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Abstract—Heart motion is a crucial problem in cardiac to-
mographic cone-beam image reconstruction. It requires special
treatment to avoid motion related image artifacts. Analytic
and iterative algorithms for approximative and exact motion
compensated 3-D reconstruction are known. The estimation
of the motion field from the projection data is still an open
problem. The inherent assumption of recent publications is a
periodic heart motion. The electrocardiogram (ECG) is used as
an estimate for the periodically repeating heart phase. In those
approaches the heart motion is averaged over several heart cycles.
As a consequence heart beat variabilities cannot be captured.
However, frequently arrhytmic heart cycles can be observed in
a clinical environment. In addition breathing motion can still
occur.

We present a reconstruction method based on a 4-D time-
continuous B-spline motion field which is parameterized by the
acquisition time and not the quasi-periodic heart phase. A time-
correlated objective function is introduced which measures the
error between the measured projection data and the dynamic
forward projection of the motion compensated reconstruction.
For reconstruction an analytic motion compensation algorithm is
used. Our objective function formulation exploits the fact that the
desired motion compensated reconstruction is totally determined
by a given motion field. The motion model parameters are
estimated using an iterative optimization scheme. Simulation
results are provided for a synthetic cardiac vasculature phantom
undergoing deformable motion which could be well recovered
using the presented framework without using the ECG and
assuming periodicity of the motion.

Index Terms—Motion estimation, motion compensation, 4-D
reconstruction

I. INTRODUCTION

THE tomographic 3-D cone-beam reconstruction of mov-
ing objects is of high importance for many applications,

e.g. in the medical field. Patient or organ motion degrades
the image quality of 3-D reconstructions and thus is in the
focus of many current research activities especially in cardiac
applications. With the technology of C-arm CT it is possible
to reconstruct intraprocedural 3-D images from angiographic
projection data [1]. However, cardiac reconstruction is yet a
challenging problem due to the long acquisition time of several
seconds at which several heart beats occur, leading to motion
related image artifacts, e.g. blurring or streaks.

An established technique for time-resolved cardiac recon-
struction is to record the electrocardiogram (ECG) during the
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data acquisition. Based on the ECG-signal a relative cardiac
phase is assigned to each projection image assuming a cyclic
heart motion [2]. The phase information is used for a phase-
correlated reconstruction by gating or motion estimation and
compensation. A gated reconstruction takes only those images
into account that lie inside a defined temporal window, that
is centered at the targeting reconstruction phase [3], [4], [5].
This is however not ideal in terms of missing data and residual
motion. To increase the data usage motion compensated recon-
struction algorithms [6], [7], [8], [4] are applied. The phase
information is used during motion estimation to parameterize
a motion field that maps every heart phase to the target phase
by some kind of registration operation [6], [9], [10]. Another
approach is the integration of the motion estimation directly
into iterative reconstruction algorithms. The periodic motion
model parameters and the reconstruction are jointly estimated
during the optimization [11], [12].

The common problem of the previous approaches is that the
averaged periodic motion model does not necessarily represent
accurately the actual heart motion of each individual beat.
Thus the quality of the motion correction and periodicity
assumption are correlated. Accordingly, the previous methods
were shown to provide reasonable results in the presence of
regular heart rates without breathing or other patient motion.
However, patients requiring 3-D imaging of the heart are
likely to suffer from heart diseases and cannot completely hold
breath, stay still or have irregular heart beats. Those aspects
do conflict with the periodicity assumption. Up to now, these
problems were addressed by approximate 2-D corrections in
the projection image. Blondel et al. [6] proposed to model
breathing motion of the heart as a translation mainly in axial
direction. Hansis et al. [13] proposed to cope with the problem
by performing a 2-D/2-D registration of the projection image
with a forward projection of an initial reconstruction. However,
none of the methods can cope with the general case of non-
cyclic 3-D motion.

In this paper a method for the cardiac 4-D reconstruction
without perodicity assumption is introduced. We propose to
separate the estimation of the motion field from the im-
age reconstruction using an analytic motion compensation
algorithm. It is exploited that given a motion compensated
reconstruction algorithm, the desired image volume is totally
determined by the motion field. This representation allows
motion estimation for non-periodic deformable motions using
an iterative optimization scheme. The motion parameters are
estimated such that the error between the measured projection
data and the dynamic forward projection of the corresponding
motion compensated reconstruction is minimized.



II. METHODS

This part of the paper is organized as follows. In Sect. II-A
an overview of formalisms and notation is provided. Next,
in Sect. II-B the objective function for motion estimation is
introduced. The upcoming Sections II-C and II-D contain the
explicit formulation of the non-periodic 4-D B-spline motion
model and motion compensated reconstruction, respectively.
Finally, in Sect. II-E the optimization strategy is discussed.

A. Preliminaries

Some basic assumptions about the data and motion model:
• Projection data mapping p : {1, . . . , N} × R2 → R: The

projection data mapping p(i,u) returns the measured image
value of the i-th projection image at the pixel u. The
number of projection images is denoted N .

• Projection function A : {1, . . . , N} × R3 → R2: The
projection function A(i,x) = u maps a voxel x to a pixel
location u in the i-th projection image.

• Set of voxels Li,u = {x ∈ R3 | A(i,x) = u }: The voxels
x ∈ Li,u form a straight ray hitting the detector bin u at
projection number i.

• Motion model M : {1, . . . , N}×R3×S→ R3: The motion
model is an invertable function M(i,x, s) = x′ mapping
a voxel coordinate x for the i-th projection image to a
new location x′. It depends on the motion model paramters
s ∈ S. The concrete 4-D B-spline motion model used in
this paper and the corresponding parameter space S are
detailed in Sect. II-C.

• Motion compensated reconstruction f : R3 × S → R:
The function f(x, s) returns the reconstructed object value
at the voxel coordinate x based on the motion model
parameters s ∈ S. It depends not only on the voxel
location as in the static case, but also on the motion model
parameters which define the object motion. The concrete
reconstruction algorithm used in this paper is detailed in
Sect. II-D.

B. Objective Function for Motion Estimation

Motion estimation is formulated as a multi-dimensional
optimization problem where the motion model parameters
ŝ ∈ S minimizing the objective function L : S → R need
to be estimated, i.e.

ŝ = arg min
s∈S
L(s) . (1)

The objective function introduced in this paper is motivated
by the basic relationship of the motion compensated re-
construction f with the measured projection data p. Digital
Reconstructed Radiographs (DRRs) can be created from a
reconstruction f(x, s) by dynamic forward projection:

r(i,u, s) =
∑

x∈Li,u

f
(
M -1(i,x, s), s

)
. (2)

The function r : {1, . . . , N} × R2 × S→ R returns the dy-
namic forward projection of the motion compensated recon-
struction f . The voxels on the straight ray Li,u are transformed
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Fig. 1: Temporal weighting function Wt(x) for the parameters
et = 1.5, ct = 67, wt = 130.

by the inverse motion model to consider the motion state
observed at the projection image i.

The matching of the measured data p and forward projected
data r is assessed using a pixel-wise dissimilarity measure
d : R× R→ R, e.g. the squared error d(x, y) = (x− y)2.
Formally, our objective function is then given by:

L(s) =
∑

i

Wt(i)

(∑
u

d (p(i,u), r(i,u, s))

)
. (3)

The term Wt : R→ [0, 1] is a temporal weighting function
which is introduced to obtain time-correlated motion model
parameters. It is required because without the additional
weighting term several solutions to the optimization problem
exist. Each set of motion model parameters at a certain point in
time that encodes the relative motion to all other points in time
is a minimizer of (1). This is problematic as it might lead to an
alternation between different solutions during the optimization
and can prevent convergence. The temporal weighting function
is given by

Wt(x) =

{
cos et

(
|ct−x|

wt
π
)

if |ct − x| ≤ wt

2

0 otherwise.
(4)

In Fig. 1 an example of the temporal weighting function is
depicted for et = 1.5, ct = 67, wt = 130.

C. Non-periodic 4-D B-Spline Motion Model

We assume a time-continous motion model that maps a
voxel x = (x0, x1, x2)T to a new voxel location x′ for each
projection image. The mapping is based on the motion model
paramters s ∈ S. In this work, a 4-D B-spline is used. It has
been shown to be suitable to describe cardiac motion numerous
times [6], [10], [12] as it guarantees a locally and temporally
smooth motion. A set of Cj × Ck × Cl × Ct control points is
placed uniformly in space and time. Each control point is as-
signed a displacement vector, forming the set of motion model
parameters S = {sjklt ∈ R3 | 1 ≤ j, k, l, t ≤ Cj , Ck, Cl, Ct}.
Formally, the motion model is then given by

M(i,x, s) = x +
∑

j,k,l,t

Bj(x0)Bk(x1)Bl(x2)Bt(i) sjklt ,

(5)
where Bj−t are the cubic B-spline basis functions [14].

During the estimation of the motion model parameters, it
needs to be ensured that only plausible motions are considered,
i.e. no rapid motion or folding. This can be enforced by either a
small number of control points or additional regularization [6],
[10] during the optimization. In this paper the former approach
is taken.
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Fig. 2: Search space S(x) for the parameters as = 10, es =
3, ct = 67, ws = 20. The number of projection images was
set to N = 133 and the number of temporal control points to
Ct = 30.

D. Motion Compensated FDK-Reconstruction

The formulation of our objective function for motion es-
timation (Sect. II-B) is based on a motion compensated re-
construction f(x, s). The function f returns the reconstructed
object value at a voxel x based on the motion model param-
eters s. In principle, any motion compensated reconstruction
algorithm could be used. In this paper, an extension of the
FDK reconstruction method for moving objects is utilized [4],
[10]. It is given by

f(x, s) =
∑

i

w(i,M(i,x, s)) · p̂(i, A(i,M(i,x, s))) , (6)

with w : {1, . . . , N} × R3 → R being the distance weight in
the FDK-formula and p̂ being the preprocessed, filtered and
redundancy weighted projection data.

E. Optimization Strategy

1) Constraining the Search Space: The search space during
the optimization of (1) can be constrained due to the fact
that we have a temporal focus of our reconstruction by the
weighting function Wt. The closer a temporal control point is
to the center ct of the temporal weighting function, the smaller
the expected motion is. If we further assume a maximum
control point displacement as we can restrict the search space
of a control point displacement to ‖sjklt‖2 ≤ S(t)

S(x) = as −

as cos es

(
|x N

Ct
−ct|

ws
π

)
if
∣∣∣x N

Ct
− ct

∣∣∣ ≤ ws

2

0 otherwise.
(7)

In Fig. 2 an example of the search space S is depicted for
as = 10, es = 3, ct = 67, ws = 20. The number of projection
images was set to N = 133 and the number of temporal
control points to Ct = 30.

2) Iteration Scheme: In general (1) can be optimized ei-
ther using gradient-based methods or optimization procedures
which do not require explicit knowledge of the gradient. The
derivative of the objective function (3) with respect to the
motion model parameters can be calculated analytically if
the derivatives of the pixel-wise dissimilarity measure d and
the motion compensated reconstruction function f can be
calculated, too. This is the case e.g. for the squared error and
the motion compensated FDK reconstruction.

However, in some cases the derivative may be noisy and
the optimization can get easily trapped by local minima. In
these situations optimization methods without the usage of
gradients can be beneficial. We propose an iteration scheme

(a) motion corrupted (b) motion corrected (c) no motion

Fig. 3: Volume rendering of the reconstructed phantom. The
motion corrupted reconstruction (s = 0) is depicted in (a).
The motion compensated reconstruction is depicted (b). The
ground truth reconstruction without motion is shown in (c). All
images were obtained using the same visualization settings.

which is based on the simultaneous perturbation stochastic
approximation (SPSA) algorithm [15]. SPSA is especially
efficient in high-dimensional problems in terms of providing a
good solution for a relatively small number of measurements
of the objective function. The essential feature of SPSA is
the underlying gradient approximation that requires only two
objective function measurements per iteration regardless of the
dimension of the optimization problem.

In each iteration the spatial control points which promise
the best reduction of the objective function are selected for
optimization using the SPSA algorithm. The optimization
stops after I iterations. In detail, the the following iteration
scheme is proposed for an efficient optimization of (1):
Step 1: Initialize s0 = 0.
Step 2: Dynamic backprojection of the temporally weighted

pixel-wise dissimilarities:

gn(x, sn) =
∑

i

Wt(i)d(p(i,u), F (i,u, sn)) ,

with u = A(i,M(i,x, sn)).
Step 3: Resampling of the dynamic backprojection onto the

Cj × Ck × Cl spatial B-spline grid.
Step 4: Select the control point with the maximum error and

J additional random control points. The likelihood of
a point to be selected is proportional to its backpro-
jection error. Thus it is more likely that points with
high error values will be selected.

Step 5: Perform Is iterations of the SPSA algorithm for the
selected subset of control points.

Step 6: Set n = n+1. Stop if n > I , otherwise continue with
step 2.

III. NUMERICAL SIMULATION

A. Methods

1) Phantom data: A synthetic cardiac vasculature phantom
undergoing local deformations in combination with a global
rigid motion has been used to generate motion corrupted
projection data. The number of projection images was set to
N = 133 covering an angular range of 200◦ in 5 seconds.
The size of the projection images was set to 512×512 pixels.
The heart rate of the phantom was set to 75 bpm leading to
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Fig. 4: Convergence behaviour of the iteration scheme for
optimization without gradient calculation.

six observable heart beats in the projection data. A video of
the moving phantom can be found online1.

2) Parameter Selection for Motion Estimation: The size of
the B-spline grid was set to Cj = Ck = Cl = 5 and Ct = 30.
This sparse selection of B-spline control points guarantees a
smooth motion. Thus, no additional regularizer has been used
during optimization. As pixel-wise dissimilarity measure the
squared error d(x, y) = (x−y)2 has been used. The parameters
of the optimization were set to I = 1000, Is = 30, J = 4. The
parameters for the temporal weighting function and search
space were set to et = 1.5, ct = 67, wt = 133 and
as = 15 mm, es = 3, ws = 20, respectively. The size of the
reconstructed volume was set to 1283 voxels with an isotropic
voxel size of 1 mm.

B. Results

In figure 3b the motion compensated reconstruction using
the estimated motion parameters is depicted. It can be seen
that the motion could be recovered well and that the motion
compensated reconstruction is of comparable quality to the
non-moving ground truth phantom reconstruction. The con-
vergence behaviour of the algorithm is depicted in figure 4.
The runtime for the presented setup was in average 5 minutes
per iteration on the NVIDIA Quadro FX5600 graphics card
using a CUDA 2.0 implementation.

IV. CONCLUSION AND OUTLOOK

Motion estimation is one of the most demanding issues to be
addressed in the cardiac reconstruction literature. In this paper
a framework for estimating motion was presented. Motion
estimation is formulated as optimization problem requiring
solely the estimation of motion model parameters. This could
be achieved by exploiting the availability of motion compen-
sated reconstruction algorithms. Those algorithms provide a
high quality reconstruction of a moving object assuming the
motion is known. Compared to methods estimating the object
function and the motion our method decreases significantly the
number of unknowns. In a numerical simulation study it could

1http://www5.informatik.uni-erlangen.de/en/our-team/rohkohl-christopher/
projects/motion-compensated-cardiac-reconstruction-using-c-arm-ct/

be shown that the method is capable of recovering deformable
motion without prior assumptions about the periodicity of the
motion.

In summary a promising framework laying out the founda-
tion for many future applications was presented. Our future
research will focus on accelerating the runtime and testing on
clinical data.

Disclaimer: The concepts and information presented in this paper
are based on research and are not commercially available.
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