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Abstract cause the problem of determining the illuminant color of an
arbitrary image is underconstrained, most of these methods
Obtaining an estimate of the illuminant color is an im- have to either learn illuminant classes which, however, do
portant component in many image analysis applications. not generalize well, or make restrictive assumptions.
Due to the complexity of the problem many restrictive as-  Previous work on illuminant estimation on arbitrary
sumptions are commonly applied, making the existing illu- scenes is mostly based on machine learning techniques,
minant estimation methodologies not widely applicable on e.qg. [L, 7, 13, 12]. Depending on their training samples, ma-
natural images. We propose a methodology which analyzeschine learning approaches like the one of Caetedl. [7]
a large number of regions in an image. An illuminant es- are not easily generalizabl&][ The methods of Brainard
timate is obtained independently from each region and a and Freeman/], Finlaysonet al. [13] and Geusebroekt
global illumination color is computed by consensus. Each al. [21] assume purely diffuse reflectance. Others look ex-
region itself is mainly composed by pixels which simultane- plicitly for specular highlights e.g2f4, 26, 29, 39]. Another
ously exhibit both diffuse and specular reflection. This al- family of techniques, which indirectly estimates the iliam
lows for a larger inclusion of pixels than purely speculgfit ~ nant color, works best for Mondrian worlds e.@y1[ 18, 25].
based methods, while avoiding, at the same time, someThere is also some previous work on estimating the type of
of the restrictive assumptions of purely diffuse-based ap-illuminant presentin a natural scen®]. However, the ma-
proaches. As such, our technique is particularly wellsdit  jority of these methods either make restrictive assumption
for analyzing real-world images. Experiments with labora- or are by-design not applicable to images typically found on
tory data show that our methodology outperforms 75% of the web. For example, the methodology proposed by Tom-
other illuminant estimation methods. On natural images, inaga and Wandell[J] assumes that the filter responses of
the algorithm is very stable and provides qualitatively-cor the camera are known, which is usually not the case for the
rect estimates. majority of images. Though making such assumptions is
justifiable, it often limits the applicability of these metis
on natural images. Recently, the group of gray-world re-
lated algorithms experienced a revivall 41, 27]. Modern
versions of the gray-world algorithms assume certain im-
Estimating the color of the illuminant has an impact on age statistics to be “gray” in the sense of the gray-world
a variety of computer vision problems and imaging applica- assumption. Since every variant has its own advantages and

1. Introduction

tions, including computational color constancy eq. 13, disadvantages, Gijsenij and Gevers][presented a hybrid
23, 26, 31], image database retrieval(, 35, 38], segmen-  algorithm that selects with a machine learning approach the
tation [2, 5] and color normalization accross imagési/]. best suited gray-world-based algorithm.

Funtet al. concluded on early color constancy algorithms,  There are a number of successful image analysis meth-
that there is a high demand in the community for better ods, which are based on physical and/or geometrical mod-
and more stable methods9). Hence, a number of di- els (e.g. edge detection, stereo, tracking). Of coursef mos
verse techniques for extracting the illuminant chromastici  of them are tackling simpler problems, either by definition
has been developed, ranging from statistical e.glL$, 40] (e.g. circle detection), or by imposing constraints thay ma
to physics-based ones e.g, [0, 21, 24, 26, 29, 39). Be- not be applicable to a large percentage of the images typ-



ically found on the web. Nonetheless, such physics-basedview the image formation process and show how our algo-
methods can be used in augmenting semantic image analrithm relates to other illuminant estimation methodolsgie
ysis, if one is willing to replace the precise quantitative In section3, the inverse intensity chromaticity space intro-
measurements, like metric distances, spectra, angle or veduced by Taret al [39] is explained. The main idea of
locity values, with more abstract descriptions. In this pa- our methodology is presented in sectidnfollowed by a
per we show how a state-of-the-art physics-based techniquealetailed description in sectidh Experimental results are
for estimating the illuminant-color based on specular high presented in sectiof

lights [39) can be adapted for obtaining an estimate of the

type of illumant in arbitrary images found on the web. This 2_ | mage For mation

involves the treatment of difficulties in the segmentatién o

specularities and ways to assess the compliance of the ob- Most surfaces exhibit a mixture of diffuse and spec-
tained intensities with our model. ular reflectance. According to the dichromatic reflection

We propose the transfer of physics-based methodologieSmOd(:“_I B, t_he amoun_t of light, re_fle_cted_from a p0|r_1tx, .
to semantics-oriented image analysis for three main rea_ofad|electr|c., non—unlform_ material is a linear combioati
sons. First of all, when looking at images, people are able toOf body (or <'j|ffuse) reflectiorL., and surface (or specular)
compensate for variations in appearance caused by change@ﬂecnoan'

in the illuminant color (color constancy). There is also ev-

idence that illumination clues, like specular highligtase o

explicitly used in the perceptual analysis of scerigs [5). LA %) = wa(x)La(A, %) + w, (x) Ls (A, %) (1)
Secondly, as in semantic analysis, previous work on illumi- \yhere \ denotes the wavelength, and;(x) and w,(x)
nant estimation on arbitrary scenes is mostly based on maqdel the object geometry for diffuse and specular reflec-
chine learning techniques, e.g, [L, 13, 30]. As such, their  ion in x.

success is closely tied to the training samples. Lastly, one \wnen an image is taken by a camera with a finite num-
of the most popular families of illumination estimationtiec ey of color filters (typically red, green, blue), the captlir

nigues are either specularity baséd,[26, 29, 39] or work intensity, or spectral response, for filiein pointx, I, (x),
on purely diffuse pixels. To the best of our knowledge, there -an pe modeled as

exists no physics-basd methodology that explicitly exploi

a mixture of diffuse and specular pixe_ls. _ _ _ I(x) = / S(x, A E(x, A)go(A)d\ @)
We propose a methodology for estimating the illuminant Q

color, which is explicitly designed to take advantage of the

variety of illumination cues that are present in real images

We exploit the distribution of color pixels in chromaticity

space like P4, 26, 28, 39]. Unlike these methods, we fo-

cus on pixels that simultaneously exhibit both diffuse and

specular reflection. This significantly increases the num-

ber of useful pixels for illumination analysis in a natural

image, compared to pure specularity-based methodologies

Furthermore, it avoids many of the assumptions made by

illuminant-estimation methods which are based on diffuse

reflection. Under uniform illumination, local independent

analysis of different regions in the image generates distin

sources of information on the illuminant. By combining

these independent illuminant estimates our method coun- Le= /QE(X’ A)ge(A)dA ®)

terbalances two of the bigger drawbacks in natural images:

noise and violations of the reflectance assumptions. Our The application of the dichromatic reflection model on

algorithm does not need training and typically only few equation ) leads to a split ofS(x, A) into a diffuse re-

parameters need to be adjusted. Experiments on publiclyflectance functiorb,(x, A) and a specular reflectance func-

available ground truth data of laboratory images show thattion Ss(x, A),

our method performs in the top 25% of other tested illumi-

nant estimation methods. When applied on images found 1 (x) = wd(x)/ Sa(x, N E(x, N)ge(A)dA

on the web, our technique produces stable and reasonable Q

estimates ofthe |IIum|r-1ant color. +ws(X)/ Ss(%, A)E(x, \)ge(A)dA . (4)
The paper is organized as follows. In sectigrwe re- Q

In this equationS(x, \) denotes the spectral reflectance
function overx and the wavelength, the spectral power
distribution of the illumination isE(x, A), and the sensor
sensitivity isq.(\). The integration is done over the visible
spectrum of wavelength®,. Note that this equation implic-
itly assumes a linear camera response. For the remainder of
this paper we definé € {R, G, B} and use this index for
summing over intensities for the red, green and blue com-
ponent.

Additionally, we define the sensor response to the illu-
minant intensityl. as



For dielectric materials, the spectral reflectance fumctio Algorithms that work on pure specularities require a
of the specularity is assumed to be similar to the spectralspecularity segmentation, which is a non-trivial problem
energy distribution function of the incident light, whickh i  (see e.g. §, 27, 33]). When working on natural images
known as theneutral interface assumptiohen, the spec-  taken in a non-research context, there are a lot of scenes tha
tral reflectance functiod(\, x) can be replaced by a con- do not contain specular highlights at all. 1t may also hap-
stantk,(x). Furthermore, it is typically assumed that the pen that specular regions in natural images are often aippe
color of the illumination is uniform over the image, which due to camera settings of untrained users. Therefore, one of

makesE (x, \) independent fronx and we put just()). the weaknesses of specularity based methodologies on nat-
Then,I.(x) becomes ural images is the number of available pixels. We believe
that by extending the number of pixels available for illumi-
I(x) = ,wd(x)/ Sa(x, \)E(A)ge(\)dA nant analysis is very important, particularly for extergin
Q illuminant estimation from laboratory images to natural im
- ages. Purely diffuse techniques also have limitations.e&som
i ws(x)/ EQ)a(NdA ®) of them e.g. [ 3, 21] assume Lambertian reflectance which

does accurately express the diffuse reflectance present in
natural scenes. Other methods e, [25, 31] make as-
sumptions about the type of illuminants or surfaces or over-
all scene composition. Natural images are often too general

I.(x) = wa(x) Be(xX) + ws(x)Ge, (6) for these constraints.

with @, (x) = ws(x)ks(x). For the purpose of representa-
tion, this equation can be written as

wherew,(x) andw,(x) are the geometric parameters of 3. Inverse-Intensity Space
diffuse and specular reflection respectiveli.(x) is the
sensor response to the diffuse reflectan€g. is the sen-
sor response to the illuminant spectral distribution and is
assumed to be constant over the image.

Many algorithms for illuminant estimation use a normal-
ized color representation, which is called tt@ominance
or chromaticityo . of an intensity/..

A convenient color space for analyzing the chromatic-
ity relationship between the purely specular, the purely di
fuse and the combined specular and diffuse reflections is the
inverse-intensity chromaticity space introduced by &n
al. [39]. We will briefly restate the justification for the rep-
resentation of specularities in inverse-intensity spaue a
give an intuition about its properties.

1. Equation 6) can be rewritten as
O'C(X) = Z:CE-X()X)J € {Ra GaB} . (7) a 6)
o IC(X) = md(X)Ac(X) +m (X)Fc ) (10)
Remember that we definede {R, G, B} as index for the
red, green and blue component. where
In a similar manner, one can define the diffuse chro- _ _
maticity A.(x) and the specular chromaticify.(x) as ma(x) = wa(x) Z Bix) (11)
Au(x) = B.(x) ®) ma(x) = wy(x) Y _Gi . (12)
> i Bi(x) 7 i
G. Dividing equation {0) by >, I;(x), (also represented
Le= S G ©) according to equationl()), the image chromaticity. be-
L comes
Many of the existing methods of color constancy and
illuminant estimation typically either assume diffuse re- o — — MaX)Ac(x) +ms(x)Te

flectance, e.g4, 13, 21], or base their analysis on regions of Coma(x) > Ai(x) +ms(x) >, T

the image with purely specular reflectance, €2, P9, 39). ) ) ) ) o

Our algorithm works on points which exhibit a mixture S°lving this equation forn(x) and inserting it in equa-
of specular and diffuse reflection. Similarly to many tion (10,

illuminant-estimation methods, which use specular high- s

lights [24, 26, 29, 39, we, too, base our analysis on the I, =mg(x)(A: = T¢) ( CF )

distribution of pixels in chromaticity space. However, by Se T te

considering in our analysis all pixels with a specular com- which leads to the definition of. (x)

ponent our methodology has several advantages over the

purely specular methods. Pe(x) = ma(x)(Ac(x) = T¢) (13)
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Figure 2. Real-world image with diffuse and specular reflection

(left). The pixels in the red and green rectangle are plotted in the
inverse-intensity diagram (right), for illustrating purposes only the

red channel is shown.

Figure 1. Idealized model for a monochrome object in inverse-
intensity space. The specular pixels pixels aim at the illuminant
color on the vertical axis, while the diffuse pixels form a horizontal
line.
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such that a linear relationship between the image chromatic

ity o. and1/ 3", I;(x), can be established E i
) © ol ]
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In this representatiom.(x) can be seen as the slope of a
line with intercept”.. The domain of the line is determined _ _
by 1/3°, I.(x), the range is given by < o, < 1. This Figure 3. (a) Synthetic image_ Wit_h _normallzed r_n_a_terlal
space is callethverse-intensity spadéd]. The chromatic- chromaticities (0.7,0.3,0) and illumination chromat|C|t|gs
ity value where this line intersects the vertical axis gittes ~ (0-45: 0-45,0.09).  The red rectangle shows the selected pixel.
illuminant chroma estimate. Note thgt' the image as well as the_selepted area cpnt_alns no
. . L . . . specularities. (b) The inverse-intensity diagram of this image.

Thg lnverse-lr_1tenS|ty Filagrgm is a direct graphlcal .repre- The point colors correspond to the original color channel.
sentation of the inverse-intensity space. The horizondal a
defines the inverse-intensity/ ) . /.(x), and the vertical
axiso,, the illuminant chromaticity. fuse reflection, the distribution of those pixels in the irpee

In general, it is not possible to obtajn(x) directly in intensity diagram (plotted in red) is roughly horizontaher
order to estimate the illuminant color. Typically, within® pixels in the green rectangle, although not fully specular,
specular region of the image, different valuespgfx) can contain a specular portion. Therefore, assumed that the
occur: according to equation equatidrB), different values  dichromatic model is fulfilled, the diagram representation
of p.(x) are determined by different geometrical parame- (plotted in green) is a line that moves towards the illumi-
tersmy. On the other hand, specular pixels with the same nant chromaticity.
underlying albedo and the same geometric factoyéx)
andw,(x) share the same slope in the inverse-intensity his- 4. Chromaticity Distributions of Natural Im-
togram. In Fig.1 one can visualize the ideal shape of a ages
monochromatic cluster of pixels in inverse-intensity spac
The diffuse pixels lie on a single horizontal line, and spec-  For images with few distinct albedo values, locating the
ular pixels align along their specifi¢.(x) between the illu-  purely specular pixels and identifying the different liregys
minant color on the vertical axis and the diffuse line. For a ments in inverse-intensity space is relatively straightfo
complete discussion, se&]. It is assumed that sufficiently  ward. As the scenes become more complex, the line seg-
many specular pixels with sufficiently similar slopes occur ments and purely specular become increasingly more diffi-
in one image, such that one can estimateIthentercept cult to identify. We claim that by analyzing one small image
and hence, the illuminant color. Tast al. used a Hough  region at a time and including all pixels that exhibit at teas
transform of the specular pixels with parameteréx) and partial specular reflectance, we can still obtain an esémat
I". in order to estimate the illuminant color. of thel'. intercept.

Fig. 2 illustrates the difference in specular and diffuse Let us first demonstrate that it is not necessary to col-
reflection. The pixels in the red rectangle contain part of lect pure specularities in order to obtain an estimate of the
the wooden bar in the background. Since there is only dif- illuminant color. Fig.3 shows a synthetic monochromatic



0.4 — space (red pixels). However, the green locally connected
pixels show the characteristic specular shape. The shape is
not as clear as it might be for truly specular pixels. In fact,
if the underlying material does not follow the dichromatic
model it does not need to have any useful interpretation
within this framework. But if these pixels roughly adhere
ot—t—t—t—l to the model and belong to a monochromatic object, their
0 05 1 15 2 25 3 . X . .
Inverse intensity shape points roughly towards the illuminant chromaticity
of the scene.
One central concept of our algorithm is to pick such local
Figure 4. Real-World image with specularities (left). Different re- patches from the image, obtain from each suitable patch an
gions contain different amounts of specular and diffuse color. The illuminant estimate and make the final estimation by voting
magenta colored region contains almost only diffuse reflection, petween the estimates. The full algorithm is presented in
and therefore appears as a horizontal line in the diagram. Picturesections. We emphasize on properties of the slopes of the
courtesy of Don Piefconetf]. pixels in these patches in inverse-intensity space.
Assuming that these pixels belong to our dichromatic
model, the slope of these pixels is describechbik) from
equation {4). We look at some properties @f.(x) as a
foundation for our algorithm.
We rewritep.(x) as

Green Chroma
o
N
T T T T T T T

Blue Chroma

° 1In\£et;%e intesr\sity4 ° pc(x) = IC(X) - Fc Z Il (X) . (15)

Figure 5. Full inverse-intensity diagram of all pixels (red), and the Recall thatp.(x) = ma(x)(A.(x) — I'.). For a single dis-
shape of a single locally connected cluster (green), taken from thetinct pixel m, is constant. Thus we can state that the slope
blue box in the image on the left. within this pixel is determined by the difference

05, = Ne(x) = T¢ . (16)
example image without true specularities. The object chro-
maticities are(0.7,0.3,0), the illumination chromaticities  If A.(x) is similar toT., therefores, is small, p.(x) is
are (0.45,0.45,0.09). The area within the red rectangle also small. On the other hand i, is large, we know that
was used to create the inverse-intensity diagram inFlg. p(x) is large, too.
The colors of the points in the inverse-intensity plot cerre The specularity-based methodology by Tral. works
spond to the originating color channel. Note that the greenvery good under laboratory conditions. It is also well ap-
and the red curves tend towards their illuminant chromatic- plicable in constrained real-world applications. Howevter
ity 0.45, while the blue curve tends towards the blue illumi- suffers two drawbacks that we would like to address: First,
nant chromaticity0.09, although the chosen pixels contain the image itself needs to have pure specularities. This is es
no pure specularities. pecially difficult for images that were taken on cloudy days
To some extend, the same holds for natural images.or when mainly matte material is captured on the picture.
Fig. 4(a) shows an apple. On its surface, several groups of Second, as a general problem for specularity based meth-
pixels were handpicked and plotted in the inverse-intgnsit ods, it requires a robust specularity segmentation thatsvor
histogram in Fig4(b). In this (admittedly very clean) ex- on natural images.
ample, it can be nicely seen how the specular part decays We present an algorithm that works also for images with
from the red over the green to the blue patch. Finally, in moderate highlights and without explicit specularity seg-
the magenta colored patch, the typical horizontal shape formentation at all. The starting point of our considerations
diffuse reflection shows up. is equation6. It states that a pixel intensity at position
The central idea of our algorithm is to exploit the shape I.(x), is a linear combination of specular and diffuse influ-
of pixels in the diagram that behave similar to the red, greenences. While this is best exploited in the work by Edral.
and blue pixel groups in Figd(b). However, for an au- by considering only points with a very high specular portion
tomated process, it is not immediately clear how the pix- (ideally what we refer to as specularities), equatbostill
els can be divided into groups with specular reflectance andholds for pixels with a much lower influence of the specular
groups with purely diffuse reflectance, as shown in Big.  part. The idea of our method is to detect and exploit this
We plotted all pixels from the image in inverse-intensity lower influence in an automated approach.



Therefore, this algorithm can work on much more pixels pixels with similarm,, andA.(x) andI'. are accidentally
than pure specularity based approaches, but does not suffeslmost equal for a group of pixels, their common slope is
from the problematic segmentation of specularities, as re-almost0, although they are specular.
ported for several algorithms working on matte reflection in

(3. Property 2 Operate on pixels with the same (or similar)
albedo Geometrically, theshapeof a group of pixels must
5. llluminant Estimation by Voting also fulfill two conditions, based on the following obser-

] ] ) vation: If a patch is chosen that goes over object bound-

The outline of our algorithm is as follows: We select garies with different underlying albedo, the points form at
many patches as shown by example in sectioe testev-  |aast two clusters in inverse-intensity space or are evem co
ery patch on a number of criteria that are described below. If pjetely dispersed. On the converse, pixels that fit our model
it passes all tests, we take the slope of the pixels in inverse g are typically compactly distributed and significantly
intensity space, approximated by the principal componentg|ongated along the principal axis, which can be found out
of these pixels, and take the intersection of this slope with by virtue of second order moments analysis. This prop-
the vertical axis as a vote for the illuminant chromaticity a erty also excludes small circular clusters of pixels thateo
the intersection. Finally, we smooth the votes carefullg an  f.om monochromatic, flat surfaces where no significant in-
take the chromaticity with the maximum smoothed votes as tensity differences exist.
the illuminant estimate. We perform the following simple checks and operations

If selected pixels come from dielectric surfaces with the on the patches to fulfill the two properties:
same albedo and varying specular reflectance, we assume
according to our model that these pixels form the triangular 1. Run an Laplacian of Gaussian edge detector on the
shape, as sketched in Fiy. Therefore, one central concept patch and reject it if too many edge pixels are on the
in our algorithm is to pick local groups of pixels, in the patch to encompass Property 2.
following referred to as patches. We filter these patches and
reject every patch that fails in one of the filtering steps.

In the following, we explain the single steps of the algo-

2. Exclude saturated and too dark pixels from the patch to
reduce effects due to image capturing nonlinearities.

rithm and conclude this section with pseudo-code for it. 3. Compute the standard deviation on the chromaticity

We generate rectangular patches of fixed size with signi- values. It must be larger than a minimum value to
ficant horizontal or vertical elongation. The patch positio exclude diffuse reflectance patches (Property 1), and
and orientation are randomly chosen. We have to test these  lower than a minimum value to prevent the breaking
patches for their suitability to our algorithm. In the falle of object boundaries (Property 2).

ing, we first describe the overall strategy for the suit&pili
conditions, and give then in detail the justification for the
tests and the elongation of the patches.

In order to obtain optimal results for the illuminant color
estimate, we need to evaluate image regions with pixels that
roughly adhere to the specularity detection model. We ap- 5. Reduce duplicated entries in the inverse-intensity dia-
ply several easily computable features that aim to ensure gram.
two basic properties for our model. Note that the struc-
ture is very modular, and can therefore easily be enhanced 6. Compute the eccentricity of the remaining pixels by
to more sophisticated tests, that extend the algorithm with ~ Virtue of principal component analysis. Laj the

4. Compute the standard deviation on the intensity val-
ues. It must be larger than a minimum value in order
to measure the elongation along thexis (Property
1).

prior knowledge. The two properties are: largest eigenvalue), the second largest, then the ec-
centricity is, /1 — i—j (Property 1). Exclude the patch
Property 1 Operate on pixels with somspecular re- if its excentricity is too small.

flectance Geometrically, theslope of a group of pixels
must fulfill two basic conditions: First, in absolute it may
not be too large in order to intersect the vertical axis be-
tween0 and 1. Second, it may not be close ) since We support the patch selection process with a simple hy-
then it might be the case that we picked a purely diffuse pothesis by limiting the randomly picked patches to a large
region. However, it is possible that by application of the horizontal or vertical elongation, since we are looking for
latter rule we reject also patches that could lead to good es-smooth intensity progressions in the image that lead to nice
timates: Recall that the slope(x) of a pixel is defined as  specular curves. Therefore, we anticipate convex curved
pe(x) = ma(x)(Ac(x) —T'.). Therefore, if we locally pick  objects in the scene and aim to cover them perpendicular

7. Compute the slope from the eigenvectors of the PCA
and exclude too large or too small values (Property 1).



to the object curvature with the patch. This could also be X9 Yo X5 Y, Zo
replaced by a more sophisticated combination of an analy- A  0.4476 0.4075 109.828 100.000 35.547
sis of the patch content and a selection of a subset of patch D50 0.3457 0.3585  96.422 100.000 82.521
pixels. D55 0.3324 0.3476 95.642 100.000 92.085
The chromaticity estimate of every patch is taken as a D65 0.3127 0.3291  95.017 100.000 108.813
single vote. After a number of patches was accepted, the D75 0.2990 0.3150 94.939 100.000 122.558
histogram of votes is smoothed with a Gaussian filter and
the chromaticity value with the maximum votes is picked. Table 1. Values of different CIE standard illuminants in the CIE
Although there are many parameters involved, we ad- X Y% and CIE xyY color spaces computed for the CIE 1951
justed during our experiments almost none of them, the standard observerif, 34.
overall methodology appears to be surprisingly robust, as

long as a sufficiently large number of patches passes theages acquired under different lighting conditions compara

testin the end. ble. The standard illuminats are specified by spectral power
distributions. For being able to assess the results of ur il
6. Experiments minant estimation technigue, we compare the estimates to

the standard illuminants. Therefore, it is necessary to-com

_In this section the different experimental results of our pyte the chromaticities of the standard illuminants. This
illuminant estimation method are presented. The applica-ransformation is described in the following.

bility of the estimation approach to natural images found on

If the spectral power distributio®(\) of an emissive
the web is shown.

light source is known, th&’, Y and Z tristimulus values of

the CIE XYZ color spacean be computed with
6.1. Image Data Sets

The evaluation of natural images was performed on a set X = / P(N)z(N)dX (17)
of 39 images found on the web. The database contains im- 70
ages of indoor and outdoor scenes. The image set includes Y = / PN)j(N)dA (18)
a variety of content, such as nature, people, animals and ar- 0

chitecture. The outdoor images were acquired at different 7 _ /°C P(V)Z(A\)dA

daytimes and under various weather conditions. To analyze 0 ’
the stability of the results, the database also contairethr ) )
image series where the single images were acquired in theVherez(}), g(A), z(}) are the color matching functions,

(19)

same environment and with only little time offset. which are defined by th€ommission Internationale de
'Eclairage as the CIE 19312 standard observer) and
6.2. Algorithm CIE 1964 (0° standard observer) standard colorimetric ob-

server. The set of tristimulus values of an illuminant repre
As described in the previous section our approach ran-sent the white point of the illumination.
domly selects patches of the input image and assesses the By computing the CIE-chromaticities y andz with
quality of them. The parameters which are needed for this

decision were thoroughly selected once and then left un- = X (20)
changed for all experiments. X+Y+2Z~°

For the natural images the mask size for the patch selec- y= Y (21)
tion wasl11 x 61 pixels. Compared to the large image sizes X+Y+2Z~
(from about700 x 1000 pixels t02000 x 3000 pixels), this Z

z —r—vy, (22)

mask is very small. However, by selecting smaller patches, X+Y+7Z7

the performance of the algorithm becomes less dependen%heCIE xyY color spacean be derived. For the different

on the image content. For each image the voting for an il- ) ) . .
luminant color is based on a set of 200 patches that passCIE standard illuminants the tristimulus and correspogdin

the quality criteria described in sectién If 1000 patches chro.rnanc.ny values for the CIE 193F standard observer
were tested without reaching enough accepted patches, th&"® listed in Tabld. . .
algorithm stops nevertheless. I.n order to t_)e able to compare the results of the illumi-
nation estimation of natural images with the CIE standard
6.3. CIE standard illuminants illuminants, it is necessary to convert the trist@mulgsuml
of the reference white point of the standard illuminants to
TheCommission Internationale de I'Eclairad€IE) has RGB values. For our calculations we have chosen the stan-
defined different standard illuminats in order to make im- dard RGB color space (SRGB). The reference white point of



T Y Y I, I, I o, o4 op

red 0.64 0.33 0.212656 A 1.307 0.919 0.520 0.476 0.335 0.189

green 0.3 0.6 0.715158 D50 1.074 0.989 0.866 0.367 0.338 0.296

blue 0.15 0.06 0.072186 D55 1.044 0.994 0.918 0.353 0.336 0.310

D65 1.000 1.000 1.000 0.333 0.333 0.333

Table 2. Chromaticity coordinates, y., Y. with ¢ € {r, g, b}of D75 0.968 1.003 1.061 0.319 0.331 0.350

the sRGB color systensf].

Table 3. Values of different CIE standard illuminants in the sSRGB

) ~and chromaticity color spaces computed for the CIE 1&34tan-
the sSRGB color space is the CIE D65. The transformation garq ohserver

to SRGB can be determined with

[r g b]=[X Y Z]|M"' (23)

and, finally,
12.92 x ¢ if ¢ <0.0031308
c = 1/2.4 (24)
1.055 x ¢/24 if ¢ > 0.0031308
force {r,g,b}.
The matrixM is defined as
C.X, C.Y,. C,.Z,.
M=| C,X, C)Y, CyZ, |, (25)
CbXb Cbe Cbe e
(c) Dog
where
. Figure 6. Subset of the evaluated natural images
X Yy Zy

[Cr Cy Cy]=[Xw Yw Zw || X, Y, Z, .

Xo Y» Zy | bulb (CIE standard illuminant A, see Tab#, where the

(26) red component dominates significantly compared to blue.

The portrait of the woman (see Fi§(b)) was acquired at
noon. The corresponding results confirm that the illuminant
has the same intensities in all channels (CIE standard illu-
the chromaticity coordinates:,, ), (s, y») and(xs, ys) minant D65, see Tabl@). An interesting observation is that
of the SRGB system (see Tabile[17]). The valuesXw,  the chromaticities of the three channels are well balanced,
Yw, Zw denote the tristimulus values of the reference githough the surfaces in the scene are significantly domi-
white of the destination RGB color space. For the SRGB nated by blue and red. This aspect indicates that the illumi-
system, these are the tristimulus values of the D65 standarthation estimation is not disturbed by pure diffuse patches.
illuminant (see Tablé). The outdoor scene with the dog (F&(c) s illuminated by

Afterwards, the chromaticities of the RGB values are warm light coming from the horizon. The reduced blue and
computed using Equation For the different CIE standard  jncreased red component of the illuminant is well included

illuminants the values of the SRGB color space and the cor-jn the estimation. In contrast to the previous images, &ig.

responding chromaticities are listed in TaBle contains a scene in the evening. The results of the estima-
tion again are reasonable (CIE standard illuminant D50, see
Table3).

Fig. 6, Fig. 7 and Fig.8 show a subset of the images An important aspect of the evaluation on natural images
which are part of the evaluation set. The corresponding esti is the stability of the voting process. The standard devia-
mations of the illuminant chromaticity are listed in Taldlle  tions of the results listed in Tableare comparably small.

To show the performance of the method under different As the voting scheme is based on the randomized selec-
illumination conditions and scene content, Figcontains tion of patches, this stability in the results indicated tha
an indoor scene, a portrait of a woman and two outdoor number of selected patches and the parameters are suitable.
scenes. For the indoor scene, the estimated illuminant chro However, to show the general applicability of the approach
maticity fits very good the chromaticities of a tungstentiigh on a variety of images the parameters used for the evalu-

The tristimulus valuesX, = z./y., Y. = 1 andZ, =
(1—2,—vy,)/yr, Wwherec € {r, g,b}, can be computed with

6.4. Experiments on natural images



| Scene | T, \ T, Ty
Indoor 0.552+0.041 | 0.308+:0.055 | 0.140+0.016
Woman | 0.331+0.002 | 0.33140.002 | 0.338+:0.004
Dog 0.361+0.019 | 0.345+0.005| 0.294+0.016
Castle 0.283+0.014 | 0.325+0.004 | 0.392+0.016
Shadow | 0.308+0.004 | 0.341:0.002 | 0.3514-0.002
Chaple 0.172+0.058 | 0.269+0.020 | 0.56G+0.077
Highland | 0.330+0.008 | 0.330+0.006 | 0.340+0.012

Figure 8. Scene which is covered by a shadow.
Table 4. Stability of the algorithm performance on natural images.
For the images of Fig.and Fig7 the mean estimation results
of three randomized voting processes are listed together with thecould be observed in several images and is also illustrated i
standard deviation. the results of Fig8, where a group of people is sitting in a
slight shadow of a marquee. The corresponding illuminant
chromaticities have an increased blue chromaticity atjhou
the scene was captured at a sunny day at noon. Although the
voting scheme by definition can not handle shadows, the re-
sults of the estimation show a very high stability.

7. Conclusions

(b) Highlands

We presented an automated illuminant color estimation
algorithm that can handle specularities and highlighted no
specular regions.

For a reliable estimation of the illuminant color we ide-
ally need patches of convex opaque surfaces that are girectl
X ) ) illuminated by the light source. Although we employ a ran-
knowledge, if available, for further improved accuracy. domized algorithm, our results were within the same scene

Comparing the images in Fig.with their estimation re-  gyrprisingly stable. Slight deviations from our assumpio
sults (Tabled), the limitations of the proposed method can  stjj| |ead to good results, while others, like multiple ltigh
be observed. One requirement of the voting approach issoyrces or completely flat scenes, can currently not be han-
an uniform illumination of the scene. If this assumption gjed by our methodology.
is not fulfilled, as in Figure/(b), the illuminant estimation Multiple illuminants are subject to further work: In many

composed of the same proportion of red, green and blue.cjyster analysis of the votes.

However, it is obvious that the value of the red chromaticity
should dominate slightly. Besides the non-uniformly illu- 8
minated scene, two further aspects can be observed in this
image. First, in outdoor scenes, the sky can sometimes be The authors gratefully acknowledge funding of the Er-
seen as a second light source in addition to the sun. Ourangen Graduate School in Advanced Optical Technolo-
proposed method, however, can only handle scenes with gjies (SAOT) by the German National Science Foundation
single light source. Secondly, as the grass on the groundDFG) in the framework of the excellence initiative.
and the coat of the buffalo are highly textured, it is difftcul
to find a sufficient quantity of patches which pass the selec-References
tion step. This drawback can be reduced by an appropriate
preprocessing of the images and a reduced patch size.
Another limitation of the method is the applicability to
non-dielectric surfaces. As the voting scheme is based on
the assumption of dielectric materials the illuminant-esti
mation results for Fig7(a) drop off. Furthermore, parts of
the towers and the front of the chapel are shadowed.
Without further preprocessing the results of the voting
scheme on images containing shadows contain a bias to-[3]
wards an increased blue chromaticity. This relationship

Figure 7. Images on which our method showed limitations.

ation were not tuned. However, the highly modular struc-
ture of our algorithm allows the smooth integration of prior
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