with less direct illumination

can be projected to the top of this line, which effectively

removes shadows.

4.4. Exploiting the Relationship between two Illu-
minants

With some constraints and little additional information

of the scene, single factors can be isolated from equa-

tion (6). As an example, Lu and Drew proposed a method

for illuminant estimation that is based on taking two im-

ages, one with flash light and one without [18]. The illumi-

nation of the no-flash image can be expressed to be ambient.

Furthermore, Lambertian surfaces are assumed and specu-

lar pixels are ignored. Effectively, the ambient image La

can, under these assumptions, be expressed as direct light

diffuse-only:

La(λ, i, e) = md(i, e)ρd(λ)ea(λ) , (14)

The image taken with a flash Lfa is according to the ex-

tended dichromatic reflectance model a sum of the direct

and the ambient term

Lfa(λ, i, e) = md(i, e)ρd(λ)ed(λ) + La(λ, i, e) . (15)

Therefore, by taking the difference Lf = Lfa − La,

an artificial flash image Lf without the ambient term can

be computed. Implicitly, this separates the sum in equa-

tion (15) into single components. Every component is a

single product, which makes it possible to separate the fac-

tors, e.g. by taking the logarithm of each product. Since the

geometry term md(i, e) and ρd(λ) are equal if the images

are registered, the difference reduces to the different illumi-

nants. Ultimately, an illuminant estimate can be obtained

by training the difference of the artificial flash image and

the ambient image with Planckian light sources.

5. Experiments
A static scene was set up and captured under three dif-

ferent lighting conditions, namely ambient light, direct light

and a combined image with ambient and direct light, as

shown in Fig. 6. All data presented below was extracted

from these images. The capturing device was a Hitachi HV-

F22 3CCD camera with a Fujinon 1 : 1.4/25mm lens. Im-

ages were taken in a resolution of 1280 × 960 pixels with

Gamma set to 1. Afterwards, a 5 × 5 pixel Gaussian filter

was applied. For the ambient light only condition, the scene

was illuminated by indirect sunlight in a room with white

walls and ceiling and an array of windows on one side. The

Figure 7. Observed pixel values in RGB-space for chalk of differ-

ent color under ambient illumination. The point colors in the plot

reflect the object colors, whereas cyan and orange denote white

and yellow chalk, respectively.

window side of the scene area was obstructed by white ma-

terial to establish a scene where ambient light is reflected

from all sides. For the combined ambient and diffuse im-

age, the scene was additionally illuminated by a halogen

lamp, positioned at the top right with a 45 degree from the

horizon. Finally, for the direct-only illuminated image, the

room was completely darkened, and only the halogen lamp

was switched on. All camera parameters were kept fixed

while the three images were taken.

The examined objects in the scene consist of chalk,

which is widely accepted as a good approximation of a ma-

terial with Lambertian reflectance (see e.g. [15]). In Fig. 7,

pixels from chalks of various color under ambient illumi-

nation are plotted in RGB-space. Material and capturing

conditions in this setup are much closer to homogeneous il-

lumination and Lambertian surfaces than typical real-world

scenes. However, in RGB-space the chalk exhibits a non-

linear shape for almost all colors. Therefore, it is impor-

tant to consider the various factors that can distort the shape

of the pixels under ambient illumination, namely geometry

and inhomogeneous illumination.

When analyzing natural scenes from a single image, it

is typically not possible to decompose the illumination in

an ambient and a direct term. Therefore, we aim at under-

standing the formation of the shape of the combined image

under ambient and direct illumination in RGB-space. Fig. 8

shows the observed pixels from orange chalk in RGB-space.

The three gray shapes result from the image under ambient,

direct and combined ambient and direct illumination. The

shapes are formed by all orange chalk pixels from the re-

spective image.

The pixels from the image under combined illumination

exhibits an unexpectedly non-linear shape. In order to un-
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Figure 6. Scene used in the experiments. Left: only ambient illumination. Middle: combined ambient and direct illumination. Right: only

direct illumination.

Figure 8. Top: Segment of the studied images (orange chalk). Bot-

tom: Observed pixel values in RGB-space (rotated and scaled for

the purpose of presentation). Values from the regions marked in

red, green and cyan are plotted for the ambient, diffuse and com-

bined ambient plus diffuse illuminants. The colored lines connect

pixels from the same locations in the three images. The color-

coding reveals which regions of the ambient and diffuse shapes

are added, in order to understand the shape of the combined im-

age.

derstand the formation of this shape, we selected three sub-

regions on the chalk surface, as show on top of Fig. 8. For

all three images, the pixels from these regions are connected

in RGB-space and correspondingly color-coded. The con-

necting lines show a pointwise relationship of the images

under ambient, diffuse and combined illumination. The rel-

ative amount of light received and reflected differs for these

regions according to their respective light source.

The points inside the red and the green region reflect a

high amount of ambient light. However, in the green re-

gion, considerably less light is received from the direct light

source. The reason is that this region lies on the border of

the light cone and has a larger angle between light source

and surface normal compared to the red region. The cyan

region is also a special case here: It receives more light from

the direct light source than expected due to interreflections

from the ground.

Therefore, spatially coincident pixels exhibit a different

reflectance behavior relative to the centers of the shapes un-

der ambient and direct illumination. This forms the remark-

ably curved shape under combined illumination. Geomet-

rically, this finding is easily explained. Consider a replace-

ment term for the ambient integral. This replacement can

be seen as a pixel-specific second direct light source, whose

color and angle of incidence corresponds to the mixed in-

fluences of the ambient integral. As a consequence, the

scene illumination can per-pixel be modeled as a mixture

of two mostly independent illuminants. Since the angles of

incidence can be different for these illuminants, there are

some surface points where the direct illuminant is relatively

brighter than the ambient illuminant and vice versa.

Practically, this justifies the consideration of the BIDR

as an extension to the dichromatic reflectance model. The

observed nonlinearities can not be expressed by the origi-

nal model, and must therefore be treated as noise, although

these distortions can be quite significant, even in this rela-

tively clean experimental setup.

6. Conclusions

We illustrated and characterized the effects that occur

when the dichromatic reflectance model is extended to the

Bi-Illuminant Dichromatic Reflectance Model (BIDR). We

showed that the geometry parameters and an inhomoge-

neous lighting environment add much complexity to the

analysis. Although the design of algorithms that exploit the

possibilities of this representation is more challenging, we

believe that several color research areas can benefit from
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this more detailed representation: the inclusion of an ambi-

ent term enables us to model important optical effects like

shadows or interreflections.

At the same time, the BIDR serves as a common frame-

work for a taxonomy of many physics-based algorithms. By

relating known methodologies to the BIDR, it is possible to

group them according to the additional constraints they im-

pose on the BIDR.

This is preliminary work. In the future, we expand on

the examination and exploitation of the geometric effects.

Furthermore, with the BIDR we have a model at hands

that allows us to represent interreflections within a common

framework. This adds another level of complexity, since

interreflections have to be treated on specular and diffuse

pixels.
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