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Segmentation of Cerebral Vasculature 

 
Introduction 

Cerebrovascular disease (stroke) is among the leading 
causes of death in western industrial nations, besides 
cardiac and cancer-related deaths. A stroke may be 
caused by a blockage of blood vessels due to a blood clot 
(ischemic) or a rupture of blood vessels or aneurysms 
(hemorrhagic). Regarding the diagnosis and treatment of 
cerebral aneurysms, 3-D digital subtraction angiography 
(DSA) image data delivers indispensable information to 
analyze the aneurysm geometry and its location to come 
up with a clinical decision. While the causes for the 
appearance of aneurysms are not entirely understood, it 
is assumed that hemodynamic forces are an important 
contributing factor. Especially the position and 
orientation of the aneurysm neck area seems to play an 
important role for the blood flow pattern within 
aneurysms. For further studies like blood flow 
simulations, the segmentation of aneurysms together 
with parent arteries is an important prerequisite.  
Simple segmentation techniques like intensity 
thresholding or region growing only consider voxel-
based gray-value information and thus may lead to 
leakages or holes within the segmentation volume due to 
noisy 3-D DSA image data. Therefore, an approach 
based on curve evolution theory and the level set [4] 
framework is applied. Edge based geodesic active 
contours [2] (GAC) are extended by a vessel shape 
regularizer to reduce thes afore-mentioned drawbacks. 
Moreover, by incorporating knowledge about the 
appearance of a healthy vessel, the proposed method is 
able to omit pathologic structures like aneurysms from 
the segmentation, which is necessary for blood flow 
simulations. 
The application of GAC level sets for vessel 
segmentation has the advantage to naturally handle 
topological changes like vessel bifurcations due to its 
implicit contour description.  
The objective of this paper is to segment a cerebral 
vessel tree omitting areas with vascular disease e.g. 
aneurysms. Our segmentation method was 
experimentally evaluated on ten different patient data 
sets against a gold standard segmentation in terms of 
sensitivity, average surface distance and Hausdorff 
distance. 
 

Methods 

The chosen segmentation method is based on the 
geodesic active contours (GAC) approach [2]. An initial 
curve is iteratively deformed, until it coincides with the 
object borders to be segmented. 
The evolving surface is implicitly represented by 
embedding it as the zero level set of a level set function 
φ. This allows handling topological changes intrinsically. 
Moreover, no re-parameterization of the evolving 

surface is required for vessel bifurcations due to the 
implicit representation. 
The function φ maps time dependent points (x, t) within 
the image domain Ω to scalar values. It is a parameter-
free mapping, because Γ typically denotes the location of 
the points for which the values are zero - the zero level 
set. This zero level set splits the image in two regions, 
where negative values are assumed to be inside and 
positive values are assumed to be outside the contour (or 
vice versa). The absolute value at a certain point x is 
respectively defined as a distance from the zero level set. 
The deformation of the surface is governed by a speed 
function which guides the surface into the desired 
directions, e.g. fast movement in homogeneous regions 
and slow movement while approaching edges. In this 
case, an edge refers to the boundary between vessel and 
non-vessel structures.  
Since cerebral arteries can be considered as tubular 
structures, our speed function not only consists of edge-
based features and a standard curvature dependent 
smoothness term, but also of a vessel shape regularizer. 
Hence, it penalizes deformations of the surface which 
deviate from the appearance of regular tubular 
vasculature. The entire level set function φ consists of 
the following terms: 
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where A(x) denotes the advection vector field, P(x) is the 
propagation term, Z(x) is the spatial modifier term for 
the curvature κ and T(x) represents the additional vessel 
shape regularizer, which was originally introduced by 
Nain [3]. α, β, γ, and δ denote weighting factors for the 
individual terms. We refer to [5] for more details 
concerning the advection, propagation and spatial term. 
The shape regularizer T(x) is a region-based 
measurement, which quantifies the similarity of the local 
surface geometry to a tubular structure. This region R, 
representing the entire vessel tree with an aneurysm and 
some noise, is obtained by a seeded region growing 
approach. Fig. 1 illustrates the region R based on a 
phantom vessel structure. In the following, all points 
inside and on the contour of R will be considered. A 
local region-based neighborhood description B(x, r) is 
defined to determine widening and 

 
Fig. 1 Phantom image of a 2D vessel with an aneurysm. R denotes the 
region used by the vessel regularizer and B(x, r) the neighborhood to 
compute the vessel shape measurement ε1. 
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potential leakages. For every point within the region R, a 
local neighborhood B(x, r) (in 2D it’s a circle and in 3D 
in becomes a sphere) with a certain radius is considered 
to compute a measurement ε1, which denotes the 
percentage of points lying within the region R and 
within the neighborhood B(x, r): 
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Given a certain ball radius r, points at widening regions 
result in higher values for ε1 than those inside the vessel 
structure. The maximum ball radius must be specified by 
the user und should represent the largest vessel radius in 
the image data. 
The final shape vessel term T(x) is again based on ε1: 
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So each point is quantified in terms of tubular shape by 
its ε1 measure plus the sum of all ε1 values within the 
neighborhood B(x, r). For example, points being near the 
aneurysm neck area get higher values since their 
neighboring points lie in a widening area and thus 
contribute high ε1 measurement values to the considered 
area B(x, r). This can be seen in Fig. 2. 
 
Our proposed segmentation approach starts with a region 
growing segmentation delivering the initialization for the 
subsequent level set evolution. This segmentation 
contains the aneurysm and maybe some leakages. The 
performance of our extended level set method pulls the 
segmentation out of areas describing abnormal vessel 
structures and widening like aneurysms or leakages. 
 

 
Fig. 2 Overlay of cerebral vessel tree with its corresponding ε2 
measurement values. The red color indicates a widening area 
(aneurysm neck) and thus large ε2 measurement values. 

 

Results 

The evaluation of our proposed method was done on ten 
different 3D DSA patient data sets acquired from a 

Siemens AXIOM Artis dBA TWIN x-ray fluoroscopy 
system during clinical interventions. The image sizes 
vary between 256×256×200 and the voxel spacing in 
x/y/z direction is 0.2/0.2/0.2 mm. A gold standard 
segmentation without the aneurysm dome region was 
obtained for each data set using ITK-SNAP 
(www.itksnap.org). 
The segmentation results were evaluated according to 
sensitivity, average surface distance (AVD) and the 
Hausdorff distance (HD) measuring the deviations to the 
gold standard segmentation. A detailed overview about 
the segmentation results is given by table 1. The 
proposed segmentation approach reaches a sensitivity 
value of more than 90% for five patient data sets. The 
Hausdorff distance ranges between 4.6 and 16.9 mm. 
Larger values are caused by the fact that a small bleb of 
the aneurysm region remain (see Fig. 3) even after the 
segmentation is done. The AVD was applied to reduce 
the influence of those blebs on the evaluation of the 
segmentation result. Fig. 3 gives a visual impression of 
the segmentation result based on the ε2 measurement 
values illustrated in Fig. 2. 
 

 
Fig. 3 Final segmentation result quantified according to the Hausdorff 
distance (distance error in mm) to the corresponding gold standard 
segmentation. 
 

Dataset Sensitivity AVD HD 
P. 1 0.99481 0.1403 12.927 
P. 2 0.94996 0.3617 5.6185 
P. 3 0.60567 0.7741 7.6710 
P. 4 0.53699 1.2694 10.095 
P. 5 0.71302 0.4087 13.507 
P. 6 0.9999 0.3375 10.219 
P. 7 0.92808 0.1502 4.5645 
P. 8 0.8135 0.5642 16.870 
P. 9 0.32135 2.2738 14.911 

P. 10 0.98667 0.1760 8.067 
Table 1 Quantitative segmentation results given by sensitivity, 
specificity, average surface distance (AVD in mm) and Hausdorff 
distance (HD in mm). 
 

Discussion and Conclusion 

This paper describes a vessel segmentation approach 
based on level set active contours extended by a vessel 
shape regularizer originally introduced by Nain [3]. 
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The speed function, evolving the initial contour, is 
enhanced by an additional term incorporating prior 
knowledge about vessels and penalizes the segmentation 
of non-tubular structures. The presented results show 
that a tubular constrained level set segmentation 
technique can be employed for cerebral vessel extraction 
without segmenting vascular disease like aneurysms. 
This enables the analysis the aneurysm neck area 
regarding its influence within CFD-based blood flow 
simulations in more details. 
Future work involves the elimination of two drawbacks. 
Firstly, the segmentation is very sensitive to the user 
provided maximum vessel radius. If the diameter of the 
aneurysm neck and the thickest vessel structure are in a 
similar range, then the aneurysm would also become part 
of the segmentation. On the other hand, a small radius 
would ensure that the aneurysm is omitted in the 
segmentation, but thicker vessel structures easily will be 
discarded, too. 
Secondly, the handling of the aneurysm neck area is 
challenging because the presented shape regularizer does 
not distinguish between widening areas caused by noise 
or due to an aneurysm. But the widening region at an 
aneurysm neck is just the area leading into the aneurysm 
dome and not the parent vessel part of the aneurysm 
itself. 
Thus, an improved shape term should only penalize the 
entry area into the aneurysm dome and not the part of the 
vessel to which the aneurysm belongs to 
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