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Abstract. The automation and speedup of interventional therapy and
diagnostic workflows is a crucial issue. One way to improve these work-
flows is to accelerate the image acquisition procedures by fully automat-
ing the patient setup. This paper describes a system that performs this
task without the use of markers or other prior assumptions. It returns
metric coordinates of the 3-D body shape in real-time for inverse po-
sitioning. This is achieved by the application of an emerging technol-
ogy, called Time-of-Flight (ToF) sensor. A ToF sensor is a cost-efficient,
off-the-shelf camera which provides more than 40,000 3-D points in real-
time. The first contribution of this paper is the incorporation of this novel
imaging technology (ToF) in interventional imaging. The second contri-
bution is the ability of a C-arm system to position itself with respect to
the patient prior to the acquisition.
We are using the 3-D surface information of the patient to partition the
body into anatomical sections. This is achieved by a fast two-stage clas-
sification process. The system computes the ISO-center for each detected
region. To verify our system we performed several tests on the ISO-center
of the head. Firstly, the reproducibility of the head ISO-center compu-
tation was evaluated. We achieved an accuracy of (x: 1.73±1.11 mm/y:
1.87±1.31 mm/z: 2.91±2.62 mm). Secondly, a C-arm head scan of a body
phantom was setup. Our system automatically aligned the ISO-center of
the head with the C-arm ISO-center. Here we achieved an accuracy of ±
1 cm, which is within the accuracy of the patient table control.

1 Introduction and Related Work

Workflow optimization is an important task in clinical procedures. The combi-
nation of increased life expectancy and advancements in the field of medicine
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have resulted in a constantly increasing number of patients. This in-turn cre-
ates a heavier workload for hospitals and healthcare systems in general. Thus,
it is becoming progressively more important to develop efficient healthcare pro-
cedures without any decline on the quality of patient care. In the future, either
healthcare costs will increase dramatically or smart cost-effective solutions for
optimizing current workflows have to be found.
With that last goal in mind we examined the image acquisition workflows, in
general, and analyzed them in terms of bottlenecks. In this paper we introduce
a system to shorten the probably most important and for sure most time con-
suming part of this procedure: the initial patient positioning step. Image acqui-
sition procedures have constantly been optimized within the past years. Today
the scanning time for CT and C-arm systems is basically negligible. What is
still very time consuming within the workflow of image acquisition procedures is
the patient-dependent setup procedure. Each patient is physiologically relatively
unique. There is also a diverse number of clinical procedures. As a result, the
patient setup process cannot be easily generalized. Nevertheless, the correct po-
sitioning of the patient is a crucial parameter for the quality of image acquisition.
Also for retrospective hybrid-image acquisitions it is important to acquire im-
ages at the correct position. Therefore, it is important that patient positioning is
performed accurately, which can make it a very time consuming task. Especially
in interventional procedures correct positioning of the image acquisition device
is mandatory. Todays C-arm systems are already very intuitive to use. Strobel
et al. [1] describe the setup procedure and the associated time consuming steps.
Several fluoroscopic images have to be taken before the required body part is
within the ISO-center of the C-arm. These steps are both very time consuming
and applying additional radiation doses to the patient.
To automate and speed-up the setup procedure for interventional image acqui-
sition procedures we suggest a system based on a ToF sensor. The proposed
system partitions the whole body into several 3-D bounding boxes. It operates
marker-lessly and does not rely on any other assumptions. The C-arm system
receives exact metric coordinates from the proposed system which can then be
used in automatically adjusting the C-arm’s position with respect to the pa-
tient and for data acquisition. We call this inverse positioning, as the system
is positioned with respect to the target and not the target with respect to the
system. Furthermore, the C-arm knows exactly the bounds of the object to scan
and an instantaneous collision detection can be provided. Last but not least, the
proposed solution is very cost-effective.
The importance of a solution to these problems is also reflected by prior work.
Grimson et al. [2] introduced a system wich supports optical tracking of patient
and instrument locations using surface data. Navab et al. [3] proposed a sys-
tem for intraoperative positioning and repositioning of mobile C-arms using a
camera-augmented mobile C-arm. This system speeds up the whole procedure
and also reduces the radiation of the patient as it decreases the number of images
which have to be acquired for positioning the patient. Using an optical camera
and X-ray/optical markers the system supports guidance for C-arm reposition-



Fig. 1. Examples for ToF sensor models. On the left side: CamCube from PMDtec
GmbH, Germany. On the right side: SR4000 from MESA Imaging, AG, Switzerland
(images taken from manufactor websites)

ing. C-arm systems also suffer from their narrow field-of-view. Wang et al. [4]
suggest a stitching algorithm for scaning long bones using a C-arm system. They,
too use an additional optical camera to augment different views. Ladikos et al.
[5] provide a method for collision detection for a C-arm environment. An array of
optical cameras is used to generate a 3-D representation of the operation room.
All of these applications are either based on markers and/or use multiple cam-
eras/systems. The proposed system is independent of markers and only needs a
single sensor.

2 Materials and Methods

2.1 Time-of-Flight Sensor

ToF sensors provide a direct way to acquire 3-D surface information [6]. ToF sen-
sors have several advantages over other 3-D surface acquisition techniques. The
most promising advantage is that ToF is on its way to become a component of
mass markets like consumer electronics and the automotive industry. Currently
a high-end ToF sensor is available for about USD 7,000 (see Fig. 1). A target
price for ToF sensors of a few hundred dollars can be expected in the near future.
ToF sensors also render calibration steps, which are mandatory for stereo based
systems, unnecessary. This is based on the monocular all-solid-state architecture
of ToF sensors. Such an architecture also enables a high portability of the system
and a variety of integration prospects in existing systems. Recent ToF sensors
provide data rates up to 25 frames per second with an lateral resolution of up to
204×204 pixels. Each of these 3-D points provides precise metric information in
the sensor coordinate system. Recently several systems for medical applications
like respiratory motion or patient positioning using a ToF sensor were proposed
[7, 8]. Further information about the principle of ToF sensors can be found in Xu
et al. [6]. A detailed discussion about the advantages of ToF sensors over other
3-D surface acquisition techniques can be found in Schaller et. al [7].

2.2 Body part detection

In this section we will give an overview of how a ToF sensor enables inverse real-
time positioning. We will introduce a generalized, very fast and fairly simple



algorithm to solve this task. The proposed algorithm for body part detection
consists of two main parts which require a preprocessing and segmentation of
the ToF sensor data. The first part describes an effective and robust two-stage
classification procedure. At the end of this first subtask, the 3-D body surface is
subdivided into multiple anatomically meaningful regions of interest. The second
part computes bounding boxes for each of these regions and their corresponding
ISO-center. Furthermore, a fairly simple calibration method for aligning the
computed ISO-center with the C-arm ISO-center is introduced.

The ToF sensor is rigidly mounted above the patient table and the whole
patient is within the field of view of the ToF sensor. We denote P the M × N
3-D points of interest acquired by a ToF sensor.

P = [pi,j ] , i ∈ {0, 1, ..,M − 1}, j ∈ {0, 1, ..N − 1} (1)

Typically ToF data is affected by noise. To reduce this noise we apply both, a
bilateral filter [9] and a temporal averaging filter. The averaging filter returns
the average 3-D point cloud using data from the last n accumulated 3-D point
clouds. To reduce the amount of data and to identify 3-D points belonging to
the body we detect the patient table and compute a virtual plane. For this task
we use a Hough-Transform like method based on surface normals described in
Schaller et al. [7]. Knowing the virtual table plane we can discard all 3-D points
which do not belong to the patient. As a result for further computations only
relevant 3-D points P̂ ⊆ P (⊆ denotes a subset of points) belonging to the
body have to be considered. To speed-up the classification process, we apply
a normalization on the remaining 3-D points P̂. Therefore a Karhunen-Loeve-
Transformation (PCA) is performed. As a result the origin of the coordinate
system is placed in the centroid µ of the point cloud P̂ and the axes are aligned
with the axial, sagittal and coronal plane of the patient. The main advantage we
achieve is parallelism of the bounding boxes to the axes. This results in a more
computationally efficient run-time for the algorithm. The three principal axes
computed by the transformation are denoted as ρ0, ρ1, ρ2 (see Fig. 2). We have
prior knowledge about the shape of the human body. Therefore, we can assume
that ρ0 corresponds to the height of the patient, ρ1 to the width and ρ2 to the
depth.

One can then compute five intersections (ιk, where k ∈ {0, 1, .., 5}) along the
first principle axis (see Fig. 2). The outer most intersection points ι0 and ι5 are
defined by the outermost 3-D points on ρ0. Again, we utilize prior knowledge
about the shape of the human body. For a coarse first stage initialization of
the classification we compute three golden intersections γ0, γ1, γ2 along ρ0 (see
Fig. 2). The golden section γ2 roughly indicates the position of the neck. γ1 is
located near the diaphragm and γ0 at the knees of the person. These points
constrain the search space for the exact position of the remaining intersection
points.

To refine these coarse initial values we introduce a second stage in our clas-
sification. Two histograms H0 and H1 along ρ0 are computed. The vertical axis
of H0 bins the silhouette of the body along the positive p1 axis, while the verti-
cal axis of H1 bins it along the positive p2 direction. The horizontal axis of H0



Fig. 2. Overview: The red lines indicate the three principal axes ρ0,ρ1,ρ2. The three
golden sections γ0, γ1, γ2 are shown as yellow lines. Furthermore, all intersection points
ιk and the centroid µ are also depicted.

Fig. 3. Refinement of the bounding boxes. Left: Detection of the pelvic region with the
corresponding histogram below. µ is the origin of the coordinate system. The search
interval d1 is 30 cm in each direction with a bining size of 4.8 cm. Right: Detection
of the neck with the corresponding histogram below. γ1 is the upper golden section
intersection. The search interval d0 is 10 cm with a bining size of 3.2 cm.

ranges from γ2 − d0 to γ2 + d0. The horizontal axis of H1 ranges from γ − d1 to
γ + d1. d0 and d1 are emirically determined. Based on these histograms, ι4 and
ι5 are the minima of H0 and H1 accordingly. ι3 is then defined as the mid-point
between ι4 and ι5, while ι1 is set to γ0.

We can then use these intersections as an input for the second part of the
algorithm. This part computes bounding boxes using ι0, .., ι5. With the excep-
tion of the head, left and right bounding boxes are computed for each body
segment (e.g. left and right abdomen), where ρ0 acts as a delimiter. In addition
to the boundary values, the ISO-center and the volume is computed for each
box. Figure 4 shows the full body part segmentation.

Before we are able to position a target, a fairly simple calibration step has
to be performed. The following has to be done only once for the whole system.
A coin is placed on a box on the patient table (see Fig. 5). The ISO-center
ICarm of the C-arm is manually aligned with the center of the coin. We use two
fluoroscopic images, one from 0◦ and one from 90◦ to do this. After determining
ICarm, the corresponding 3-D coordinate (ISO-center) of the center of the coin
IToF in the ToF coordinate system has to be identified. These two points, ICarm

and IToF can be considered as the origins of each of the corresponding coordinate



Fig. 4. Full body acquisition using a ToF sensor including bounding boxes (side view
and top view). On the left side information about the different bounding boxes is shown.
V shows the volume of the bounding box in cm3, I the ISO-center of the bounding box
in mm and B the bounds of the actual bounding box in mm. On the lower right side,
some basic information about the dimensions of the patient is displayed.

systems. To position a bounding box ISO-center, the 3-D coordinate of the ISO-
center is shifted to IToF .

3 Experiments and Results

For the evaluation we used a SR-3000 ToF sensor from MESA Imaging, AG,
Switzerland and a C-arm system of the Artis zee family from Siemens AG,
Healthcare Sector, Germany. We rigidly mounted the ToF sensor on the ceiling
above the patient table so that the patient can be fully visible. The ToF sensor
has a resolution of 176x144 pixels with a field of view of 47.5◦ and 39.6◦ respec-
tively. The depth accuracy after preprocessing the data is below 1 mm per pixel.
We first examined the reproducibility of the ISO-center computation. Without
loss of generality, this was done for the head ISO-center. For the other ISO-
centers this could be done in a similar manner. The head ISO-center of three
persons was computed 70 times per person. We took the mean x- y- z- coordinate
as our reference ISO-center. We again computed 140 head ISO-centers for each
of these persons while they were in the same position. The mean squared errors
between those measurments and the reference in x- y- z- direction (corresponding
to ρ0,ρ1,ρ2) are: x: 1.73±1.11 mm, y: 1.87±1.31 mm, z: 2.91±2.62 mm. Further-
more, we computed the inter-subject standard deviation on these datasets: x:
3.16 mm y: 2.85 mm z: 4.42 mm. To evaluate our approach within a clinical setup
a body phantom was placed in a C-arm environment. We were again interested
in the ISO-center of the phantom head. The phantom was shifted in all three



Fig. 5. Coin calibration: A coin is placed on a box on the patient table. The coin is
aligned in the ISO-center of the C-arm. Afterwards, the corresponding 3-D coordinate
of the position of the coin in the ToF point cloud can be determined.

Fig. 6. Phantom evaluation: Two upper left images: 0◦ and 90◦ projections of man-
ually aligned head (gold standard). Two lower left images: 0◦ and 90◦ projections of
automatically aligned head using the proposed method. Two upper right images: 0◦

and 90◦ projection difference images of manually and automatically aligned head. Two
lower right images: 0◦ and 90◦ projections of manually and automatically aligned head
(automatically aligned projections are superimposed in red).

room dimensions multiple times. After computing the ISO-center Ih of the head
bounding box with respect to the previously computed IToF we could directly
compute the translation to align Ih with ICarm. A gold standard was defined by
manually aligning the ISO-center of the head using the same technique as for the
previously described coin calibration (see Fig. 6). This is also the way it is done
in hospitals today. We compared the table position of the gold standard align-
ment and the automatic alignment. In all cases we were able to automatically
position the head in the x and the y direction within the accuracy of the patient
table. According to the manufactor the accuracy is 1 cm. In the z-direction, we
had an error of ± 1 cm (see Fig. 6) because the z-coordinate of the ISO-center
heavily depends on the quality of the table segmentation. On a standard CPU
(2.0 GHz dual-core) our algorithm has an execution time of 65 ms. Including
data acquisition, preprocessing and segmentation, the overall execution time is
about 143 ms.



4 Conclusion

Automation of time consuming steps is a key competency of future clinical pro-
cedures and workflow aware hospitals. We have shown that our system for fully
automatic patient setup is able to identify anatomical regions for image ac-
quisition in real-time. This information can be used to align the ISO-center of
anatomical targets with the ISO-center of a C-arm system fully automatically.
For this task, a 3-D surface acquired by a ToF sensor is analyzed. A two-stage
classification process is introduced to identify body parts and to compute the
corresponding ISO-centers. The extracted information can be directly used to
control any image acquisition devices. This results in an inverse positioning,
where the image acquisition device can be positioned according to the patient.
Furthermore, several patient dependent metric information are provided by the
system. This information can be used for e.g., initial positioning, collision detec-
tion, dose estimation or respiratory motion correction [7].
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