
Automatic Classification of
Emotion-Related User States in
Spontaneous Children’s Speech

Der Technischen Fakultät der
Universität Erlangen-Nürnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Stefan Steidl

Erlangen — 2009



Deutscher Titel:

Automatische Klassifikation von emotionalen Benutzerzuständen
in spontaner Kindersprache

Als Dissertation genehmigt von der
Technischen Fakultät der

Universität Erlangen-Nürnberg

Tag der Einreichung: 03.09.2008
Tag der Promotion: 07.11.2008
Dekan: Prof. Dr.-Ing. habil. J. Huber
Berichterstatter: Prof. em. Dr.-Ing. H. Niemann

Prof. Drs. Dr. L. J. M. Rothkrantz
Prof. Dr.-Ing. habil. E. Nöth



Acknowledgment

I am very grateful to my supervisor Prof. em. Dr.-Ing. Heinrich Niemann. Until
2005, when he became emeritus, he had been the head of the Chair of Pattern Re-
cognition. I had the privilege to be one of his last PhD students and I appreciate it
very much that I could finish my work under his guidance. Prof. Niemann reviewed
my thesis very carefully and provided many hints that helped to improve the quality
of my thesis.

I am deeply grateful to the head of the Speech Processing Group, Prof. Dr.-Ing.
habil. Elmar Nöth, for reviewing my thesis. Many improvements are due to his
suggestions. He is the one who made me enthusiastic about speech processing and
who supported me over the last years. He contributes a lot to the positive atmosphere
at work, which is one precondition for successful working. Because of the excellent
supervision of the students within his group, I have written both my pre-diploma
and my diploma thesis in the area of speech processing. I wish to thank especially
Dr.-Ing. Georg Stemmer who has supervised both theses in cooperation with Prof.
Nöth.

I wish to thank my second reviewer Prof. Drs. Dr. Léon J. M. Rothkrantz from
Delft University of Technology for providing useful suggestions and attending my
PhD defense. It has been very interesting to get a review from somebody outside the
pattern recognition community. I am very grateful to all of my three reviewers for
reviewing my thesis in such a short time.

Since 2005, Prof. Dr.-Ing. Joachim Hornegger has been the new head of the Chair
of Pattern Recognition. I wish to thank him for welcoming me with open arms in
his team, for extending my contract, and for chairing the examination committee at
my PhD defense. Furthermore, I wish to thank my external reviewer Prof. Dr.-Ing.
Walter Kellermann.

A thesis like this is never solely the work of the author. It is always based on the
ideas and previous activities of many colleagues whose work I want to acknowledge
herewith. I would like to express my deep and sincere gratitude to my supervisor
Dr. phil. Anton Batliner, who is an expert in the area of speech prosody, linguistics
and emotion recognition. The collaboration with him has been very successful and
I enjoyed working with him very much. I am also grateful to my former colleague
at work Dipl.-Inf. Christian Hacker. We have been working together very closely
for many years and shared a wonderful time. Together with Dr. Batliner, we have
designed the Aibo experiments and carried out the recordings and post-processings.
In front of the computer science building, Christian and me designed the carpet for
the parcours experiment by spraying the parcours with car lacquer onto the carpet.

My work has been embedded in two research projects funded by the European
Community: Pf-Star and the Network of Excellence Humaine. Especially in Hu-
maine, I could benefit to a large extent from the expertise of other researchers in this
interdisciplinary project. I wish to thank our partners within our initiative Ceices,
especially Dr.-Ing. Björn Schuller and Dr. Dino Seppi, for a very fruitful co-operation.

Over the last years, I have never had to worry about financial aspects. I have been
given the opportunity to take part in many international conferences and project



meetings at outstanding places within Europe and Northern America. Thanks to
Prof. Nöth, Dr. Batliner, and my colleagues for many wonderful trips that we shared.
I will never forget them!

My warm thanks are due to my parents. At the age of 10, I got my first personal
computer, and my father taught me how to write my first small computer programs.
Since then, studying computer science has not lost its fascination to me.

The last six years have been a wonderful time and I have enjoyed the merits of
scientific research very much. Nevertheless, this time has also been very demanding.
I owe my loving thanks to my wife Nicole for her understanding and her support over
the last years and I am very proud and happy that both of us managed to finish our
PhD this year.

Erlangen, November 2008
Stefan Steidl



Abstract

The recognition of the user’s emotion-related state is one important step in mak-
ing human-machine communication more natural. In this work, the focus is set on
mono-modal systems with speech as only input channel. Current research has to shift
from emotion portrayals to those states that actually appear in application-oriented
scenarios. These states are mainly weak emotion-related states and mixtures of dif-
ferent states. The presented FAU Aibo Emotion Corpus is a major contribution in
this area. It is a corpus of spontaneous, emotionally colored speech of children at
the age of 10 to 13 years interacting with the Sony robot Aibo. 11 emotion-related
states are labeled on the word level. Experiments are conducted on three subsets
of the corpus on the word, the turn, and the intermediate chunk level. Best results
have been obtained on the chunk level where a classwise averaged recognition rate of
almost 70% for the 4-class problem Anger, Emphatic, Neutral, and Motherese has
been achieved. Applying the proposed entropy based measure for the evaluation of
decoders, the performance of the machine classifier on the word level is even slightly
better than the one of the average human labeler. The presented set of features
covers both acoustic and linguistic features. The linguistic features perform slightly
worse than the acoustic features. An improvement can be achieved by combining
both knowledge sources. The acoustic features are categorized into prosodic, spec-
tral, and voice quality features. The energy and duration based prosodic features and
the spectral MFCC features are the most relevant acoustic features in this scenario.
Unigram models and bag-of-words features are the most relevant linguistic features.



Kurzdarstellung

Die Erkennung des emotionalen Benutzerzustands stellt einen wichtigen Schritt dar,
um die Kommunikation zwischen Mensch und Maschine natürlicher zu gestalten. Die
vorliegende Arbeit konzentriert sich auf monomodale Systeme, bei denen Sprache die
einzige Eingabemodalität ist. Die aktuelle Forschung auf diesem Gebiet muss ihren
Schwerpunkt weg von geschauspielten Daten hinzu denjenigen emotionalen Zustän-
den verlagern, die in Anwendungsszenarien tatsächlich auftreten. Dies sind vor allem
schwach ausgeprägte Emotionen im weiteren Sinne sowie Mischungen verschiedener
Zustände. Das vorgestellte FAU Aibo Emotionskorpus stellt einen wichtigen Schritt
in diese Richtung dar. Es handelt sich dabei um emotional gefärbte Spontansprache
von Kindern im Alter zwischen 10 und 13 Jahren. Auf Wortebene sind 11 verschiede-
ne Emotionszustände annotiert worden. Die Experimente wurden auf drei Teilmen-
gen des Korpus und auf drei Analyseebenen – der Wortebene, der Turn-Ebene, und
der dazwischenliegenden Chunk-Ebene – durchgeführt. Die besten Ergebnisse wur-
den dabei auf der Chunk-Ebene erzielt, wo für das 4-Klassen-Problem bestehend aus
den vier Oberklassen Ärger, Emphatisch, Neutral und Mütterlich eine klassenweise
gemittelte Erkennungsrate von fast 70% erreicht wurde. Das vorgestellte Entropie ba-
sierte Maß zur Beurteilung von Dekodern belegt, dass der automatische Klassifikator
auf Wortebene sogar etwas besser abschneidet als der durchschnittliche menschliche
Bewerter. Die vorgestellten Merkmale umfassen sowohl akustische als auch linguis-
tische Merkmale. Letztere schneiden etwas schlechter ab als die akustischen. Durch
die Verknüpfung beider Wissensquellen kann eine Verbesserung der Erkennungsrate
erzielt werden. Die akustischen Merkmale lassen sich in prosodische, spektrale und
Stimmqualitätsmerkmale einteilen. Im Aibo-Szenario sind dabei die Energie und die
Dauer basierten prosodischen Merkmale sowie die spektralen MFCC-Merkmale am
wichtigsten. Die wichtigsten linguistischen Merkmale sind Unigramm-Modelle und
Vektorraum-Modelle, besser bekannt als „bag-of-words“-Merkmale.
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Chapter 1

Introduction

1.1 Human-Machine Communication

Over the last 30 years, building dialog systems for spontaneous speech has been
one of the main focuses of the Speech Processing and Understanding Group of the
Chair of Pattern Recognition at the University of Erlangen-Nuremberg. By now,
many telephone services based on automatic systems exist and provide cost-efficient
services for many scenarios. The available services differ in the design of the dialog
between the calling user and the system. Simple systems like the telephone answering
machine service of a major German telephone company accept as input modality only
input from the keypad. As a consequence, the design of the dialog is rather fixed. The
disadvantages are quite obvious: as the system can only react to the entered digits
and the user cannot be asked to remember the various meanings of a certain digit at
a particular dialog step, the system has to inform the user about the possible actions
at each step again and again. This leads to a frequent repetition of pre-recorded
text modules and hence to an unnecessary delay of the whole dialog which will be
annoying for experienced users.

More sophisticated systems accept speech in form of single words as an additional
input modality. Often, the speech input is restricted to confirm certain dialog steps
with single words like ‘yes’ or ‘no’ or to control the progress of the dialog by saying
one of several given alternatives: “If you have questions regarding your bill, say bill ”.
In other systems, the list of words which the system is capable to understand is
not restricted to only a few given alternatives. Such a system is for example the
baggage-retrieval-service of an American airline where passengers can ask the system
whether their lost luggage has already been found. The system tries to understand
the passenger’s name and retrieves the information from a database system. If it is
not able to understand the name correctly after the third try – maybe because the
passenger has a foreign name –, the system hands over to a human operator.

However, state-of-the-art dialog systems allow real conversations between the hu-
man user and the machine in spontaneous speech. Although these systems are still
rare, automatic dialog systems which are able to understand spontaneous speech in a
limited domain are ready for commercial usage and some of them have already proven
their utilizability in daily use. Such limited domains could be any kind of information
system, e. g. a football league system being able to answer questions about match

1



2 Chapter 1. Introduction

results, ranking, etc., a cinema information system providing the caller with infor-
mation about films currently shown in the desired cinema, a timetable information
system for airplanes, trains, etc., or a citizen helpdesk providing information about
opening times, addresses, or phone numbers of public authorities. In 2005, Sympalog
Voice Solutions1, a spin-off company of the Chair of Pattern Recognition, built a
system for a globally operating car rental company which offers:

1. a switchboard service which connects the caller to a human operator not only
on the basis of a given name or department, but also on the basis of the caller’s
concerns which can be expressed in spontaneous speech (“I’d like to rent a car.”),

2. a leasing advisor being able to answer questions concerning the leasing modal-
ities of a car and being able to acquire and record all the necessary data of the
caller, and

3. a customer service portal with full automation of standard transactions such as
change of address, shipping of additional invoice copies, etc.

To be able to interpret utterances of the user in the context of previous turns2, these
systems have access to the history of the dialog. Thus, a quite natural dialog between
a human and a machine is possible.

Even if this kind of new automatic dialog systems is able to understand spon-
taneous speech, the dialog is still not as natural as a corresponding dialog between
two humans would be. One important aspect is still missing: the ability to adapt to
this special person who is calling, to the individual behavior of this person, to the
current mood or the emotional state of the caller. For example, if a caller is especially
friendly, it would be appropriate for the system not only to be polite, as the system
always should be, but to be extraordinarily friendly, even in a way which might be
too exaggerated in a conversation with another user. If the system realizes that the
user is hesitating, it could provide some extra help whereas this additional informa-
tion is redundant and counterproductive if the user is familiar with the system. One
might even think of a system which is able to detect jokes made by the caller, reacts
appropriately with laughing and switches to a more casual way of conversation. Two
points are necessary for this adaptation: on the one hand, the ability of the system to
recognize the current state of the user, and on the other hand, the ability to change
the own behavior accordingly.

Other types of human-machine communication are conversations between humans
and embodied conversational agents (ECAs), computer animated 3D virtual charac-
ters. They provide another interface, either only a facial display (talking heads) or
a display of the whole body. Their goal is to reduce the mental gap between users
and computer systems [Take 93]. Figure 1.1 shows a muscle-based talking head with
different facial expressions [Albr 05]. Particularly in conversations with such a real-
istic looking agent, the need to model facial expressions becomes obvious. Showing
emotions comprises the synthesis of emotional speech, facial expressions (including
lip movements), gestures, and body movements as well as strategies at which point

1http://www.sympalog.de, last visited 01/12/2009
2In a dialog, a turn consists of all utterances of one speaker from the moment this speaker starts

speaking to the moment he/she hands over to the dialog partner.

http://www.sympalog.de
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Figure 1.1: Expression of emotions in a muscle-based talking head: joy, anger, fear,
sadness, disgust, surprise (from left to right) [Albr 05]

of time which emotions are appropriate. Obviously, the latter depends on the behav-
ior of the human conversational partner. Hence, the emotional states of the partner
have to be recognized automatically. It can be recognized from speech input (acous-
tic information from audio data as well as linguistic information from the textual
information). Other input modalities that can be analyzed are facial expressions,
gestures, body movements, and physiological signals.

1.2 State-of-the-Art
This work addresses the classification of emotional and emotion-related states from
speech only. In the following, an overview is given of the current state-of-the-art in
this special area of research.

For more than 50 years, psychologists have been investigating the influence of
emotions on speech. The basis of these investigations were examples of prototypical
emotions. Over the last ten years, computer scientists got more and more involved
in the problem of recognizing emotions automatically and have started to classify
emotions with pattern recognition techniques. Automatic analysis allows to process
a large amount of data in adequate time, but collecting a huge amount of training
data necessary to train statistical classifiers turned out to be a problem itself. Many
of the corpora available today consist of emotional data portrayed by actors.

The popularity of acted emotional speech is rooted in the intrinsic advantages of
this approach of data collecting:

1. Emotion portrayals yield intense, prototypical expressions of emotion. Hence,
the search for acoustic correlates and the subsequent automatic classification is
considerably easier.

2. The studio recordings are of high audio quality avoiding problems in signal
processing with reverberated or noisy speech.

3. A balanced distribution of all emotions can be guaranteed improving the perfor-
mance of many machine classification techniques without the need to upsample
(repetition of samples of less frequent emotions) or downsample (reduction of
the data of frequent emotions) the data. Thus, the sparse data problem one has
to face in real application scenarios can be avoided.

4. Data can be collected in a relatively short time and at low cost compared to
other elicitation techniques (s. Chapter 2.4).
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5. Post-processing of the data is rather simple in comparison to recordings of
spontaneous speech since no labeling of emotions is needed as the intended
emotion is known in advance. Additionally, the verbal content produced by
the actors is standardized by that restricting the transliteration of the actually
spoken utterances to the correction of a few misspeakings.

Such material typically is read, non-interactive speech, and the text itself is typically
non-emotional, making the analysis of acoustic characteristics easier, but rendering
any linguistic analysis impossible.

Corpora of acted emotional speech exist for many languages. An overview up to
2003 is given in [Verv 03]. Another attempt to catalog all existing emotion databases
has been made within the European Network of Excellence Humaine3. The web site
lists three different categories of corpora: multi-modal databases (audio-visual, audio-
visual and gestures, audio and physiological measured data), speech only databases,
and databases for facial expressions. The individual databases differ in a number
of properties: the type of emotion elicitation (acted, induced, or real life data), the
emotional content (number, type and intensity of the emotions or emotion-related
states that are represented in the data), the number of subjects, the type of speech
(spontaneous speech, scripted sentences, single words, or nonsense speech), and the
availability (available for research or protected by copyright, legal issues, etc.).

Exemplarily, three widely used corpora of emotion portrayals are mentioned here:
the English Emotional Prosody Speech and Transcripts corpus of the Linguistic Data
Consortium (LDC)4, the Danish Emotional Speech Corpus [Engb 96], and the Ger-
man Berlin Emotional Speech Database [Burk 05]. The corpus of the LDC contains
semantically neutral utterances (dates and numbers) portrayed by eight actors in
fourteen distinct emotions which are selected according to Banse and Scherer’s study
of vocal emotional expression in German [Bans 96]. The Danish Emotional Speech
Corpus contains scripted, not emotionally colored material (single words, sentences,
and text passages) in the four emotions anger, sadness, joy, and surprise portrayed by
four subjects. The Berlin Emotional Speech Database contains scripted, semantically
neutral sentences portrayed by ten subjects in the six emotions hot anger, disgust,
fear/panic, happiness, sadness/sorrow, and boredom. Additionally, all three corpora
contain material in a neutral state.

State-of-the-art recognition performances reported for acted speech are very high,
even if many different emotions are to be distinguished. In [Schu 06], for example, a
classification accuracy of 74.5% is reported on the Danish Emotional Speech Corpus
for the five class problem, and even 87.5% for the seven class problem on the Berlin
Emotional Speech Database. These results are remarkable since they do not only lie
clearly above chance level, but also slightly above the human ability to recognize these
emotions. The average human accuracy is 67.3% on the Danish corpus, and 84.3%
on the German corpus. The human accuracy is evaluated in human perception tests
where subjects who are listening to an isolated utterance of an unfamiliar person have
to decide for one of the given emotion categories. This situation corresponds to the
information given to the machine classifier. The human ability to perceive emotions

3http://emotion-research.net/databases, last visited 01/12/2009
4http://www.ldc.upenn.edu/Catalog/, last visited 01/12/2009

http://emotion-research.net/databases
http://www.ldc.upenn.edu/Catalog/
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is considerably higher if the labeler is familiar with the subject and knows the context
of the present situation. Then, humans can perceive even subtle emotional changes.

Besides the general interest in automatic classification of emotional speech, there
is also growing interest in the applicability of emotion recognition in special applica-
tions. Speech processing moves more and more from the task of understanding what
is spoken to the task of how something is produced. As pointed out in the first section,
information how something is spoken can be useful in any kind of human-machine
communication. Studies of emotions in realistic scenarios are rare. A large-scale
study where test users call dialog systems built by various sites to make air travel
arrangements is reported in [Ang 02]. Smaller studies are reported in [Lee 05] and
[Batl 03b]. But automatic emotion recognition can also be useful in human-human
communication. In [Gupt 07], emotion recognition in call-center dialogs between a
calling person and a human operator is employed to identify dialogs of extreme emo-
tional characteristics like happy or angry moods with the purpose to help call-center
supervisors to monitor the calls and to identify agents who are not able to satisfy the
customer. Another application mentioned in [Clav 06] is public surveillance where
critical situations, e. g. situations where people are threatened, are to be detected.

The emotion categories listed in Table 3.2, 3.4 and 3.5 demonstrate that the
emotional states that can be observed in real applications differ from the emotions
typically portrayed in acted corpora. Naturally occurring emotional states are rather
emotion-related than pure emotions (s. Chapter 2.1 for terminology), occur only
infrequently, and the emotional intensity is quite low.

Unfortunately, collecting data of naturally occurring emotions itself is a rather
problematic task. Some studies use human-human dialogs to obtain naturally occur-
ring emotions. In [Vidr 05], dialogs between a human agent and a client in a stock
exchange customer service center are used. The speech data used in [Devi 06, Vidr 07]
are recordings of real conversations between an agent and a client in a real-life medical
call center. Other studies try to elicit emotions (s. Chapter 2.4).

In real applications, the actually occurring emotional states heavily depend on the
chosen scenario. A lot of studies focus on the detection of a single emotional state
like anger [Arim 07, Kawa 07, Yaco 03], fear [Clav 06], or annoyance and frustration
[Ang 02, Kapo 07]. Related studies aim at classifying laughter [Knox 07, Lask 07],
sleepiness [Kraj 07], suicidal speech [Ying 07], or deception [Enos 07]. The large area
of research on pathological voices is also closely related to this field.

So far, a large number of different features has been proposed to recognize emotional
states. The features can be categorized in prosodic, spectral, and voice quality fea-
tures. Besides these acoustic features, linguistic features provide another source of
information in real application scenarios. In the following, the most common features
of each group as well as recent studies where these features are used are listed in order
to provide an overview over currently used features. Neither the list of features, nor
the cited studies claim to be complete. A detailed description of the features used in
this thesis is given in Chapter 6.

Prosodic Features The most commonly used features in speech emotion recogni-
tion are prosodic features. Prosody characterizes suprasegmental speech phenomena,
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i. e. properties attributed to speech segments that are larger than phonemes like sylla-
bles, words, phrases, or whole turns of a speaker [Noth 99]. Perceived characteristics
are, for example, pitch, loudness, speaking rate, duration, pause, and rhythm. The
most important prosodic functions are the marking of boundaries (“Kohl said: ‘Strauß
will never be chancellor’ ” vs. “ ‘Kohl’, said Strauß, ‘will never be chancellor’ ”), phrasal
accents (“I will go” vs. “I will go”), sentence mood (“On Monday.” vs. “On Monday?”),
and emotional state of the speaker (“Yes, sure.” (positive) vs. “Yes, sure.” (ironic)).

In general, the perceived characteristics do not have unique acoustic equivalents in
the speech signal, but there are acoustic features which highly correlate with them like
the fundamental frequency F0, which highly correlates with perceived pitch, and the
short time signal energy correlating with perceived loudness. The prosodic features
can be categorized into F0 features, energy features, and duration features.

F0 features characterize the change of the F0 values over time within one word,
phrase, or turn. If features for the whole segment are desired, functionals are applied
to the F0 base contour. Common functionals are the mean, the median, the maximum,
the minimum, the standard deviation, and the range. Less frequently, the first and
the third quartile, the centroid, and the third and the fourth standardized moment
are used. The third standardized moment, the skewness, is a measure of the asymme-
try, the fourth standardized moment, the kurtosis, a measure of the “peakedness” of a
probability density. Even though the positions of the extrema describe the F0 contour,
they are temporal measures and are therefore related to the group of duration fea-
tures. Often, these functionals are also applied to the first derivative of the F0 contour
(∆ features) and sometimes also to the second derivative (∆∆ features). Numerous
studies calculate their features using this procedure, but differ in the number of calcu-
lated features and the way the base features are normalized. Exemplarily, these stud-
ies are listed: [Ang 02, Gupt 07, Hu 07a, Kraj 07, Schu 04, Schu 07a, Yild 04, Vogt 05].

Energy features describe the change of the signal energy over time. The approach
is basically the same as for F0 features: functionals are applied to the contour of the
short time signal energy values. In general, studies using F0 features also employ en-
ergy features. Hence, the same exemplary studies as mentioned above for F0 features
can be cited.

Duration based features model the effect of the speaking style on the duration of
the spoken utterance. It can be measured on various units like phonemes (especially
vowels), single words, or the whole utterance. Other units are regions of voiced and
unvoiced sounds with the advantage that no alignment of the spoken word chain to
the sound signal is required. The speaking style also affects the duration of pauses
between words. Again, functionals like mean, median, standard deviation, etc. are
applied. A popular duration feature is the speaking rate defined as the ratio of the
observed duration and the expected duration of the segment. Often, it is approxi-
mated by alternatives which are easier to calculate like the number of vowels [Ang 02]
or phonemes [Yild 04] per second, or the temporal distance between energy extrema
[Vogt 05]. Features related to pauses are the ratio of speech to pause time, the dura-
tion of the longest pause or the number of long pauses inside an utterance [Ang 02].
As mentioned above, the position of the energy and F0 extrema belong to the group
of duration features, too.
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Spectral Features Conventionally, prosodic features only comprise F0, energy,
and duration. Spectral features describe the characteristics of a speech signal in
the frequency domain besides F0 like harmonics and formants. Harmonics are mul-
tiples of the fundamental frequency and are specified by their frequency and their
amplitude. They are used for speech emotion recognition in [Kraj 07]. Formants are
amplifications of certain frequencies in the spectrum resulting from resonance in the
vocal tract. They are characterized by their frequency, their amplitude, and their
bandwidth. Voiced phones have four or more formants. In general, the two lowest
ones are sufficient to disambiguate vowels. The applicability of formant features for
emotion recognition is demonstrated in [Hu 07a, Kraj 07, Vlas 07]. Other spectral
features calculate the spectral energy in various frequency bands [Kraj 07, Ying 07].
The energy slope is the ratio of the spectral energy above a certain frequency (e. g.
1 kHz) to the spectral energy below this threshold [Huan 06].

Further spectral features are the standard features used in speech recognition:
the mel frequency cepstral coefficients (MFCC). Although they have been designed
to extract what is spoken, they have been used successfully in emotion recognition to
recognize how something is spoken [Lee 04, Buss 07, Hu 07b, Seth 07]. These features
are calculated for quasi-stationary extracts of the speech signal. Additionally, the first
and the second derivative of the MFCC values are used [Knox 07, Kraj 07, Vlas 07].
The features can either be averaged over the whole segment (long-term average spec-
trum, LTAS) as in [Kraj 07] or classified directly on the frame level. The a posteriori
scores on the turn level can be used in combination with other turn level features to
improve the classification [Vlas 07]. The MFCC can be replaced by other well-known
speech recognition features like linear predictive cepstral coefficients (LPCC) or mel
filter bank (MFB) features. The latter are investigated in [Buss 07].

Voice Quality Voice qualities are speaking styles like modal (neutral) voice, breathy,
whispery, creaky, harsh, or falsetto voice. They have been characterized by Laver in
terms of the three physiological parameters adductive tension (action of the interary-
tenoid muscles adducting the arytenoids), medial compression (adductive force on
the vocal processes adducting the ligamental glottis), and longitudinal tension (ten-
sion of the vocal folds themselves) [Lave 80]. According to Fant’s source-filter model
[Fant 85], speech production may be modelled as the convolution of the source signal
and the vocal tract filter response. Voice quality is characterized by the form of the
source signal.

Scherer states that “although fundamental frequency parameters (related to pitch)
are undoubtedly important in the vocal expression of emotion, the key to the vocal
differentiation of discrete emotions seems to be voice quality” [Sche 86]. Especially
in the differentiation of subtle variations in emotional states, voice quality seems
to play an important role [Gobl 03]. Experiments in speech synthesis demonstrate
that differences in voice quality alone can evoke different emotional colorings in an
otherwise neutral utterance. In reverse, voice quality features should be able to
provide cues for emotion recognition. Nevertheless, state-of-the-art voice quality
features have fallen short of the high expectations put upon them so far.

The major problem in voice quality research is the estimation of the glottal source.
Inverse filtering (IF) of the speech signal is a non-invasive technique to separate
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the source signal by canceling the effects of the vocal tract. Numerous automatic
inverse filtering algorithms have been proposed (for an overview, please see [Gobl 03]).
The voice quality measures can be determined directly from the IF signal like the
glottal-to-noise excitation ratio [Mich 97] used in [Fern 05], the aperiodic frequency
range [Ohts 01] used in [Mori 07], or the parabolic spectral parameter [Alku 97] used
in [Fern 05]. Unfortunately, these measures are very sensitive to noise. Instead,
parametric models like the four-parameter model of the glottal flow derivative of Fant
and Liljencrants (LF-model) [Fant 85] are fitted to the signal [Fern 05]. This source
model is integrated in the IF algorithm proposed in [Froh 01] resulting in an improved
estimation of the vocal tract resonance filter. Nevertheless, fully automatic methods
tend to perform least well when there is no true closed phase to the glottal cycle and
where automatic estimation of formant peaks is least reliable, as it is the case for
many non-modal voice qualities.

An alternative to inverse filtering are source-related measures obtained from the
spectrum of the speech signal. The two most popular voice quality features are jitter
and shimmer which measure the cycle-to-cycle variation of the period length (recipro-
cal of the fundamental frequency) and the peak (or average) amplitude, respectively.
They are used for emotion recognition in [Fern 05, Hu 07a, Kraj 07, Mich 97, Vlas 07].
Another voice quality feature is the harmonics-to-noise ratio (HNR) [Boer 93], a mea-
sure of the degree of periodicity of a sound, used, for example, in [Hu 07a, Kraj 07,
Vlas 07]. Other measures result from a comparison of the first harmonic with the first
formant or the second harmonic, or the balance of higher versus lower frequencies (see
section on spectral features). However, these measures always reflect source as well
as filter characteristics resulting in an overlap of spectral and voice quality features.

Linguistic Features Many emotion corpora contain emotion portrayals of non-
emotional text in order to make the analysis of acoustic features easier. Hence,
linguistic features are often disregarded. Nevertheless, they can provide additional
cues in real application data.

One approach is the estimation of the probability P(Ωκ|w1w2 . . .wU ) of an emotion
category Ωκ given the word sequence w1w2 . . .wU of an utterance. Like in language
models for speech recognition [Noth 01], n-grams P(Ωκ|wU−n+1 . . .wU ) to reduce the
context and smoothing techniques to handle unobserved n-grams are used. Due
to low observation frequencies of n-grams with n ≥ 3 in the training data, only
unigrams [Devi 03] and bigrams [Polz 00] are promising. Trigrams are used in [Ang 02]
but only with minor success. In [Lee 02], unigrams are only considered for salient
words. Emotional salience is defined as the amount of information that a specific word
contains about the emotion category. In [Schu 05], the information gain ratio (IGR)
is applied to select the seven best emotion discriminating words. Eleven alternatives
to
∏

w P(Ωκ|w) are considered.
Another way to use lexical information are bag-of-words representations of an

utterance known from automatic document categorization. Each component of a
feature vector corresponds to one entry of the lexicon and contains the (absolute
or relative) frequency of the respective word in the given utterance. Alternatively,
the absolute term frequency can be weighted with the inverse document frequency
[Salt 88] and/or the logarithm can be taken. Thereby, information about the order
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of the words within one utterance is lost. Different techniques to reduce the size of
the feature vector exist. Stopping defines a list of words which are excluded from the
vector. Stemming clusters words of the same stem in one category. With principal
component analysis (PCA) or feature selection techniques like sequential forward
floating search (SFFS), the dimension can be further reduced. Experimental results
are reported in [Schu 05, Schu 07a]. In [Gupt 07], words are clustered by building
emotion-dependent dictionaries of words and phrases that are frequently used in the
respective emotion. Words can also be clustered using part-of-speech (POS) features.
In [Bulu 07], the analysis of utterances in four emotions using 13 POS tag types shows
that emotions can be differentiated at the POS level.

The third method mentioned here is a spotting approach for emotional keywords
or phrases which is based on Belief Networks. In [Schu 04], a network of five levels
performing a clustering from words to super-words, phrases, super-phrases, and fi-
nally to emotions is suggested. On the word level, evidence in form of word confidence
scores of the ASR hypothesis is fed into the net.

In the last sections, different types of features have been described that are relevant
to distinguish a set of emotional and emotion-related states from each other. But
the choice of the right features is only one aspect in the automatic classification of
emotional or emotion-related states. Another aspect is the choice of an appropriate
machine classifier.

Machine Classifiers From the area ofmachine learning, a large number of machine
classifiers is known and many of them have been applied in emotion recognition. One
simple linear classifier is linear discriminant analysis (LDA) which is, e. g., used in
[Kraj 07, Batl 06b]. Very popular, but more complex classifiers are artificial neural
networks (ANN), used in [Knox 07, Kraj 07], and support vector machines (SVM),
applied in [Schu 04, Lee 04]. Other classification techniques are classification and
regression trees (CART) [Ang 02] or random forrests. Classifiers which are especially
suited to classify features on the frame level are Gaussian mixture models (GMM). In
order to get classification results on a higher level such as the word or the turn level,
GMM classification can be combined with other classifiers like SVM [Hu 07b, Vlas 07].
To model the variation of the features in time, hidden Markov models (HMM) are
applied as in [Nogu 01, Schu 03, Lee 04].

Although the LDA classifier is simple, resulting in fast training and test cycles,
it seems to be rather robust towards overlapping class areas and, surprisingly, its
recognition performance if often comparable to much more complex classifiers. In
[Batl 06b], LDA is compared to SVM and random forrests. The accuracies in terms of
the average recall (definition in Chapter 4.2.1) are 57.9% for SVM, 58.7% for random
forrests, and 56.3% for LDA. In a study by Krajewski and Kröger on sleepiness
detection, LDA even outperforms ANN [Kraj 07]. The different results show that
there is no one best classifier. Which classifier yields the best results depends on the
data actually used and in the end also on the expertise of the user to get the best
out of the classifier by adequate pre-processing of the data and the right choice of
parameters. For the purpose of comparing different features or feature types, the
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absolute accuracy is of minor importance. The classifiers used within this work are
described in Chapter 4.1.

1.3 Contribution to the Research on Emotion
The overview of current research in the area of emotion recognition from speech
demonstrates that numerous classification techniques as well as a large number of
features can be used to automatically recognize emotional states. By now, the per-
formance of automatic recognition systems is high – even if many emotions are to
be distinguished – and is comparable to the human ability to distinguish emotional
states, at least if the utterances are labeled without context and the subject is un-
known to the labeler. However, most of the studies are based on speech data from
emotion portrayals. The excellent classification results obtained so far allow to raise
the level of difficulty by focusing on noisy or reverberated speech data [Schu 07c] or
by turning towards the recognition of naturally occurring emotional states as they
can be observed in real application scenarios. We consider the latter to be the most
important stage in the research on automatic emotion recognition, similar to the
change in speech recognition from read speech to spontaneous speech.

Unfortunately, adequate speech corpora of naturally occurring emotions are rare
or are not available for research. Our new FAU Aibo Emotion Corpus contains
naturally occurring emotional speech of children playing with Sony’s robot Aibo.
Besides neutral, the emotional/emotion-related states joyful, surprised, motherese,
bored, emphatic, helpless, touchy, reprimanding, angry, and other are annotated.
Problems of the elicitation of emotional speech in the chosenWizard-of-Oz experiment
are the sparse-data problem and the low emotional intensity. Although the chosen
scenario is very specific, the study gives further evidence that emotional states that
can be observed in real scenarios are not the full-blown emotions that have been
studied mainly so far. Based on the one hand on the decisions of the reference
labelers and on the other hand on acoustic features, the dimensions valence and
interaction could derived from the data. Valence is one of the dimensions postulated
by psychologists. However, the second dimension on this type of data cannot be
interpreted as one of the well-known dimensions arousal and control.

A new measure to evaluate decoders (single human labelers or machine classifiers)
is proposed which weights a classification error, i. e. any deviation from the majority
vote of the group of reference labelers, w. r. t. the decisions of the single reference
labelers for the specific segment under consideration. Applied to the FAU Aibo
Emotion Corpus, our classification system proves to be comparable to the average
human labeler of our group of labelers w. r. t. both the number and the type of errors
– even on this difficult type of data.

This new corpus provides the common data basis of the project Ceices, a unique
initiative, launched by our research group, where the participating international part-
ners contribute their feature sets in order to compare different feature types across
the borders of individual research institutes.

In this thesis, features covering prosodic, spectral, voice quality as well as linguis-
tic features are presented. The different types of features are evaluated separately
and promising types are combined by early and late fusion resulting in a very compet-
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itive, but compact set of features. Since emotional states can change rather quickly,
even within one turn, the emotional state is labeled on the word level. By calculating
features on the word level, our approach differs from those of most other research
groups. In order to find out which unit of analysis is the most appropriate one for
emotion recognition, classification experiments on the word, the chunk, and the turn
level are carried out. The best results are obtained on the chunk level, which is a
compromise between the length of the unit and the homogeneity of the emotional
state within this unit. Duration based and F0 based features rely on a correct word
segmentation and F0 extraction, respectively. Features based on an automatic word
segmentation and on automatically calculated F0 values are compared to those fea-
tures that are based on a manually corrected version. Different types of errors are
quantified. It can be shown that the impact of segmentation and F0 extraction errors
on emotion recognition is not significant.

This work has been part of the European Network of Excellence Humaine, an
international and interdisciplinary research project on human-machine interaction
and emotion. Scherer has suggested to base theory and research in the vocal com-
munication of emotion on a modified version of Brunswik’s functional lens model of
perception. Parts of this work – the evaluation of decoders (both human labelers and
machine classifiers) and the evaluation of acoustic and linguistic features – fit nicely
into this framework.

1.4 Structure of this Work
The following chapter Human Emotions and Emotion-related User States defines the
term emotion together with other terms in this context, in particular the broader term
emotion-related state which defines the states that are subject of the presented work.
Different emotion theories from the psychology of emotion are addressed. These the-
ories constitute what emotions are and how many emotions exist. Emotion theories
have an impact on how emotions can be described and thereby on the labeling pro-
cess of emotional data. Furthermore, the chapter addresses how emotions affect the
human vocal communication and different types of studies on vocal communication of
emotion are presented. The chapter closes describing possibilities to elicit emotions.
These elicitation techniques influence the building of new emotion corpora.

Chapter 3, Labeling of User States, deals with two alternatives of labeling, namely
category and dimensional labeling, and the problems that arise if application-oriented
emotional data is labeled. In addition, possibilities of labeling emotions that change
over time are addressed and an extension of category labels to soft decisions is intro-
duced. Finally, measures of inter-labeler agreement for nominal data are presented.

Chapter 4, Classification and Visualization Techniques, presents the fundamen-
tal principles of statistical machine classification and the principles of the machine
classifiers which are actually used in the experiments of this work, namely Gaussian
mixture models, linear discriminant analysis, and artificial neural networks. Besides
established ways of evaluating classifiers, e. g. calculating the recognition rate, recall,
precision, or F-measure, a new measure based on the entropy is introduced which
compares the decision of the decoder to the decisions of the reference labelers and
weights errors according to this comparison.
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Chapter 5, FAU Aibo Emotion Corpus , describes the emotion speech corpus used
in this thesis from the design and the recording settings, to the segmentation of the
audio stream and the transcription of the speech, to various annotation steps. The
alignment of the data segments to the pre-defined behavior of the robot dog, the
manual corrections of the segmentation on the word level and the F0 values, and the
annotated emotion, prosodic, and syntactic labels are described. Various data sets
used in the experiments are defined and an analysis of both the German and the
English version of the corpus is performed. The emotion-related user states are ar-
ranged and visualized in a low-dimensional space using nonmetric dimensional scaling
on the basis of confusions between labelers. The chapter ends with a description of
the Ceices initiative launched by our research group. With the FAU Aibo Emotion
Corpus, Ceices offers a commonly available emotional speech database and facili-
tates research on emotional speech by bringing together competence and feature sets
of the participating partners.

Chapter 6, Features for Emotion Recognition from Speech, introduces the different
features used in the experiments. The experimental results are presented in Chap-
ter 7, Experimental Results on Emotion Recognition. Different types of features are
evaluated w. r. t. their applicability in an automatic classification system for emotion-
related user states. The feature types are features of the existing Erlangen Prosody
Module, which are based on energy, F0, duration, and pauses, frequency features like
DFT, MFCC, and TRAPS features known from speech recognition, voice quality fea-
tures like shimmer, jitter, and harmonics-to-noise ratio, linguistic features based on
the spoken word chain, and features based on the behavior of the pet robot which is
known in the case of the FAU Aibo Emotion Corpus. The feature types are evaluated
on the word, the turn, and the chunk level to compare different segmentations.

The thesis closes with the two remaining chapters 8 and 9. Chapter 8 gives an
outlook on future research in the area of automatic emotion recognition from speech
whereas Chapter 9 summarizes the presented aspects of emotion recognition together
with the main experimental results.



Chapter 2

Human Emotions and
Emotion-related User States

The question about the nature of emotions is very old, dating back to at least the Hel-
lenistic philosophers. Nevertheless, it is still a topic of ongoing debate and research
in modern psychology. Thereby, many modern psychological models of emotion are
highly influenced by historical perspectives. Discrete emotion models, assuming that
only a small number of basic emotions exist, for example, are based on the Darwinian
perspective and have influenced many researchers also from other areas like computer
science to focus mainly on data containing only the “Big Six” emotions. In the fol-
lowing section, before presenting modern emotion theories and their historical roots,
various terms associated with the phenomenon emotion are defined and delimited
from each other. Then, vocal expressions of emotions, as they have been found in
emotion psychology experiments, are summarized. The last section presents different
possibilities to elicit emotions.

2.1 Terminology

The definition of the term emotion is the basis for any kind of research in this area.
Only a common definition allows to compare results of different research groups and
to avoid misunderstandings. The way emotions are defined also determines the kind
of phenomena being examined in emotion research. For the purposes of this work, a
working definition by Scherer [Sche 00] is used, which defines emotions as

“episodes of coordinated changes in several components (including at least
neurophysiological activation, motor expression, and subjective feeling
but possibly also action tendencies and cognitive processes) in response
to external or internal events of major significance to the organism”.

The triggering external events can be, for example, the “behavior of others, a change
in a current situation, or an encounter with novel stimuli” [Sche 00]. Internal events
are, for example, thoughts, memories, and sensations. Besides all definitional debates,
this definition mentions different elements of emotions for which according to [Sche 00]
increasing consensus can be found in the literature:

13
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1. Emotions are of episodic nature and are highly distinctive [Cowi 03]. The under-
lying assumption is that a noticeable change in the functioning of the organism
is caused by some triggering external (e. g. the behavior of others) or internal
(e. g. thoughts, memories, sensations) event. Emotion episodes last for a cer-
tain duration and normally do not stop abruptly, but fade out with decreasing
intensity making the detection of the offset harder than the onset.

2. Emotions consists of several components, including the reaction triad of emotion
(cf. [Sche 00]), namely physiological arousal, motor expression, and subjective
feeling. Necessary components may also be action tendencies and cognitive pro-
cesses being involved in the evaluation of the eliciting events and the regulation
of the ongoing emotional processes.

3. The emotion triggering internal or external stimuli or events are of major sig-
nificance to the organism. Thus, emotions have been called relevance detectors
[Frij 86]. The required evaluation of events with respect to their meaning for the
organism determines the functional response (adaptation to or mastery of the
situation) of the organism as well as the nature of the organismic and mental
changes that will occur during the emotional episode.

4. Emotional episodes are of unitary character. They require interdependent and
synchronized changes in the component processes.

Various terms highlighting the episodic and distinctive character of emotions exist,
each of them carrying specific theoretical implications: ‘primary emotions’ [Plut 84],
‘basic emotions’ [Stei 92], ‘modal emotions’ [Sche 94], or ‘acute emotions’ [Laza 94].
In order not to prejudge theoretical issues, Cowie et al. [Cowi 01] use Scherer’s term
‘full-blown emotion’ [Sche 99] as a neutral way to refer to episodes that would be
widely regarded as prime examples of emotion.

With the given definition, Scherer tells apart emotions from other affective phe-
nomena like moods, interpersonal stances, attitudes, or personality traits as listed
together with brief definitions in Table 2.1. Table 2.2 contrasts emotions from these
other four affective states on a number of design features which typically include the
intensity and the duration of the state, the degree of synchronization of different or-
ganismic systems during the state, the extent to which the change in state is triggered
by or focused on an event or situation, the influence of the antecedent evaluation or
appraisal of the situation, the rapidity of change, and the influence on the behavior.

In this work, different states of children (see Table 5.10) are investigated which are
not emotions according to the given definition above. Cowie prefers the term emotion-
related states [Cowi 03], whereas Scherer calls them affective states [Sche 00], using
the term affect as cover term for all states related to emotion in a broad sense. Theses
states explicitely include states focusing on the cognitive (states like alert, hopeful,
sincere), or on the cognitive and behavioral component (states like funny, sarcastic).
In contrast, Frijda defines affect as the “irreducible aspect that gives feelings their
emotional, non-cognitive character” [Frij 93]. Within this work, the term emotion-
related is preferred. In the special context of human-machine interaction, the state
of the human conversational partner in the interaction with the machine is called
emotion-related user state.
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affective state brief definition examples
emotion relatively brief episode of synchronized

response of all or most organismic
subsystems in response to the
evaluation of an external or internal
event as being of major significance

angry, sad, joyful,
fearful, ashamed,
proud, elated,
desperate

mood diffuse affect state, most pronounced
as change in subjective feeling, of low
intensity but relatively long duration,
often without apparent cause

cheerful, gloomy,
irritable, listless,
depressed, buoyant

interpersonal
stances

affective stance taken toward another
person in a specific interaction,
coloring the interpersonal exchange in
that situation

distant, cold,
warm, supportive,
contemptuous

attitudes relatively enduring, affectively colored
beliefs, preferences, and
predispositions towards objects or
persons

liking, loving,
hating, valuing,
desiring

personal
traits

emotionally laden, stable personality
dispositions and behavior tendencies,
typical for a person

nervous, anxious,
reckless, morose,
hostile, envious,
jealous

Table 2.1: Brief definition of five affective states with examples after [Sche 00]

2.2 Emotion Theories

Emotion theories in the psychology of emotion predict the number of different emo-
tions that can be expected, how these emotions are differentiated, and why and in
which situations emotions are elicited. Thus, the impact of emotion theories on other
areas of research like affective computing in computer science is extraordinarily high.
They influence the content of emotion databases and by that the basis of recognition
experiments. They control the way data of unknown emotional state is labeled. In
synthesis of emotions, they define the point in time when an embodied conversational
agent reacts emotionally, the selection of the most suited emotion, its intensity, and
the way how emotions are synthesized.

In modern psychology of emotion, many concurrent emotion theories exist, each
of them capturing and explaining at least some aspects of the complex phenomenon
emotion. A short overview over modern emotion theories emotion theories as well
as their historical development can be found, e. g., in [Corn 00], a more detailed one
in [Sche 00] which the following brief overview is based on. Basic emotion models
and multidimensional models are most relevant for this thesis. The classification
experiments are based on discrete emotional states. However, the states are rather
emotion-related than emotions proper. Dimensions of emotions are derived in a data-
driven approach and compared to those ones postulated by multidimensional models.
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type of affective state inten- dura- syn- event appraisal rapid- behav-
sity tion chroni- focus elicita- ity of ioral

zation tion change impact
emotion :: - ::: : ::: ::: ::: ::: :::

mood : - :: :: : : : :: :

interpersonal stances : - :: : - :: : :: : ::: ::

attitudes ◦ - :: :: - ::: ◦ ◦ : ◦ - : :

personality traits ◦ - : ::: ◦ ◦ ◦ ◦ :

◦: low, :: medium, ::: high, :::: very high, -: indicates a range

Table 2.2: Design feature delimitation of different affective states after [Sche 03a]

2.2.1 Historical Roots

The following conceptions and debates show the continuity of some argumentation
strands that are used currently in debates about emotions. They are essential for the
understanding of current theories and research objects in the psychology of emotion.

Plato

More than two millennia ago, the ancient Greek philosopher Plato (427-347 BC)
suggested that the soul has a tripartite structure, composed of three separate and
opposing areas: cognition, emotion, and motivation. This postulate of three separate
systems has been a near-constant controversial issue in the psychology of emotion. In
recent years, this debate has been reinvigorated under the name of “cognition-emotion
debate”. 50 years after Plato formulated the doctrine of the tripartite soul, Aristotle
argued for the impossibility of such a separation and for the assumption of an inter-
action of the different levels of psychological functioning. Many modern psychologists
try to overcome thinking in separate systems and emphasize the interlacement of the
cognitive, motivational, and emotional processes.

Descartes

Descartes (1596-1650), a French philosopher, mathematician, scientist, and writer,
revolutionized the psychology of emotion by proposing to handle mental and physio-
logical processes at the same time. Since that time, the relationship between mental
and bodily phenomena is discussed undiminishedly in the so called “mind-body de-
bate”. Examples of current debates are the nature of physiological patterning for
specific emotional states or the potential retroaction of expressive innervation of the
muscles on mental states.

Darwin

In his book “The Expression of the Emotions in Man and Animals” [Darw 72] from
1872, Charles Darwin (1809-1882), an English naturalist, described the facial ex-
pressions and bodily movements that come along with several emotions in humans
and animals together with a simple theory of the evolution of such expressions and
movements.
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According to Darwin, emotions are survival-related patterns that have evolved to
solve certain problems that a species has faced over its evolutionary history. They
have to be understood in terms of their function, namely their survival value. Conse-
quently, emotions have to be, more or less, the same in all humans and, in particular,
independent of the culture. In addition, because of the common evolutionary past
of humans and other animals, similarities in the emotions should be observable for
closely-related species.

In the tradition of Darwin, many researchers have tried to demonstrate the univer-
sality of emotions, especially of certain human facial expressions (Ekman, Izard, Frid-
lund, Tompkins). Over the last 30 years, they have collected an impressive amount of
evidence for the universality of a small number of facial expressions of emotions. This
number is varying depending on different research groups. Ekman uses six univer-
sal facial expressions, namely happiness, sadness, fear, disgust, anger, and surprise,
sometimes also seven, including contempt. This smaller set is often called the “Big
Six” [Corn 96]. According to Izard, there are ten universal facial expressions, Plutchik
identifies eight ones. In general, this number varies between six and 14.

Anthropologists as well as social psychologists have strongly attacked Darwin’s
theory, regarding emotions as sociocultural products determined by learned social
rules. This controversy is known as “biology versus culture” debate.

Nevertheless, Darwin’s theory is probably the one with the most imposing and
enduring impact on the modern psychology of emotion. It has led to the strong focus
on emotion expression in face, body, and voice, and has encouraged many current
intercultural studies and developmental approaches.

James

In his 1884 article “What is an emotion?” [Jame 84], William James (1842-1910),
an American psychologist and philosopher, postulated that emotions do not elicit
physiological changes, but that emotion is the feeling of the bodily changes as they
occur. These changes are caused by the perception of an exciting fact. Consequently,
emotions cannot occur without any bodily changes and the body always responds
first before the experience of the bodily changes constitutes what is called emotion.
James said, “we feel sorry because we cry, angry because we strike, afraid because we
tremble” [Jame 84, p. 190]. The experience of different emotions implies the existence
of unique patterns of bodily responses.

Whereas Darwin concentrated on how emotions are expressed, James tried to
explain the nature of emotional experience. James agreed with Darwin that emo-
tions are adaptations to the environment helping the organism to survive. Darwin
as well as James considered emotions as more or less distinctive, automatic, and
preprogrammed responses to environmental events. They are predispositions to act
in a certain way. In comparison, contemporary emotion theorists in the tradition of
Darwin and James consider emotions as action tendencies [Frij 86].

Today, most theorists agree that feeling as the reflection of what is happening in
other components or modalities is at least one of the components of emotion. After
more than a century of research, three conclusions related to James’s theory seem to
be warranted according to Cornelius [Corn 00]:
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1. James assumed that someone with no body “would be excluded from the life of
the affections” [Jame 84]. Studies of people with spinal cord injuries [Hohm66,
Chwa 88] confirm that feedback of the body plays at least an important role
in experiencing emotions, mainly those emotions associated with anger. In
particular, the degree of impairment seems to correlate negatively with the
intensity of the experienced emotion. Nevertheless, other emotions like love
and compassion seem to be experienced with a higher intensity after injury.

2. According to studies by Levenson et al. [Leve 92a, Leve 90], emotions can be
differentiated at the level of the autonomic nervous system. This supports the
theory of unique bodily response patterns. Reliable differences in the patterns
of heart rate and finger temperature change associated with fear, anger, disgust,
and happiness could be found.

3. Different studies ([Leve 90, Lair 84, Stra 88, Step 93]) have shown that facial ex-
pressions and bodily postures may drive emotional experience. Several theorists
(e. g., Levenson et al. [Leve 90]) have proposed the existence of affect programs
that activate a number of expressive, motor, and experiential systems. Is any
one of these programs activated, it may also activate others. With respect to
speech, prosody would be expected to be one of the systems being activated by
affect programs and, vice versa, should be able to activate them.

The cited examples of current research demonstrate the great influence the histor-
ical theories mentioned above have had on the psychology of emotion and still have.
The next section outlines modern psychological models of emotion.

2.2.2 Current Psychological Models of Emotion

Emotion theories define the number of existing emotions that can be distinguished as
well as the principles that lead to this differentiation. With respect to both aspects,
current emotion theories differ greatly.

Dimensional Models

Dimensional models distinguish emotions according to different characteristics such
as the degree of excitation, pleasantness, or relaxation. These models can be discrim-
inated on the basis of the number and the kind of dimensions employed.

Unidimensional Models Although proponents of unidimensional models acknowl-
edge a variety of fine distinctions between emotional states, they claim that the basic
distinction between different emotions can be made on the basis of only one single
dimension. Depending on the theorist, this dimension is either activation/arousal
– the subjective state feeling activated or deactivated – or valence – the subjective
feeling of pleasantness or unpleasantness.

For the activation/arousal dimension, the major difference between emotions is
the degree of arousal from very little to very much. Duffy went even to the lengths
of abolishing the term emotion in favor of the adoption of terms denoting general
excitation [Duff 41]. The level of activation can be thought of the strength of the
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person’s disposition to take some action linking the activation dimension to James’
understanding of emotions as dispositions to act in certain ways and Frijda’s action
tendencies.

If the dimension is valence, the most important distinguishing mark between
emotions is the degree of pleasantness, ranging from unpleasant, bad, or disagreeable
on the one pole to pleasant, good, or agreeable on the opposite one. In this way,
positive and negative emotions can be discriminated, reflecting the two fundamental
behavioral orientations approach and avoidance [Schn 59].

Multidimensional Models In multidimensional models, emotional states can be
represented as coordinates in a low-dimensional space. In 1874, Wundt suggested
the three independent dimensions pleasantness–unpleasantness, rest–activation, and
relaxation–attention [Wund 10]. In the mid twentieth century, multidimensional mod-
els were taken up again by several researchers. In 1954, Schlosberg pointed out the
relevance of the two dimensions valence and arousal [Schl 54]. He demonstrated that
this two-dimensional space is applicative to represent a considerable amount of in-
formation about emotion. Plutchik [Plut 62, Plut 80] and Russel [Russ 80, Russ 83]
also contributed to the popularity of this two-dimensional model. Cowie et al. call
this space activation-evaluation space [Cowi 01]. Full-blown emotions form a roughly
circular pattern in this space.

The activation-evaluation model provides a way of describing emotional states
that is more tractable than using words and, hence, especially attractive to compu-
tationally oriented research. Nonetheless, emotion-related words can be translated
into positions within the two-dimensional space and, vice versa, positions can be
translated back into verbal descriptions. Two-dimensional spaces can be illustrated
graphically and similarities and differences of emotions can be expressed and visual-
ized as Euclidean distances between points in this space.

However, the reduction of the multidimensional space to only two dimensions goes
with a loss of information. The close neighborhood of anger and fear in the activation-
evaluation space, for example, makes an effective separation of both emotions impos-
sible. The problem can be solved by adding perceived control or inclination to engage
as a third dimension. In both cases, anger is positive whereas fear is negative. Un-
fortunately, adding one more dimension yields only a few more emotional states that
can be separated and once one starts to add further dimensions, the question arises
where to stop [Cowi 03].

Discrete Emotion Models

In contrast to dimensional emotion models, discrete models claim that only a few
discrete emotions exist.

Circuit Models Circuit models are used in the neuropsychology of emotion. The
basic assumption is that evolutionarily developed neural circuits determine the num-
ber of fundamental emotions as well as their differentiation. Panksepp [Pank 82,
Pank 89] argues for the existence of four fundamental circuits which produce well-
organized, clear behavioral sequences for rage, fear, expectancy, and panic. Addi-
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tionally to these primary order emotive states, the theory suggests the existence of
emotive states of secondary order, that are produced by blending activities across the
primary systems, in order to be able to explain not only the emotional behavior of
lower mammals but also of primates, especially humans.

Basic Emotion Models Theories suggesting the existence of basic or fundamental
emotions such as anger, fear, disgust, sadness, and joy belong to the most popular
conceptualizations of the nature of emotion. They are strongly supported by the
existence of corresponding verbal labels used frequently in everyday life. Similar to
circuit models, theorists in this tradition proceed on the assumption that a number
of major adaptive emotional strategies has developed over the course of evolution
that consist of a limited number of fundamental emotions. These emotions can be
distinguished according to their specific elicitation conditions and their physiological,
expressive, and behavioral reaction patterns. In general, the number of basic emotions
varies between six and 14.

Many of these models are derived from Darwin’s work [Darw 72] where he demon-
strated the functionality, evolutionary history, and universality across species, on-
togenetic stages, and cultures for a number of major emotion terms in the English
language. Tomkins [Tomk 62, Tomk 84] extended Darwin’s theorizing: he regarded
basic or fundamental emotions as phylogenetically stable neuromotor programs. The
reactions range from peripheral physiological responses to muscular innervation, par-
ticularly in the face. They are automatically triggered by specific eliciting conditions
which differ in the gradient of neural firing. The face is of important relevance as it
is considered to be the primary differentiating effector system.

Izard and Ekman extended Tomkins’ theory and contributed substantially to the
popularity of his concept. They attempted to obtain empirical evidence, particularly
with respect to the following three aspects: firstly, the early ontogenetic onset of dis-
crete emotion patterns [Izar 80, Izar 94, Izar 95], secondly, the discrete patterning of
prototypical facial expressions for a number of basic emotions, and thirdly, the uni-
versality of these patterns [Ekma 72, Ekma 73, Ekma 80, Ekma 94, Ekma 92, Izar 72,
Izar 90, Izar 94, Leve 92b].

The large variety of emotional states cannot be explained with the limited number
of basic emotions. Mechanisms to mix or blend basic emotions had to be postulated.
Plutchik, also supporting Darwin’s evolutionary theory, assumes eight basic emotions,
made up of four pairs of opposites: joy and sadness, acceptance and disgust, fear
and anger, and surprise and anticipation [Plut 80]. Opposite emotions inhibit or
neutralize each other and, hence, are arranged as opposite sectors in his emotion wheel
(Figure 2.1 right). In contrast, primary dyads, mixtures of two adjacent emotions,
can be experienced at the same time as blended emotions. The complex emotion of
contempt, for example, is produced by mixing the basic emotions anger and disgust.
Secondary and tertiary dyads are mixtures of two primary emotions that are once
and twice respectively removed on the circle. Nevertheless, emotion names could not
be found for each of these mixtures, suggesting that mixtures of emotions that are
more widely separated on the emotion circle are harder to imagine or less likely to
be experienced than those that are closer. Also mixtures of three basic emotions,
so-called triads, might be possible.
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Figure 2.1: Left: Plutchik’s Emotion Solid; the vertical dimension represents in-
tensity. Right: cross section of the Emotion Solid with eight basic emotions (also
known as Plutchik’s Emotion Wheel) and the primary dyads resulting from mixing
two adjacent primary emotions; after [Plut 80, p. 157 ff.]

According to Plutchik, emotions vary also in their intensity. For each basic emo-
tion, he defines an intense version and a less intense one (Figure 2.1 left). Neverthe-
less, the less intense emotions are, the more difficult it is to distinguish them.

Also Ekman and Izard have elaborated their theories to account for the large
variety of emotional states as well as for environmental and cultural effects on the
emotional development [Ekma 94, Izar 94]. In this context, Ekman introduced the
concept of emotion families.

Meaning Oriented Models

Lexical Models Theorists in this tradition assume that the wisdom of the language
can be used to discover the underlying structure of psychological phenomena. The
basis of lexical models is the structure of semantic fields of emotion terms. Although
psychophysiological processes are largely unconscious and it is unclear whether the
semantic structures of the emotion lexicon can be mapped onto them, this approach
is appealing as it activates common cultural interpretation patterns.

Ortony et al. performed a structural analysis of the emotion lexicon to demonstrate
the underlying semantic implicational structure [Orto 88]. Shaver et al. built trees of
emotion terms with differential degrees of generality in the classification of emotional
states by cluster analysis methods [Shav 87].

Social Constructivist Models According to the social constructivist theories, so-
cioculturally determined behavior and value patterns make up the meaning of emotion
in general. Although psychobiological components of emotion are not denied, they
are considered secondary to the meaning that emotion attains in the sociocultural
context. This holds both for the interpretation of the eliciting event or situation and
the role of the emotion reaction in the person’s sense-making and social interaction.
As in lexical models, emotion lexicons are of major importance as emotion labels
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available in a language are considered to reflect the emotional meaning structure in
the respective culture.

Componential Models

Componential models assume that emotions are elicited by a cognitive (but not nec-
essarily conscious or controlled) evaluation or appraisal of antecedent situations or
events. The result of this evaluation determines the patterning of the reactions in
the different response domains (physiology, motor expression, action tendencies, and
feeling).

In the context of explaining the elicitation of emotions, the term appraisal was
first used by Arnold [Arno 60]. She distinguished three different appraisal dimensions:
beneficial vs. harmful, presence vs. absence of some object, and relative difficulty to
approach or avoid the latter. Lazarus argued for a two-stage process where, in the
first stage, the significance of the event for one’s well-being and, in the second stage,
the ability to cope with the consequences of the event is evaluated [Laza 66].

Among others, appraisal theories differ in the conceptualization of emotion differ-
entiation. Four major strands can be distinguished depending on whether events are
appraised with respect to certain postulated criteria, attributions, themes, or mean-
ings [Sche 99]. According to the classic approach to appraisal, based on the early work
of Arnold and Lazarus, individuals use a fixed set of criteria to evaluate the signifi-
cance of the events that happen to them. These criteria comprise intrinsic character-
istics of the objects or events such as novelty or agreeableness, the significance of the
event for one’s needs and goals, the individual’s ability to cope with the consequences
of the event, and the compatibility of the event with social or personal standards,
norms, or values. Table 2.3 lists the major criteria as postulated by Frijda [Frij 86],
Roseman [Rose 84, Rose 91, Rose 96], Scherer [Sche 84b, Sche 84a, Sche 86, Sche 88],
and Smith/Ellsworth [Smit 85].

Appraisal theories also differ in the number of predicted major emotions. Typ-
ically, the ensuing emotion is determined by specific profiles of appraisal outcomes.
In Scherer’s component process model, there are as many different emotional states
as differential patterns of appraisal results exist.

Ortony et al. developed a computationally tractable model of emotion especially
to be used in artificial intelligence systems [Orto 88]. Emotions are valanced reactions
to certain cognitions and interpretations determined by the appraisal of consequences
of events for oneself or for others, own actions or actions of other agents, and aspects
of objects. The structure of emotion types in the theory of Ortony et al. is presented
in Figure 2.2.

2.3 Vocal Expression of Emotion

Emotional expression plays an important role in human speech communication and
has a powerful impact on the listener. This fact has been recognized throughout
history. Already Greek and Roman manuals on rhetoric (e. g., by Aristotle, Cicero,
Quintilian) pointed out the strategic use of emotionally expressive speech [Kenn 72].
In [Sche 03a], Scherer gives a short overview of the history of research in the field
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Scherer Frijda Roseman Smith/Ellsworth
novelty change attentional activity
• suddenness
• familiarity familiarity
• predictability
intrinsic pleasantness valence pleasantness
goal significance appetitive/aversive
• concern relevance focality motives importance
• outcome probability certainty certainty certainty
• expectation presence
• conduciveness open/closed motive consistency perceived obstacle/
• urgency urgency anticipated effort
coping potential
• cause: agent intent/self-other agency human agency
• cause: motive
• control modifiability control potential situational control
• power controllability
• adjustment
compatibility standards
• external value relevance legitimacy
• internal

Table 2.3: Comparison of different appraisal criteria after [Sche 99]

of vocal expression of emotion. The main milestones are briefly mentioned here: In
the 19th century, the emergence of modern evolutionary biology (cf. Chapter 2.2.1)
boosted the interest in the expression of emotion in face and voice. First empirical
investigations of the effect of emotion on the voice were conducted at the beginning
of the 20th century. With the help of newly developed methods of electroacoustic
analysis, psychiatrists tried to diagnose emotional disturbances. Inventions like the
telephone and the radio and their rapid and wide distribution promoted the scientific
interest in the communication of speaker attributes and vocal cues in speech. In
the 1960s, systematic research programs started involving many different research
areas: Psychiatrists renewed their interest in diagnosing affective states via vocal
expressions, non-verbal communication researchers investigated the way emotions are
carried by different bodily channels, emotion psychologists explored the expression of
emotion in different modalities, and linguists and phoneticians studied the relevance
of pragmatic information in speech. Progress in acoustic signal processing allowed
engineers and phoneticians to use more sophisticated technologies in the analysis of
speech and, at the same time, to process a larger amount of data. Recently, due
to advances in automatic speech processing and understanding, speech scientists and
engineers directed their attention to the recognition of affective user states and to the
synthesis of emotions with the goal to increase the naturalness of a human-machine
dialog and, hence, to increase the acceptability of such systems for human users.

Scherer suggested [Sche 78, Sche 03a] to base theory and research in the vocal
communication of emotion on a modified version of Brunswik’s functional lens model
of perception [Brun 56] – a metaphor highlighting the probabilistic relationships be-
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Figure 2.2: OCC model: structure of emotion types after [Orto 88]

tween an ecological criterion and the sensory cues that an organism uses to judge
this criterion. The cues are focused by cognitive processes like rays of light. The
model adapted to the vocal communication of emotion is depicted in Figure 2.3. The
emotional state of the speaker is expressed – or encoded – by certain voice and speech
characteristics which can be measured objectively in the speech signal. Physiological
changes with effect on the respiration, phonation, and articulation produce specific
patterns of acoustic parameters for each emotion. For an observer, these acoustic
changes can be cues to the speaker’s emotional state and are called distal cues (distal
in the sense of distant from the observer). As part of the speech signal, they are
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Figure 2.3: Scherer’s modified version of Brunswik’s functional lens model of percep-
tion after [Sche 78, Sche 03a]

transmitted to the listener who perceives them via the auditory perceptual system.
Emotional states might not always produce reliable externalizations in form of spe-
cific distal cues in the voice. In Brunswik’s terminology, ecological validity is the
degree of correlation between such characteristics and the underlying speaker state.

The perceived cues of the speaker’s emotional state are called proximal cues (in the
sense of close to the observer). Whereas Brunswik saw the proximal stimulus as close
but still outside the organism, Scherer places them inside the organism. In auditory
perception, the fundamental frequency of a speech signal, for example, represents the
distal cues. Each phase of the input, transduction, and coding process – beginning
with the impact on the pattern of vibration along the basilar membrane and, in turn,
on the pattern of excitation along the inner hair cells, to the subsequent excitation
of the auditory neurons, and finally, to the representation in the auditory cortex –
might be considered as proximal representation. Since it is difficult to measure the raw
input directly, Scherer argues to extend this term to the neural representation of the
stimulus information as coded by the respective neural structures. Thus, the proximal
cue for fundamental frequency would be perceived pitch. At least the conscious
part of this representation can be assessed via self-report. Various influences of the
transmission channel (e. g., reverberation, noise) and the structural characteristics
of the perceptual organ and the transduction and coding process (e. g., selective
enhancement of certain frequency bands) may modify or distort the distal cues in such
a way that they no longer carry the essential information. Thus, distal characteristics
are not necessarily equivalent to the proximal cues produced in the observer.

Finally, if the distal cues are valid and the proximal cues reliably map them, it
is still possible that the inference mechanism of the respective listener leads to the
wrong conclusion about the speaker’s emotional state.



26 Chapter 2. Human Emotions and Emotion-related User States

By means of Scherer’s functional lens model, major research issues in the area of
vocal communication of emotion can be identified (indicated by curved arrows in
Figure 2.3):

Encoding Studies Emotions can only be communicated reliably via vocal expres-
sion alone if unique patterns of acoustic parameters, or distal cues in the context
of a Brunswikian lens model, exist for different types of emotion. In the psychol-
ogy of emotion, many empirical encoding studies have been conducted over the last
six decades, attempting to determine which acoustic changes correspond to which
emotional speaker states. These studies differ in the kind of speech data being inves-
tigated. According to the type of emotion elicitation (see Chapter 2.4), they can be
categorized into three groups: natural vocal expression, induced emotional expres-
sion, and simulated emotional expression.

So far, only a limited number of acoustic cues has been studied by psychologists.
They can be classified into four categories [John 00]:

1. time-related measures like rate and duration of vocal sounds and pauses, phrase
duration and word rate,

2. intensity-related measures like the logarithmic transform of the signal energy,

3. measures related to the fundamental frequency like F0 floor, F0 range, F0 vari-
ance, F0 skewness, jitter, spectral slope of the glottal spectrum, and the ratios
of the energy of the harmonics and the fundamental frequency, and

4. combined time-frequency-energy measures like formant amplitudes and band-
widths, long-term resonance characteristics of the vocal tract obtained by a
long-term average spectrum (LTAS) calculated separately for voiced and un-
voiced sections of speech, and various parameters characterizing the sound pro-
duced at the glottis prior to the effects of the vocal tract resonance (glottal
waveform analysis).

Johnstone and Scherer ([John 00], see also [Sche 86, Bans 96, Sche 03a]) have re-
viewed the converging evidence from various studies with respect to the acoustic pat-
terns characterizing the vocal expression of the major modal emotions anger/rage,
fear/panic, sadness, joy/elation, boredom, and stress (although stress is not a single,
well-defined emotion). Table 2.4 shows the results.

Much of the consistency is due to differential levels of arousal for the target emo-
tions. In the past, it has often been assumed that voice can only mark physiological
arousal but, in contrast to facial expressions, cannot communicate qualitative differ-
ences between emotions. In contrast, decoding studies (see below) have demonstrated
that human judges can infer different emotions from vocal expressions with nearly the
same accuracy as from facial expressions and thus, clearly disprove this assumption.
According to Scherer [Sche 03a], the difficulty in demonstrating qualitative differenti-
ation of emotions apart from arousal is based on two facts: (1) Only a limited number
of acoustic cues, mainly F0, energy, and speech rate, have been studied so far whereas
only a few studies have analyzed frequency spectrum or formant parameters. It is
possible that qualitative differences have a stronger impact on source and articulation
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anger/ fear/ sadness joy/ boredom stress
rage panic elation

Intensity Ú Ú Ø Ú Ú

F0 floor/mean Ú Ú Ø Ú Ú

F0 variability Ú Ø Ú Ø

F0 range Ú Ú(Ø)1 Ø Ú Ø

Sentence contour Ø Ø

High frequency energy Ú Ú Ø (Ú)2

Speech and articulation rate Ú Ú Ø (Ú)2 Ø

1 Banse and Scherer found a decrease in F0 range [Bans 96].
2 inconclusive evidence

Table 2.4: Influence of basic emotions on acoustic parameters after [Sche 03a]

characteristics whereas F0, energy, and speech rate may be most indicative of arousal.
(2) Arousal differences within emotion families have been neglected. Discrepancies in
different studies may result from different forms of anger (hot anger, explosive rage
versus cold, subdued or controlled anger) as most studies do not specify which kind
of anger has actually been produced or portrayed.

Decoding Studies This kind of studies examines to what extent human lay judges
are able to infer emotions from speech samples. In general, actors have been asked
to portray a limited number of emotions by producing speech utterances with stan-
dardized or nonsense content. Thus, the speech samples do not contain any linguistic
information and the judgment of the listeners is based on acoustic parameters only.
The judges are provided with a list of emotion labels and are requested to decide for
one of the given alternatives. Consequently, decoding studies tend to be discrimina-
tion studies rather than recognition studies.

In [Sche 89], Scherer reviews approximately 30 studies which have been conducted
up to the early 1980s and where only normal voice portrayals have been used (ex-
cluding pathological voice samples and filtered speech). In these studies, the average
accuracy with which human listeners can infer emotions is about 60% for up to ten
emotions. This is about five to six times higher than chance level. Similar accuracies
have been reported in more recent studies: [Bezo 84] reports a mean accuracy of 65%
for eight different emotions (disgust, surprise, shame, interest, joy, fear, sadness, and
anger). In a study by Scherer et al. with a variety of different types of listeners and
age groups, a mean accuracy of 56% for five emotions (disgust, joy, fear, sadness,
and anger) has been obtained [Sche 91].

Results from a cross-cultural study [Sche 01b] with listener-judges from nine coun-
tries in Europe, Asia, and the United States also indicate that to some degree uni-
versal inference rules from vocal characteristics to specific emotions even exist across
different cultures since confusion patterns across different cultures were similar.

In comparison to the decoding studies for vocal expressions mentioned above, fa-
cial expression studies generally report higher average recognition accuracies (around
75%). The difference of about 15 percentage points is mostly due to expressions
of joy and disgust which can be recognized with almost 100% accuracy from facial
expressions since facial actions are highly specific for both emotions (smiling for joy
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ARO/ HAP/ ANG/ FEA/
acoustic parameters STR ELA RAG SAD PAN BOR

speech rate and fluency

number of syllables per second > ≥ <> < > <
syllable duration < ≤ <> > < >
duration of accented vowels ≥ ≥ > ≥ < ≥
number and duration of pauses < < < > <> >
rel. duration of voiced segments > <>
rel. duration of unvoiced segments < <>

voice source–F0 and prosody

F0 mean3 > > > < > ≤
F0: 5th percentile3 > > = ≤ > ≤
F0 deviation3 > > > < > <
F0 range3 > > > < <> ≤
Frequency of accented syllables > ≥ > <
Gradient of F0 rising and falling3,6 > > > < <> ≤
F0 final fall: range and gradient3,4,7 > > > < <> ≤

voice source–vocal effort and type of phonation

intensity (dB) mean5 > ≥ > ≤ ≤
intensity (dB) deviation5 > > > < <
gradient of intensity rising and falling2 > ≥ > < ≤
rel. spectral energy in higher bands1 > > > < <> ≤
spectral slope1 < < < > <> >
laryngealization = = > > =
jitter3 ≥ ≥ > =
shimmer3 ≥ ≥ > =
HNR1,3 > > < < ≤

articulation–speed and precision

formants–precision of location ?1 = > < ≤ ≤
formants bandwidth < < > ≥

Notes:
1. depends on phoneme combinations, articulation precision or tension of the vocal tract
2. depends on prosodic features like accent realization, rhythm, etc.
3. depends on speaker-specific factors like age, gender, health, etc.
4. depends on sentence mode
5. depends on microphone distance and amplification
6. for accented segments
7. for final portion of sentences

In specific phonemes, < “smaller,” “lower,” “less,” “flatter,” or “narrower”; = equal to “neutral”;
> “bigger,” “higher,” “faster,” “more,” “steeper,” or “broader”; ≤ smaller or equal, ≥ bigger or
equal; <> both smaller and bigger have been reported

ARO: arousal, STR: stress, HAP: happiness, ELA: elation, ANG: anger, RAG: rage,
SAD: sadness, FEA: fear, PAN: panic, BOR: boredom

1 explanation of ’?’ missing in [Sche 03b]

Table 2.5: Effect of emotion on acoustic parameters: a synthetic review of the em-
pirical findings after [Sche 03b]
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and nose wrinkling for disgust). Whereas sadness and anger are generally recognized
best vocally followed by fear, the accuracies for vocal expression of joy vary rather
strongly for different studies which is probably due to the fact that different members
of the same emotion family are portrayed. Exuberant joy and quiet happiness, for
example, show important vocal differences, but generally, the studies do not specify
which kind of joy has actually been used [Sche 03a]. In contrast, disgust is recognized
very poorly from voice throughout all studies with accuracies barely above chance
level suggesting that voice is more suited to the expressive and communicative needs
of certain emotions than of others. Obviously, voice is ideally suited to warn (fear)
or threaten (anger) others in a fairly indirect way over large distances whereas facial
expressions might be most adequate to prevent conspecifics being at the same place
from eating rotten food (disgust) [John 00].

The lower accuracies for vocal expressions lie, according to Scherer, also in the
dynamic nature of vocal stimuli resulting in less stable patterns compared to facial
expressions where the major emotions seem to be identified by basic muscle configu-
rations.

Inference Studies Whereas decoding studies focus on the ability of listeners to
recognize the emotional state of the speaker, inference studies investigate the un-
derlying voice–emotion inference mechanism. By varying the acoustic cues in sample
utterances, they determine the relative effect of particular parameters on the emotion
judgment. Three different methods exists to systematically manipulate the parame-
ters: (1) cue measurement and regression, (2) cue masking, and (3) cue manipulation
via synthesis.

(1) Cue measurement and regression measures the acoustic characteristics of vocal
emotion portrayals and correlates them with the listener’s judgment of the underlying
emotion or attitude of the speaker. Highly correlated parameters are likely to have
determined the judge’s inference.

(2) Cue masking masks, distorts, or removes certain verbal/vocal cues from vocal
emotion expressions and determines the influence of the modified material on the
emotion inference. Different techniques like (low-pass) filtering, randomized splicing,
playing backwards, pitch inversion, and tone-silence coding have been used.

(3) Cue manipulation via synthesis uses synthesis and copy synthesis methods
where vocal parameters can be systematically manipulated to determine the effect of
these changes on the judgment of the listener. The improvements of text-to-speech
systems will allow a large number of systematic variations of acoustic parameters and
result in natural sounding emotional speech.

For a more detailed review see [John 00, Sche 03b, Sche 03a].

Transmission Studies The Brunswikian lens model, trying to model systemati-
cally all aspects of the communication process, also allows to model the transmission
of the distal signal of the sender to the receiver where it is represented on a sub-
jective, proximal level. Thereby, the transmission process can systematically change
the nature of the distal cues and thus be responsible for inference errors due to non-
representative proximal cues. Two major aspects are (1) the transmission of sound
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through space and (2) the transform functions in perception as determined by the
nature of human hearing mechanisms [Sche 03b].

Factors influencing the transmission of sound through space are, for example, the
distance between sender and receiver and the presence of other sounds or background
noise. In order to communicate over large distances, the articulation has to be rather
precise and the mode of production changes. A higher vocal effort is needed to
produce more intense speech changing not only the intensity but also affecting a
large number of characteristics related to voice production at the larynx. On the
other hand, facial expressions and gestures, especially head movements, are expected
to have less effect on the intensity and spectral distribution of the acoustic signal
with increasing distance since they cannot be communicated over long distances (see
[Lave 91]). Thus, transmission also constraints the way voice can be used to signal
emotions.

The perceptual representation of sounds does not correspond in a one-to-one fash-
ion to objectively measured properties of the sound. A few selected examples from
[Sche 03b] are given here: The perceived loudness of voiced speech signals, for exam-
ple, correlates more strongly with the amplitude of a few or even a single harmonic
than with its overall intensity [Gram88, Titz 92]. F0 movements are only perceived
as melodic movements if they cross the glissando threshold which depends on the fre-
quency and on the slope of the F0 change (see [dAll 95]). Oscillating F0 values around
a fixed or slowly varying value are perceived as voice quality effects (tremor, jitter)
rather than melodic movements. The correlation between physical signal length and
perceived duration of fluent speech segments is generally very weak. Higher F0 or an
F0 rise at the end of an utterance, for example, is perceived as a faster speaking rate
[Kohl 95].

Representation Studies These studies focus on the mental algorithms that are
used by listeners to infer emotion on the basis of proximal cues. The Brunswikian
lens model requires these proximal cues to be directly measured. So far, the only pos-
sibility is to rely on the listener’s verbal description of his/her subjective impressions
of the speaker’s voice and speech which is constrained by the semantic categories
for which there are words in a specific language. Unfortunately, in most languages,
including English, only relatively few words exist describing vocal qualities. Further-
more, only a subset of those is frequently used in normal speech or literature but this
is required in order to study naïve, untrained listeners. Due to these difficulties, the
number of representation studies is quite low.

Many aspects of this work fit nicely into the framework of the presented Brunswikian
lens model and the studies that emerge from it. The task of finding good features
to be able to train an automatic classifier for emotion-related user states (see Chap-
ter 6 and 7) is comparable to encoding studies where the goal is to identify acoustic
parameters (distal cues) which characterize different emotions. The question how
good human listeners are in recognizing emotions from vocal expressions, addressed
in decoding studies, is important for the interpretation of the inter-labeler agreement
for the manually labeled data being used in this work (see Chapter 3.5 and 5.3.7).
Although the influence of reverberation as part of the transmission channel on the re-
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cognition accuracy of a machine classifier is not part of this work, we have conducted
experiments with different levels of reverberation on our data [Schu 07c].

Most studies have used emotion portrayals produced by actors. The next sections
lists different ways of emotion elicitation and contrasts the advantages and drawbacks
of each method.

2.4 Elicitation of Emotions

Three different groups of methods to elicit vocal expression of emotion are presented:
simulated vocal expression, induced vocal expression, and natural vocal expression.

Simulated Vocal Expression The preferred way in most previous studies in all
areas from the psychology of emotion to speech synthesis and speech recognition
has been the use of emotional speech produced by professional or lay actors, based
on emotion labels and/or typical scenarios. In [Sche 03a] relevant studies in the
psychology with simulated vocal expressions are listed.

The main advantage of emotion portrayals is the production of intense, proto-
typical expressions of emotion. Other advantages have already been mentioned in
Chapter 1.2. The intended emotion is known as the actor/actress is told what emo-
tion to portray, and subsequent perception tests demonstrate that listener-judges can
reliably recognize the intended emotion from the speech. If necessary, samples with
a low recognition accuracy are excluded from the study.

Unfortunately, this approach also entails some disadvantages: The emotions un-
der examination are generally limited to only a few basic emotions. As actors are
influenced by conventionalized stereotypes of vocal expression, relatively obvious cues
might be overemphasized whereas more subtle ones, which possibly appear in natu-
ral expression of emotion, may be missed [Sche 86]. Emotion portrayals might reflect
sociocultural norms more than the psychophysiological effects on the voice whereas
supporters of simulated vocal expressions argue that all publicly observable expres-
sions are subject to social constraints and hence, are “portrayals” to some extent
[Sche 03a]. Often, the expression of personal feelings or emotions is suppressed due
to sociocultural norms whereas in other situations, it is preferable to express emotions
although they are not felt [Camp00]. Campbell stresses the importance to distin-
guish between intended expression of emotion as in case of emotion portrayals and
unintended revelation of the speaker’s state. The fact that emotion portrayals are
recognized correctly does not exclude the possibility that at the same time, listener-
judges are aware that the speaker is consciously intending to express the particular
emotion instead of actually being emotional. People respond negatively to displays
of emotions that are perceived as simulated [Cowi 03].

Induced Vocal Expression Induction techniques try to effectively change the
subject’s emotional state. In [Gerr 94], nearly 250 mood induction studies focusing
on the induction of elation and depression are reviewed and the effectiveness of the
mood induction procedure (MIP) is analyzed. The different MIPs are categorized
into the following five groups:
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1. MIPs based on the free mental generation of emotional states: The applied
stimuli are not presented by the experimenter, but are activated by the subjects
themselves. Examples are the Hypnosis MIP (subjects in a deep trance are
instructed to remember and imagine a certain situation of their own choice in
which they felt happy or sad) and the Imagination MIP (subjects are instructed
to imagine or re-experience situations).

2. MIPs based on the guided mental generation of emotional states: Emotion-
inducing material is presented with the instruction to get into the suggested
emotional state. Examples are the Veltin MIP (subjects are instructed to use
self-referent statements describing positive or negative self-evaluations and bod-
ily sensations as auto-suggestions, i. e. to try to feel the emotion described by
the statement), Film/Story+ MIP1 (imagination of the situation presented in a
film or story and ‘getting involved’ in the suggested feelings), and the Music+

MIP (listening to mood-suggestive pieces of classical or modern music).

3. MIPs based on the presentation of emotion-inducing material: Unlike the meth-
ods of the previous category, emotional stimuli are presented without instructing
the subjects to get into the emotional state suggested. Thereby, it is avoided
that subjects actively try to get into the prescribed state. MIPs of this group
are the Film/Story MIP, the Music MIP, and the Gift MIP (unexpected gifts
are expected to evoke elation).

4. MIPs based on the presentation of need-related emotional situations: Emotions
often arise from the satisfaction or frustration of needs. Thus, Success/Failure
MIPs (false-positive or false-negative feedback in tests alleged to assess the
subject’s cognitive abilities) activate the need of achievement, Social Interac-
tion MIPs (exposing subjects to certain social interactions arranged by the
experimenter) the need of affiliation.

5. MIPs aiming at the generation of emotionally relevant physiological states: As
many theorists claim that emotions in general presuppose an unspecific physi-
ological arousal, Drug MIPs induce physiological arousal by administering psy-
choactive drugs like antidepressants [Helf 94] or adrenaline. In the Facial Ex-
pression MIP, subjects are asked to frown or smile. In accord with the facial
feedback hypothesis [Leve 80], the contraction and relaxation of different mus-
cles can induce negative and positive emotional states.

Apart from elation and depression, these techniques have also been applied to
other emotions. According to [Cowi 03], films/videos and still photographs, such as
the Philadelphia Morgue set for fear and disgust, are widely used for a variety of
emotions. Sadness and depressive-like affect can be reliably induced using sad music.
To increase the effectiveness, different types of MIPs can be combined.

However, most of these techniques have neither been developed particularly for
elicitation of speech, nor is it obvious how easily they can be adapted for that pur-
pose [Cowi 03]. A few induction techniques specifically designed to elicit speech are,
for example, a difficult spelling task to elicit negative emotion [Bach 99], a mental

1The ‘+’ stands for the explicit instruction to get into the suggested emotional state
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arithmetic task to elicit speech under stress conditions [Fern 03], and a Wizard-of-
Oz-scenario, developed at our institute, where a malfunctioning system is simulated
to evoke anger [Batl 03a].

Although induction techniques are applicable to evoke emotions, the following
drawbacks exist: Generally, the elicited emotions are relatively weak. This seems to
be true especially for systems specifically designed to elicit emotional speech. Fur-
thermore, the exact emotional state produced in the individuals is unknown due to
individual differences in the event appraisal. A study with three different labora-
tory mood/emotion induction procedures shows that the resulting emotional states
tend to be mixtures of multiple affective states rather than single, discrete emotions
[Poli 81]. Moreover, physiological evidence exists that emotional states induced by
imaging techniques differ substantially from those states induced by external events
[Stem01]. In induction techniques, the content of the spoken utterances cannot be
controlled. In order to be able to analyze the more spontaneous data statistically,
the size of the corpus has to be increased drastically. Besides the technical problems,
it is morally arguable if emotions may be induced deliberately only for the purpose
of collecting scientific data [Camp00].

Natural Vocal Expression The ideal research paradigm seems to be the use of
recordings of naturally occurring voice changes in emotionally charged situations like
dangerous flight situations for pilots, affectively loaded therapy sessions, talk and
game shows on TV, or journalists reporting emotion-eliciting events [Sche 03a]. In
the radio news broadcast of the crash of the Hindenburg, for example, excitement
and panic are clearly audible in the speech of the witnesses.

An existing database of naturally occurring emotional speech is, for example, the
Geneva Airport Lost Luggage study, where 112 passengers have been interviewed af-
ter having reported their luggage lost to the baggage retrieval service of the airline
[Sche 97]. The arising emotions are anger, resignation, worry, and good humor. An-
other example is the Belfast Naturalistic Database consisting of video clips (10-60
seconds long) taken from television chat shows, current affairs programs, and inter-
views conducted by the research team [Doug 03, Doug 00].

By nature, the ecological validity of naturally occurring emotions is high. Un-
fortunately, copyright and other legal issues often prohibit the publication of the
material and preclude the use for scientific research. Furthermore, the recordings
often suffer from bad audio quality, are generally very brief, and cover only a small
number of speakers. In addition, the determination of the precise nature of the
underlying emotion is a serious problem [Sche 03a]. In many situations, even self-
assessments of the participants cannot be considered since the subjects have not
been recorded primarily for the purpose of emotion elicitation. Another difficulty is
known as the Observer’s Paradox attributed to Labov: Investigators observing or in-
terviewing people to find out about their habits of speech will, by their own presence
and participation, tend to influence the forms of speech that are used. Consequently,
recordings ought to be observer-free and hence, cannot be designed in the traditional
scientific sense [Camp03]. Moreover, the emerging lack of control will result in un-
balanced data. And even more problematically, the unobtrusive recording of people
is ethically highly questionable if not illegal.
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Apart from the aspired naturalness of the data, Douglas-Cowie et al. mention
further issues that should be considered in developing a new generation of databases
of emotional speech. The main issues are the scope of the data, the context of the
content, and the descriptors to describe the emotional content [Doug 03].

Amongst others, the ‘scope’ covers the number and the gender of the speakers,
the language and type of dialect spoken, and the social/functional setting. All these
aspects are likely to influence the signs by which a given emotion may be expressed.
For the purpose of recognizing emotion, databases are necessary that encompass as
many of these signs as possible. Another aspect of scope is the range of emotions
under consideration. Speech in daily life tends to express moderate emotional states
and emotion-related states rather than full-blown basic emotions [Cowi 03]. The
scope of the database may have to be very large – standard lists for (non-basic)
emotions contain more than a hundred words – but at the same time, data collection
must be kept manageable. Studies prove that listeners determine the emotional
significance of vocal features differently if listening to utterances in the context of
a dialog compared to isolated utterances [Caul 00]. Thus, databases for emotional
speech need to incorporate the context of the expression of emotion. Douglas-Cowie
et al. distinguish four different types of context: semantic context, structural context,
intermodal context, and temporal context. The following Chapter 3, Labeling of User
States, is dedicated to descriptors needed to describe the emotional content.

The one and only emotion database satisfying all needs of researchers from the dif-
ferent areas of emotion research does not exist (and will not exist in the near and
middle term). The requirements of the participating research disciplines are too dif-
ferent. Because of the need for a database of naturally occurring emotions suitable
for machine classification, we have recorded our own emotional speech database, the
FAU Aibo Emotion Corpus, in a Wizard-of-Oz experiment with children playing with
the Sony robot Aibo. The corpus is described in detail in Chapter 5.

Summary Emotions are relatively brief episodes of synchronized response of sev-
eral organismic subsystems in response to the evaluation of external or internal events
being of major significance to the organism. The observable states of the users in
a human-machine interaction, e. g. helpless, are rather emotion-related than emo-
tions proper and are called emotion-related user states henceforth. Emotion theories
define what emotions are, how many emotions exist and how they can be differenti-
ated. Modern emotion theories are highly influenced by historical theories of Darwin,
James, and others. Related work in the area of computer science has been strongly
influenced by basic emotion models suggesting the existence of only a few fundamen-
tal emotions. Consequently, research has been mainly focusing on the investigation
of a small number of full-blown emotions portrayed by actors. Dimensional models
describe emotions in terms of only a few dimensions. The most widely used dimen-
sions are valence and arousal. Speech is one important modality in which emotions
are expressed. Psychologists have identified various speech parameters (e. g. prosodic
parameters such as speech rate, fluency, F0, and intensity parameters, voice quality
parameters) changing with the emotional state of the speaker. Scherer’s modified
version of the Brunswikian lens model of perception defines various research issues in
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the area of vocal expression of emotion. Many aspects of this work like the evaluation
of both human and machine decoders (decoding studies) and the choice of adequate
features (encoding studies) fit nicely into this framework. The chapter ends with the
presentation of three types to elicit emotions: simulated, induced, and natural vocal
expressions. From an application-oriented point of view, natural vocal expressions of
those states that actually occur in a human-machine communication are preferable.
However, certain disadvantages (unknown precise nature of the underlying emotion,
sparse data problem, Observer’s Paradox, etc.) exist. Eventually, the need for a new
speech database of naturally occurring emotion-related states, which is appropriate
for machine learning, is pointed out.
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Chapter 3

Labeling of User States

The primary objective of this thesis is the automatic classification of emotion-related
user states in speech. Chapter 4.1 will explain the main principles of statistical ma-
chine classification. It will be shown that machine classification requires a labeled
sample set ω of representative patterns for each of the classes that are to be dis-
tinguished. The information which class a pattern belongs to (called the label) is
necessary in the training phase of the classifier to learn the class areas. Furthermore,
the class affiliation is required to evaluate the performance of the classifier on a test
set (see Chapter 4.2).

For many typical classification problems in pattern recognition, the class affiliation
is given and is assumed to be correct. If acted data is used, this also holds for emotion
recognition from speech since the emotion is known which the actress/actor is asked
to portray. It is assumed that the actresses/actors are able to portray the emotional
state convincingly. Additionally, this can be assured by human perception tests and
the subsequent elimination of samples which are recognized poorly by humans.

In all other ways of eliciting emotions (see Chapter 2.4), the emotion is not known
and has to be described by humans, either by the person who experienced the emo-
tion (self report), or by a reasonably representative group of human labelers who
describe the emotion they perceive while listening to or looking at the emotional
data. Thereby, the observer’s impression of the subject’s state is described, not nec-
essarily the emotional state itself that led the speaker to produce that kind of speech.
According to [Cowi 01], this type of research is called effect-oriented in contrast to
cause-oriented research. In general, lay judges are employed for this purpose in order
to reflect the perception of an average human being.

Unfortunately, no generally accepted methodology for describing emotions exists
[Cowi 03]. Instead, labeling of emotion itself is part of the research on emotion and
is strongly influenced by the underlying emotion theory. The emotional or emotion-
related state of the speaker – or the user in a human-machine conversation – can
be described using category labels or dimensional labels. In general, dimensional
labels have a continuous range of values, which can be predicted automatically by
regression techniques. Using category labels, a small set of discrete categories is
defined and each pattern is assigned one of these category labels. The patterns can
be classified automatically using classification techniques. The term labeling is used
if human judges annotate the emotional or emotion-related state. In the context

37
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of pattern recognition, the discrete categories/category labels are denoted as classes.
The process of classifying the emotional/emotion-related state automatically is called
classification. Henceforth, the terms category labels, categories, and classes are used
as synonyms.

3.1 Category Labels
Category labels drawn from everyday language are the most familiar way of describing
emotions. Indeed, this approach is so familiar that it is easily assumed that it is self-
evidently the correct way [Cowi 03]. Nevertheless, research on these categories reveals
a lot of difficulties.

The size of an emotion lexicon is remarkable. For English, the Semantic Atlas
of Emotional Concepts lists as many as 558 words “with emotional connotation”
[Aver 75]. In studies which focus only on terms describing emotion proper, the amount
of emotion words is significantly lower and varies from about 100 (107 in [Whis 89],
135 in [Stor 87], 142 in [Plut 80]) to more than 200 (196 in [Fehr 84], 213 in [Shav 87]).
Ortony et al. lists about 250 emotion terms in a broad sense of emotion and about half
as many in a narrower sense [Orto 88]. Studies for other languages yield comparable
sizes of the emotion lexicon: 235 emotion terms for German in [Sche 84a] and 153
words for Italian in [Zamm98].

Cowie and Cornelius state that “languages do not generally multiply terms unless
they are needed” [Cowi 03]. In order to attain a sufficiently high precision of the
descriptive system, i. e. that descriptors of genuinely different states are different
as well, at least 60 categories are needed to describe emotions that occur with a
reasonable frequency in everyday life according to Cowie and Cornelius. Although
this is a low estimate and not every shade of emotion that humans can distinguish is
covered, it directly raises the problem of tractability. Statistically reliable conclusions
can only be reached with a far smaller number of categories or an enormous amount
of data but corpora of such size are not available. If automatic classification systems
(see Chapter 4.1) are to be trained, even more data is needed. As it is shown in
the examples below, the problem is aggravated by the unbalanced distribution of the
emotional states in data of naturally occurring emotions.

The overview in Table 3.1 [Cowi 03] opposes the lists of key emotions of Lazarus,
Ekman, Buck, Lewis/Haviland, Banse/Scherer and Cowie et al. The number of key
emotions varies between 12 and 21 which is a tractable number of emotions.

Application-oriented corpora of emotional speech show that only a part of the
emotions that could be expected on the basis of the key word lists in Table 3.1
actually occur in a specific scenario. On the contrary, other user states that are
not mentioned in these lists like helpless, tired, or emphatic can be observed. Some
emotional states occur but not frequently enough to train a classification system
(known as the sparse data problem) what necessitates the mapping of rare emotional
states onto broader cover classes.

In the following, our experience with category labeling of emotional data from
two application-oriented corpora, the one of the SmartKom project [Wahl 06] and the
SympaFly corpus [Batl 04b], are described. Both corpora contain emotional speech
data of users in a human-machine conversation with an automatic dialog system. Part
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Lazarus
[Laza 99]

Ekman
[Ekma 99]

Buck
[Buck 99a]

Lewis/Haviland
[Lewi 93]

Banse/Scherer
[Bans 96]

Cowie et al.
[Cowi 99]

anger anger anger anger/hostility rage/hot anger angry
irritation/
cold anger

fright fear fear fear fear/terror afraid
sadness sadness/

distress
sadness sadness sadness/

dejection
sad

grief/
desperation

anxiety anxiety anxiety worry/anxiety worried
happiness sensory

pleasure
happiness happiness happiness happy

elation (joy)
amusement humor amused
satisfaction pleased
contentment content

interested interested
curious
surprised

excitement excited
bored boredom/in-

difference
bored

relaxed
burnt out

disgust disgust disgust disgust disgust
contempt scorn contempt/scorn

pride pride pride pride
arrogance

jealousy jealousy
envy envy
shame shame shame shame shame/guilt
guilt guilt guilt guilt

embarrass-
ment

embarrassment

disappointed
relief relief
hope

confident
gratitude
love love loving

affectionate
compassion pity

moral rap-
ture
moral indig-
nation

esthetic

Table 3.1: Recent list of key emotions after [Cowi 03]

of the German SmartKom system is a ‘next generation’ multi-modal communication
telephone booth, called SmartKom-Public. The user can communicate with a virtual
agent who is, together with other information, being displayed on a graphical inter-
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emotion-related number of words
user state absolute relative
joyful (weak) 580 3.4%
joyful (strong) 93 0.5%
surprised 31 0.2%
neutral 15,390 88.9%
helpless 654 3.8%
angry (weak) 418 2.4%
angry (strong) 138 0.8%

Table 3.2: SmartKom: emotional user states and their frequencies in the SmartKom
corpus [Batl 03c]

joyful (weak) joyful (strong) surprised neutral helpless angry (weak) angry (strong)
joyful surprised neutral helpless angry

joyful neutral helpless angry
joyful neutral problem
no problem helpless angry
no problem problem

not angry angry

Table 3.3: SmartKom: different mappings of emotional user states onto cover classes
[Batl 03c]

face. In a human-machine dialog, the user can get information associated with hotels,
restaurants, cinemas, etc. Examples are information about existing cinemas close-by,
films currently being shown, or ticket reservation. In this context, non-prompted,
spontaneous speech data and video recordings of the subject’s face and body have
been collected in a large-scaled Wizard-of-Oz scenario where subjects were using the
(pretended) SmartKom system. The emotion-related user states joy/gratification,
anger/irritation, helplessness, surprised, and neutral are labeled holistically, i. e. the
labeler can look at the person’s facial expression, the body gestures, and listen to the
speech recordings. Additionally, it is marked whether the emotional state is perceived
as weak or strong. Table 3.2 is a compilation of the user states and the frequencies of
their occurrence in terms of the number of words contained in the turns labeled with
the respective user state [Batl 03c]. The frequency of the user state neutral (15,390
words, 88.9%) outweighs the other user states (1,914 words, 11.1%) by far illustrat-
ing the sparse data problem in application scenarios. Furthermore, the emotional
user states angry and joyful are perceived in most cases only as weak emotions.

For statistical classification, emotion-related user states have to be subsumed
under broader cover classes. Table 3.3 shows the different mappings onto cover classes
being investigated in classification experiments in [Batl 03c]. If data is not to be
discarded (as it cannot be done in a real application), rare user states have to be
mapped onto a special reject class or onto cover classes which may then contain
dissimilar user states. From a theoretical point of view, this will not always make
sense. Unfortunately, it is often inevitable from a practical point of view. In the
SmartKom scenario, the state surprised stands for positive surprise. Hence, joyful
and surprised are mapped onto the same cover class in the given example. As the
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user state cover class number of words
absolute relative

joy 58 0.3%
neutral neutral 15,390 72.9%
ironic 395 1.9%
emphatic emphatic 3,708 17.6%
surprised 31 0.1%
helpless helpless 654 3.1%
panic 43 0.2%
touchy marked 806 3.8%
angry 40 0.2%

Table 3.4: SympaFly: emotional user states and their frequencies [Batl 04b]

user state number of labels
absolute relative

neutral 41,545 83.8 %
annoyed 3,777 7.6 %
frustrated 358 0.7 %
tired 328 0.7 %
amused 326 0.7 %
other 115 0.2 %
not-applicable 3,104 6.2 %

Table 3.5: DARPA Communicator project: emotional user states and the frequencies
of the annotated raw labels [Ang 02]

names of the cover classes may be misleading, it is highly important to make clear
that a cover class subsumes different states and to denominate these states in order
to avoid inconsistent results across different studies.

Another application is the automatic dialog system SympaFly, a telephone system
for the reservation and booking of flights. Speech data has been collected in three
evaluation stages in the development phase of the system. The naturally occurring
emotion-related states of the callers testing the system are labeled with the categories
joy, ironic, emphatic, surprised, helpless, panic, touchy, angry and neutral [Batl 04b].
The frequencies of the user states in terms of words which are contained in the turns
labeled with the respective user state are given in Table 3.4. Again, neutral is the
most frequent state (72.9%) whereas some states, namely angry, panic, surprised,
and joy are quite rare and have to be mapped onto cover classes. The user state
emphatic needs some explanation: This state is labeled if the user speaks pronounced,
accentuated, or hyper-articulated but without showing any emotion. It is labeled
since any marked deviation from a neutral speaking style can – but need not – be a
possible indication of some (starting) trouble in communication [Batl 03a].

In a very similar scenario developed in the DARPA Communicator project, test
users were also calling an automatic dialog system to make air travel arrangements
[Walk 01]. Besides neutral, the emotional user states annoyed, frustrated, tired, amused,
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Figure 3.1: A two-dimensional representation of emotion terms (vertical dimension:
active/passive; horizontal dimension: positive/negative) after [Sche 01a]

other, and not-applicable are labeled. 49,553 emotion classifications were made on
21,889 utterances (on average, each utterance has been labeled by 2.26 labelers). The
distribution of these ‘raw’ labels are given in Table 3.5. In this study, most labels are
neutral (83.8%), too.

3.2 Dimensional Labeling

An alternative to category labeling is the use of dimensional labels. The ‘dimensional
model’ emotion theory, described in Chapter 2.2.2, states that emotions can be dis-
tinguished by means of certain characteristics. Unidimensional models assume that
only one such dimension is sufficient to distinguish emotions whereas multidimen-
sional models argue that more – generally two or three – dimensions are necessary to
capture the main differences. Based on these dimensional models, emotions can be
labeled by specifying a value for each dimension.
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Figure 3.2: FeelTrace: dimensional labeling in the activation-evaluation space after
[Cowi 00]

As supporters of both category and dimensional labeling claim that their technique
is suited to describe emotions, a mapping of categories onto dimensions and vice versa
should be possible. In most studies concerning this aspect, a two-dimensional space
spanned by the dimensions ‘evaluation’ (positive/negative or pleasant/unpleasant)
and ‘activation’ (high/low or active/passive) is used. “Researchers have been [. . . ]
able to locate particular emotion labels (or facial expressions) in clearly identified re-
gions of the two-dimensional space, independently of the language or culture in which
these studies have been conducted” [Sche 01a]. Figure 3.1 shows an arrangement by
Scherer of 80 emotion terms (in lower case) [Sche 84a, Sche 01a]. The plot is the result
of a multidimensional scaling (s. Chapter 4.3.2) based on the similarity matrix ob-
tained by human lay judges assessing the similarity of the given emotion terms. The
exact position of the terms depends on the number and the choice of emotion terms.
In the circumplex model postulated by Russel [Russ 80], the positions of 28 major
emotions form a circumplex illustrated in Figure 3.1 by the circle and the emotion
terms in capital letters. Nevertheless, if more emotion terms are arranged, the whole
two-dimensional space is filled and the positions of some terms change.

A tool for labeling the perceived emotional state on the basis of the common
two dimensions ‘activation’ and ‘evaluation’ is FeelTrace, developed by Cowie et al.
at Queen’s University Belfast [Cowi 00]. It is suited to label both audio and video
data. States at the limit of emotional intensity define a circle with alert neutrality at
the center of this circle. By that, they are equidistant from an emotionally neutral
point. The labeler moves a pointer in form of a colored disc within this circle to the
appropriate point in the two-dimensional space. Mouse movements are made visible
by displaying the disc at recent mouse positions on the screen and having the discs
shrink gradually over time. Figure 3.2 shows the instrument and a mouse movement
starting at afraid, moving to interested, happy, relaxed, and finally to the emotional
state content.
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To ensure that labelers are fully aware of the meaning of the selected cursor
position at any given instant, two main devices are used: the color coding of the
pointer and the placement of verbal landmarks at strategic points in the space. The
color coding of the pointer used in FeelTrace is derived from Plutchik. It is reasonably
intuitive so that it can be readily associated with the relevant emotional state. Pure
red signifies the most negative evaluation possible and neutrality with respect to
activation. On the opposite side pure green signifies the most positive evaluation
possible and neutrality with respect to activation. In the perpendicular direction
pure yellow signifies the most active state and neutrality with respect to evaluation
and pure blue the least active state possible and also neutrality with respect to
evaluation. The color at intermediate states is set by a straightforward additive rule.
Neutrality at the the center of the circular space is white.

As a supplement of the color coding, nine key emotion words are placed at the
periphery of the circle. They identify the strong, archetypical emotions associated
with broad sectors of the circle and are provided by representations by Plutchik
[Plut 94] and Russel [Russ 97]. The emotion words within the circle represent less
extreme emotional states. The words and their positions within the circular space are
taken from the Basic English Emotion Vocabulary study [Cowi 99]. Ten of the twelve
items most often included in a subject’s basic emotion vocabulary are displayed.

The resolving power of FeelTrace is comparable to an emotion vocabulary of 20
non-overlapping words, but allows intermediate ratings.

The Geneva Emotion Wheel [Banz 05, Sche 05] is another labeling tool. It com-
bines dimensional and category labeling. In contrast to FeelTrace, the underlying
dimensions are perceived control (high/low control) and valence (negative/positive,
unpleasant/pleasant). Several prototypes exists which differ slightly in the number
of emotion families and their order in the emotion wheel. The following description
refers to a version of 16 emotion families. They are arranged as sectors in a circle
according to their postulated position in the two-dimensional space as illustrated in
Figure 3.3. Each emotion family consists of four members of varying intensity which
are depicted as colored circles within the respective sector and all of them have the
same color hue. Both the size and the color saturation of the member circles increase
with the intensity of the attributed emotion adjective. The members are arranged
that way that the intensity of the emotion increases with the distance from the cen-
ter. The names of the emotion families as well as the adjectives attributed to the
respective members are given in Table 3.6. If the tool is used in its electronic version,
the names of the emotion adjectives appear when the mouse cursor moves over the
colored circles. They are not given in the paper-and-pencil version of the tool.

Various experiments to validate the instrument [Banz 05] have shown that the
structure of the emotion wheel seems to match to a large extent the spatial organiza-
tion of the 16 emotion families in terms of similarity ratings (emotion families rated
similar are adjacent in the emotion wheel) and in terms of direct ratings of the under-
lying dimensions ‘valence’ and ‘control’. Furthermore, most participants of the study
classified a large majority of the attributed adjectives into the predicted categories.
However, the average intensity rank order of the adjectives within one emotion family
obtained in the study did not match the predicted order in most cases. Because of
this mismatch, the labeling of intermediate intensities with different labels has been
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Figure 3.3: Geneva Emotion Wheel after [Banz 05]

emotion adjectives with emotional intensity varying from
family low ←→ high
pride gratified self-satisfied proud flushed with pride
elation in high spirits elated exhilarated exalted
joy cheerful happy joyful overjoyed
satisfaction pleased satisfied content delighted
relief feeling

unburdened
relieved feeling at ease feeling

comfortable
hope expectant hopeful optimistic confident
interest attentive interested fascinated enthralled
surprise puzzled astonished surprised stupefied
sadness in low spirits sad dejected despaired
fear nervous apprehensive fearful panicked
shame embarrassed feeling disgrace shameful feeling

disreputable
guilt feeling at fault feeling

blameworthy
deserving
reproach

feeling guilty

envy feeling distrust grudging envious jealous
disgust feeling dislike feeling distaste feeling disgust revolted
contempt disdainful scornful contemptuous feeling repulsion
anger aggravated irritated angry full of rage

Table 3.6: Geneva Emotion Wheel: adjectives attributed to the four colored circles
of each emotion family with intensity varying from low (small circles) to high (big
circles) after [Tran 04]

abandoned. Only the rating of the intensity for each emotion family in four discrete
steps remains.
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Figure 3.4: FeelTrace: emotional intensity (axis of ordinates) and coordinates in the
activation/valence space (color coding) over time [Cowi 00]

3.3 Time Dependent Labels

In the previous two sections the labelers are given pieces of (speech) data of variable
length to which they have to assign the appropriate emotional state using category
or dimensional labels. It is assumed that the subject’s emotion or emotional state
is nearly constant for the whole data segment under consideration. This assumption
makes sense for acted data where the actor/actress produces pre-defined utterances
in a given emotion. The segment boundaries directly result from these specifications.
However, in most cases where recordings of induced or naturally occurring emotions
are used, these boundaries are not known. The observed emotional state of the subject
is rarely constant but shifts over time. These changes can either be sharp or gradual.
Frequently, the latter prevail and the determination of the segment boundaries is not
clear-cut in these cases. Therefore, looking for segments of constant emotion is rather
difficult. Furthermore, the tasks of defining the segments and labeling the emotional
content fuse what complicates the labeling process if the data is labeled by more than
one labeler as all labelers should work on the same segments. One solution to this
problem is to choose segments which are small enough so that constant emotion can
be assumed. Thereby, consecutive segments of the same emotion can occur. Often,
speech data is segmented into single utterances, but the emotional state that can
be observed (not necessarily the underlying emotional state) can even change within
one utterance. Regarding the FAU Aibo Emotion Corpus described in Chapter 5,
the data is even broken down to the word level for the purpose of labeling.

Another way is to give the labeler the opportunity to change the emotion label
while listening to the speech data or watching the video data. The labeling pro-
cess happens in real-time. The segmentation of the data is superfluous. FeelTrace,
described in the last section, records the position of the mouse pointer in the two-
dimensional space over time. The recorded information contains both the observed
emotional state and the perceived emotional intensity. A point in the two-dimensional
space spanned by the dimensions ‘activation’ and ‘evaluation’ is given in polar co-
ordinates by its angle and its radius. The emotional state corresponds to the angle
and the intensity to the radius. The results over time of one labeler are shown in
Figure 3.4. The intensity (the radius) is shown on the ordinate whereas the emotional
state (the angle) is depicted by the color coding as indicated in Figure 3.2.

Labeling at the same time both the emotional state and the emotional intensity
in a two-dimensional space in real-time is a rather complex task which can also be
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broken down into several smaller tasks like labeling the emotional intensity only or
labeling both the degree of activation and the degree of valence separately. Figure 3.5
shows ETraceScale, a tool developed by Cowie et al. at Queen’s University Belfast. By
moving the mouse, the degree of emotional intensity can be specified. Additionally to
the position of the mouse, the intensity value is coded with colors ranging from blue
(zero intensity) to red (maximum intensity). Mouse movements like the one from
left to right in Figure 3.5 are depicted by circles of diminishing size. Additionally,
certain positions in the intensity range can be marked like the ‘mild social emotion’
position at one third of the maximum intensity in Figure 3.5 to give the labeler a
feeling for different intensities. Figure 3.6 shows ETraceCat, an alternative version of
ETraceScale, where the intensity range is divided into the three categories ‘completely
emotionless’, ‘partial emotion’, and ‘emotion in the full sense’. By changing the
meaning of low and high values, the program can easily be adjusted to be used for
other purposes.

3.4 Soft Decisions for Category Labels
Often, the observable emotional state is ambiguous. Our tool eLabel gives the labeler
the possibility to decide for more than one category in the case that he/she cannot
decide for a single class. The tool has been developed with the purpose of labeling the
FAU Aibo Emotion Corpus on the word level. Figure 3.7 shows the situation where
the labeler is asked to decide between the four cover classes Motherese, Emphatic,
Anger, and Neutral. These cover classes are to be distinguished in the classification
experiments described in Chapter 7. Details on the categories and the mapping onto
cover classes are given in Chapter 5.3.7. The labeler is not sure whether the subject’s
voice sounds still Neutral or if the observed emotion-related state belongs already
to the state Motherese. By setting the bar for Motherese to 60% and the one for
Neutral to 40%, the labeler expresses that he/she would decide for Motherese if
asked for a hard decision but that he/she is quite uncertain about this decision. It
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Figure 3.7: eLabel: soft decisions for category labels

could also be Neutral albeit the labeler considers Neutral to be less probable than
Motherese.

The percentages for all category labels always sum up to 100%. If the labeler
changes one bar, eLabel changes the other three bars automatically keeping the ratios
among the other three states constant. The percentages can be regarded as confidence
information of the labeler. In the case of the FAU Aibo Emotion Corpus, these soft
labels are not intended to be used to label the components of emotion blends where
the percentage of each emotion specifies the proportion of the respective emotion
contained in the total blend. They are also not applicable to label the intensity of the
respective emotional state. 60% Motherese does not mean that the labeler perceived
a slight form of Motherese (and that he/she is maybe sure about this decision). Quite
the contrary, it means that the labeler is not sure about his/her decision for Motherese
and no statement about the emotional intensity is made at all. Nevertheless, if the
labeler cannot decide for one single emotional state, the emotion under consideration
is likely to be weak. In case of labeling emotional intensities, the percentages would
not need to sum up to 100%.

3.5 Measures of Inter-Labeler Agreement

Since emotions are perceived differently by individuals, the data is labeled by a rea-
sonably representative group of labelers and the final label generally results from the
majority vote of all participating labelers. The inter-labeler agreement (often also
called inter-rater agreement) gives information about the agreement between the la-
belers and by that also about the appropriateness of the labels used and the difficulty
of the labeling task. The latter affects the evaluation of the performance of an auto-
matic classification system. In the following, only measures of inter-labeler agreement
for nominal data are presented since the experiments of this thesis are based on cat-
egory labels only. A description of agreement measures for ordinal or cardinal data
can be found, for example, in [Hade 07]. For nominal data, a data set of N samples
is labeled by a group of L labelers, L ≥ 2. For each sample, each labeler decides for
one of K categories/classes. Let η(l)

κ be the number of cases where labeler l decides
for category κ and η

(l1,l2)
κ1,κ2 be the number of cases where the two labelers l1 and l2

decide for category κ1 and κ2, respectively. Furthermore, let p(l)
κ be the probability

that labeler l chooses class κ and p(l1,l2)
κ1,κ2 the probability that the two labelers l1 and

l2 choose class κ1 and κ2, respectively.
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3.5.1 Cohen’s Kappa

Cohen’s kappa was originally designed to evaluate the agreement of only two labelers
for nominal labels [Cohe 60]. The observed agreement of the labelers po is compared
to the “by chance”-agreement pc that is expected if statistical independence of the
decisions of both labelers is assumed.

Cohen′s κ :=
po − pc

1− pc

(3.1)

The difference po − pc represents the proportion of cases in which “beyond-chance
agreement” occurs. It is normalized by the probability of disagreement 1− pc which
is expected by chance. The probability po is estimated by the proportion of cases
where both labelers agree on a common category:

p̂o =
K∑
κ=1

p̂(1,2)
κ,κ =

K∑
κ=1

η
(1,2)
κ,κ

N
. (3.2)

Assuming statistical independence, the probability pc(κ) that two labelers agree by
chance on class κ is the product of the a priori probabilities p(1)

κ and p(2)
κ of the two

labelers. Then, the probability pc is the sum over all classes κ of the probability
pc(κ). The corresponding estimates are given by the following equation:

p̂c =
K∑
κ=1

p̂c(κ) =
K∑
κ=1

p̂(1)
κ · p̂(2)

κ =
K∑
κ=1

η
(1)
κ

N
· η

(2)
κ

N
. (3.3)

If the agreement equals chance agreement, Cohen’s κ is equal to zero. Positive values
indicate better than chance agreement. The maximum of one is reached if (and only
if) both labelers agree perfectly. As a rough guideline, kappa values between 0.4 and
0.75 can be considered to express a moderate agreement whereas values above 0.75
express a good agreement. In the context of emotion recognition, the emotion label
reflects the emotional state the rater perceives and is inherently highly subjective.
Hence, a lower threshold for ‘good agreement’ seems to be appropriate.

3.5.2 Weighted Kappa

In many cases, confusions differ in the degree of severity. Obviously, a confusion of
slight anger with the neutral state is less severe than a confusion of full-blown anger
with joy. The weighted kappa is an extension of Cohen’s kappa and allows for the spec-
ification of a weight function w(κ1, κ2) which assigns weights to a confusion of cate-
gory κ1 with category κ2 [Cohe 68, Flei 69]. The weights are restricted to the following
conditions: (1) a perfect agreement has the maximal weight w(κ, κ) = 1, (2) disagree-
ments are given positive weights less than the maximal weight: 0 ≤ w(κ1, κ2) < 1 for
κ1 6= κ2, and (3) two labelers are considered symmetrically: w(κ1, κ2) = w(κ2, κ1).
The probability estimates p̂o and p̂c are substituted by their weighted equivalents:

p̂o,weighted(w) =
K∑

κ1=1

K∑
κ2=1

p̂(1,2)
κ1κ2
· w(κ1, κ2) and (3.4)

p̂c,weighted(w) =
K∑

κ1=1

K∑
κ2=1

p̂(1)
κ1

p̂(2)
κ2
· w(κ1, κ2) . (3.5)
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Referring to Equation 3.1, the weighted kappa for two labelers is defined as

Weighted κ(w) :=
p̂o,weighted(w)− p̂c,weighted(w)

1− p̂c,weighted(w)
. (3.6)

It is identical to Cohen’s kappa if the weights for disagreement are equal to zero:
w(κ1, κ2) = 0 for κ1 6= κ2. If the numerals 1, 2, . . . ,K are assigned to the K categories
and the differences between the category numbers can be interpreted meaningfully
as confusion weights, the following weight function w1, as proposed in [Cohe 68] and
[Cicc 72], can be applied:

w1(x , y) = 1−
∣∣∣∣ x − y
K − 1

∣∣∣∣ . (3.7)

Another weight function is, for example,

w2(x , y) = 1−
(
x − y
K − 1

)2

. (3.8)

3.5.3 Extension to Several Labelers

In 1982, Davies and Fleiss proposed an extension of Cohen’s kappa to evaluate the
agreement of several labelers [Davi 82]. In contrast to Fleiss’ former work from 1971
[Flei 71], it is assumed that all N samples are labeled by the same L labelers and
that the information which labeler decided for which class is known for each sample.
Let ηκ(n) be the number of labelers who labeled sample n as belonging to category
κ. In order to determine p̂o for the whole data set, the value p̂o(n) is determined
for each sample n first. p̂o(n) is the proportion of pairs of decisions of two labelers
for sample n where both labelers agree. If ηκ(n) labelers agree on class κ for sample
n, the number of pairs where two labelers agree on this class is

(
ηκ(n)

2

)
. The sum of

this term over all K classes yields the number of pairs where two labelers agree on a
common class. The proportion p̂o(n) results from deviding this sum by the maximum
number of possible pairs which is

(L
2

)
for L labelers.

p̂o(n) =

∑K
κ=1

(
ηκ(n)

2

)(L
2

) =

∑K
κ=1 ηκ(n)

(
ηκ(n)− 1

)
L(L− 1)

(3.9)

Finally, p̂o is the average of p̂o(n) over all N samples:

p̂o =
1

N
·

N∑
n=1

p̂o(n) (3.10)

=
1

N L (L− 1)
·

N∑
n=1

K∑
κ=1

ηκ(n)
(
ηκ(n)− 1

)
(3.11)

=
1

L (L− 1)
·

L∑
l1=1

L∑
l2=1
l2 6=l1

K∑
κ=1

p̂(l1,l2)
κ,κ . (3.12)
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The estimate of the probability that any two labelers agree by chance is the estimated
probability p̂(l1,l2)

c that two labelers l1 and l2 agree by chance averaged over all possible
combinations of pairs of labelers.

p̂c =
1

L(L− 1)
·

L∑
l1=1

L∑
l2=1
l2 6=l1

p̂(l1,l2)
c (3.13)

The estimated probabilities p̂(l1,l2)
c are the sum over all K categories of the probability

p̂(l1,l2)
κ,κ that labelers l1 and l2 agree both by chance on class κ. Again, statistical

independence between the decisions of the two labelers is assumed. Hence, p̂(l1,l2)
κ,κ can

be expressed as the product of the a priori probability estimates p̂(l1)
κ and p̂(l2)

κ that
the respective labeler decides for class κ.

p̂(l1,l2)
c =

K∑
κ=1

p̂(l1,l2)
κ,κ =

K∑
κ=1

p̂(l1)
κ · p̂(l2)

κ (3.14)

Equation 3.12 and 3.14 can easily be extended to a weighted version of kappa for
several labelers like the way it is done in Equation 3.4 and 3.5.

A further extension of the weighted multi-labeler kappa is Krippendorff’s al-
pha which can handle missing data [Krip 04, Krip 07]. Like Fleiss’ approach from
1971 [Flei 71], it abandons the speaker dependent a priori probabilities p̂(l)

κ . Instead,
speaker independent a priori probabilities pκ are used which are estimated over the
ratings of all labelers. Krippendorff proposes different weight functions for nomi-
nal, ordinal, interval, and ratio data. The one for interval data is comparable to
Equation 3.8 and yields reliability values of the same size. As the problem of miss-
ing data does not occur in the experiments of this thesis, no further description of
Krippendorff’s alpha is given.

Summary In contrast to emotion portrayals, the subject’s emotional state is not
given if naturally occurring emotions or emotion-related states are considered. In-
stead, human labelers are asked to describe their impression of the subject’s state
while listening to the recorded data. Emotion category labels are most widely used
for this purpose. There is a trade-off between the precision of the descriptive system
and its tractability. If application scenarios are in the focus, the categories have to
be adapted to the states which actually occur in the specific scenario. For statisti-
cal analysis, rare states have to be mapped onto cover classes. Another approach is
dimensional labeling motivated by dimensional emotion theories. Mainly, the two di-
mensions ‘evaluation’ and ‘activation’ (as in FeelTrace) or alternatively ‘evaluation’
and ‘control’ (as in the Geneva Emotion Wheel) are used. Emotion terms can be
assigned positions in these dimensional spaces allowing to map categories onto di-
mensions and vice versa. However, the exact positions depend on the number and
the choice of the emotion terms. The emotional content is assumed to be (nearly)
constant within the whole segment to be labeled. If the segments of constant emo-
tional content are not known prior to emotion labeling, the data is segmented into
small units like sentences or even single words. Alternatively, in FeelTrace and its
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variants, the labeler can describe the emotional content in real-time by changing the
position in the dimensional space while listening to the data without the need to
segment the data. As the emotional state is often ambiguous, soft decisions for cat-
egory labels are introduced where the labeler can specify confidence scores for the
categories being considered. Since emotions are perceived differently by individuals,
more than one observer is asked to label the emotional content. To evaluate the
agreement of the labelers, Cohen’s kappa for two labelers and its extension to several
labelers is presented. The weighted version of kappa allows to punish confusions of
similar categories less than those of dissimilar ones.



Chapter 4

Classification and Visualization
Techniques

In order to classify emotion-related user states automatically, statistical classification
techniques are applied. After describing the fundamentals of statistical classifica-
tion, the classifiers that are used in the experiments of this thesis (s. Chapter 7) –
Gaussian mixture models, linear discriminant analysis, and artificial neural networks
– are introduced. Furthermore, existing methods to evaluate machine classifiers are
presented. A new method based on the entropy is proposed, which is better suited
to compare the performance of a machine classifier to the one of a human labeler. It
implicitely weights classification errors accordingly to the decisions of the reference
labelers. At the end of this chapter, two visualization techniques for high-dimensional
data – the Sammon transformation and the nonmetric multidimensional scaling – are
described.

4.1 Statistical Classification

4.1.1 Fundamentals

Figure 4.1 shows the structure of a classification system following [Niem90, Niem03].
In the first step, patterns f i are recorded. Concerning speech, a pattern is a one-
dimensional function f (t) specifying the amplitude of the speech signal for a point
at time t . These patterns are digitized and preprocessed in order to reduce the
effort of the subsequent processing steps and/or to increase the later classification
performance. From each pattern f i , a feature vector ci is extracted which contains
the important information in order to classify the pattern. The set of feature vectors
is denoted with C = {c1, . . . , cN}. Finally, each feature vector ci is mapped onto a
class Ωκ in the classification module:

c −→ Ωκ, κ ∈ {0, . . . ,K} or κ ∈ {1, . . . ,K} . (4.1)

If desired the possibility to reject a pattern by mapping it onto the reject class Ω0

can be allowed. In order to classify feature vectors, the class areas have to be known.
They are learned during a training stage using a sample set ω which consists of
representative patterns of each clas

53
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Figure 4.1: Structure of a classification system following [Niem90, Niem03]

Optimal Classifier The statistical classifier assumes that the a priori probabilities
pκ as well as the conditional densities p(c|Ωκ) of each class are known. In addition,
the costs rκλ that result from classifying a pattern of class Ωκ as belonging to class Ωλ

have to be specified. The costs are subject to the following reasonable restrictions:

0 ≤ rκκ < rκ0 < rκλ, κ 6= λ . (4.2)

The probability that the classifier decides for class Ωκ if the feature vector c is
observed, is given by the decision rule δ(Ωκ|c). Initially, it is assumed that the
decision rule is a random variable with

∑K
κ=0 δ(Ωκ|c) = 1. The expectation value of

the costs V (δ) is composed of the costs V (δ|Ωκ) that emerge from the feature vectors
of class Ωκ:

V (δ) =
K∑
κ=1

pκV (δ|Ωκ) (4.3)

=
K∑
κ=1

pκ

[
K∑
λ=0

rκλ
∫

Rc

p(c|Ωκ)δ(Ωκ|c) dc

]
(4.4)

=

∫
Rc

K∑
λ=0

[
K∑
κ=1

rκλpκp(c|Ωκ)

]
︸ ︷︷ ︸

=:uλ(c)

δ(Ωκ|c) dc . (4.5)

The optimal classifier applies that decision rule which minimizes the expected costs:

δ∗ = argmin
δ

V (δ) . (4.6)

To minimize the term V (δ) in Equation 4.5, the term uλ(c)δ(Ωκ|c) has to be minimal
for each vector c. Thus, the classifier decides for that class Ωλ whose test variable
uλ(c) has the smallest value which results in the following nonrandomized decision
rule:

δ∗(Ωκ|c) =

{
1 if uκ(c) = min

λ
uλ(c)

0 else
. (4.7)

For a two-class problem and an only one-dimensional feature x , the right plot of
Figure 4.2 shows the two test variables u1(x ) and u2(x ). The probability density
functions p(c|Ωκ) are modeled by the two univariate Gaussians shown in the left
figure. In the demonstrated case, the decision rule corresponds to a threshold decision.
The threshold θ is the intersection of u1(x ) and u2(x ). All values x < θ are classified
as belonging to class Ω1, all others as belonging to Ω2.
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Figure 4.2: The optimal classifier: the right figure shows the test variables uλ(x ) for
a 2-class problem with p(x |Ωλ) modeled by the univariate Gaussians shown in the
left figure (priors p1 = p2 = 0.5, costs r11 = 0.5, r12 = 2.0, r21 = 6.0, r22 = 1.0)

Bayes Classifier For many cases, a (0, 1)-cost function (∀κ, λ ∈ {1, . . . ,K} : rc =
rκκ = 0, re = rκλ = 1, λ 6= κ) is assumed and a decision is forced, i. e. the classifier
cannot reject a feature vector. Under these constraints the optimal classifier is called
Bayes classifier. The Bayes classifier minimizes the error probability pe and assigns
c to the class with the highest a posteriori probability p(Ωλ|c).

δ∗(Ωκ|c) =

{
1 if pκp(c|Ωκ) = max

λ
pλp(c|Ωλ)

0 else
(4.8)

Figure 4.2 shows the effect of the cost function (r11 = 0.5, r12 = 2.0, r21 = 6.0,
r22 = 1.0, vertical continuous line) on the threshold compared to a (0, 1)-cost function
(vertical dashed line).

4.1.2 Gaussian Mixture Models

The optimal classifier assumes that the probability density functions p(c|Ωκ) are
given which unfortunately is not the case in real applications. In Gaussian mixture
models (GMMs) these probability density functions are modeled by a mixture of M
multivariate Gaussians:

p(c|θ) =
M∑

m=1

αm · N (c|µm ,Σm) with
M∑

m=1

αm = 1 . (4.9)

The parameter set θ represents the mixture weights αm as well as the mean vectors
µm and the covariance matrices Σm of the M Gaussians. The maximum likelihood
principle states that those parameters θ are chosen which maximize the probability
density of the observed data C.

θ̂ = argmax
θ

p(C|θ) = argmax
θ

N∏
i=1

p(ci |θ) (4.10)

= argmax
θ

N∑
i=1

log p(ci |θ) (4.11)
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Figure 4.3: Randomly generated vectors c ∈ R2 of a mixture model which consists of
three Gaussians (left). The Information by which mixture component a vector was
generated is shown in the right plot, but is not available for the learning process

Often, it is easier to optimize the logarithm of the probability density p(C|θ) as the
product in Equation 4.10 turns into a sum (Equation 4.11). Since the logarithm
is a monotonic function, this does not influence the estimates θ̂. Unfortunately,
differentiation of the log-likelihood function and setting it equal to zero in order to
find its maximum does not yield a closed solution for Gaussian mixture models with
M > 1. Numerical optimization techniques like the co-ordinate ascent or the Newton-
Raphson technique and its alternatives are available, but all of them suffer from either
the sensitivity to initial conditions or high computational costs. The EM algorithm
offers better convergence properties and its computation for GMMs is simple.

EM Algorithm The expectation-maximization algorithm relies on the existence of
intermediate variables, called latent data, in the estimation problem. In 1977, Demp-
ster et al. successfully handled the general case without assuming a specific likeli-
hood function [Demp77]. Concerning GMMs, the unobserved data z = {z1, . . . , zN},
zi ∈ {1, . . . ,M } contains the information which component density “generated” a
data item ci (illustrated in Figure 4.3). Introductions to the general EM algorithm
and to its application to the parameter estimation of GMMs can be found in [Taga 98]
and [Bilm 98], respectively.

For the probability density function of the complete data, the definition of condi-
tional probabilities results in the following equation

p(z , C|θ) = p(z |C,θ) · p(C|θ) , (4.12)

which can be transformed by rearranging and taking the logarithm into

log p(C|θ) = log p(z , C|θ)− log p(z |C,θ) . (4.13)

Equation 4.13 is an identity which holds for any value z plugged into the right hand
side, thus also for values of z which are generated accordingly to the distribution
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p(z |C,θ(k)). The expected value of the left hand side is independent of z and results
in ∑

z

log(p(C|θ)) p(z |C,θ(k)) = log p(C|θ)
∑

z

p(z |C,θ(k)) = log p(C|θ) . (4.14)

The right hand side is∑
z

log(p(z , C|θ)) p(z |C,θ(k))︸ ︷︷ ︸
=:Q(θ,θk )

−
∑

z

log(p(z |C,θ)) p(z |C,θ(k))︸ ︷︷ ︸
=:H (θ,θk )

. (4.15)

Putting left and right hand side back together results in

log p(C|θ) = Q(θ,θk)− H (θ,θk) . (4.16)

In an iteration process, parameters θ(k+1) have to be found so that

log p(C|θ(k+1)) ≥ log p(C|θ(k)) . (4.17)

Using Jensen’s inequality, it can be shown that

H (θ(k+1),θ(k))) ≤ H (θ(k),θ(k)) (4.18)

holds for any value of θ(k+1). The mathematical proof can be found in [Taga 98]. This
reduces the problem of maximizing the log-likelihood function to finding parameters
θ that maximize Q(θ,θ(k)):

θ(k+1) = argmax
θ

Q(θ,θ(k)) . (4.19)

Equation 4.19 is the EM algorithm. Starting with an initial point θ(0), this equation
is applied iteratively to obtain a sequence θ(k). Usually, maximizing of Q(θ,θ(k))
is much easier than the original maximization problem in Equation 4.11. In the
case of Gaussian mixture models, the log-likelihood function of the complete data
log p(z , C|θ) and the likelihood function of the latent data p(z |C,θ(k)) are

log p(z , C|θ) =
N∑

i=1

log(αzi · N (ci |µzi ,Σ zi )) and (4.20)

p(z |C,θ(k)) =
N∏

i=1

p(zi |ci ,θ(k)) . (4.21)

Both functions are plugged into Equation 4.19 which then can be simplified and
solved by differentiation of Q(θ,θ(k)) with respect to the parameters θ and setting
the results equal to zero. The resulting formulae are

α(k+1)
m =

1

N

N∑
i=1

p(m|ci ,θ(k)) , (4.22)

µ(k+1)
m =

∑N
i=1 cip(m|ci ,θ(k))∑N
i=1 p(m|ci ,θ(k))

, and (4.23)

Σ (k+1)
m =

∑N
i=1 p(m|ci ,θ(k))(ci − µ

(k)
m )(ci − µ

(k)
m )t∑N

i=1 p(m|ci ,θ(k))
. (4.24)
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Figure 4.4: Projection of samples ci of two classes (black and gray) onto a straight
line in direction r

The mathematical derivation of the formula can be found in [Bilm 98].
For each class in a K -class problem, p(c|Ωκ) is modeled by a separate GMM. The

classifier decides for the class with the highest posterior probability p(Ωκ|c).

4.1.3 Linear Discriminant Analysis

In classical discriminant analysis the features ci ∈ Rd are projected onto a straight
line with direction r as illustrated in Figure 4.4. The goal is to identify the orientation
r in order that the projected samples are well separated. The projection c̃ ∈ R of a
sample c is given by the linear combination of the components of c:

c̃ = r tc, ‖r‖ = 1 . (4.25)

For a two-class classification problem, the set of samples can be divided into the
two subsets C1 and C2 containing N1 samples labeled Ω1 and N2 samples labeled Ω2,
respectively. For each subset, the mean vector µi and the scatter matrix S i can be
computed as follows:

µi =
1

Ni

∑
c∈Ci

c and (4.26)

S i =
∑
c∈Ci

(c − µi)(c − µi)
t . (4.27)

SW = S 1 + S 2 is called the within-class scatter matrix. The between-class scatter
matrix SB is defined as

SB = (µ1 − µ2)(µ1 − µ2)t . (4.28)

Similarly, the mean and the scatter for the subsets C̃1 and C̃2 of the projected samples
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is given by:

µ̃i =
1

Ni

∑
c̃∈C̃i

c̃ =
1

Ni

∑
c∈Ci

r tc = r tµi and (4.29)

s̃2
i =

∑
c̃∈C̃i

(c̃ − µ̃i)
2 =

∑
c∈Ci

(r tc − r tµi)
2 = r tS ir . (4.30)

The Fisher linear discriminant employs that direction r for which the linear function
r tc yields the maximum ratio of between-class scatter to within-class scatter:

J (r) =
|µ̃1 − µ̃2|2

s̃2
1 + s̃2

2

. (4.31)

J (·) is obtained as an explicit function of r by substituting µ̃i and s̃i found in Equa-
tion 4.29 and 4.30, respectively, into Equation 4.31.

J (r) =
r tSBr

r tSWr
(4.32)

This expression is known as the generalized Rayleigh quotient. A vector r which
maximizes the criterion function J (·) is at the same time a solution of the following
generalized eigenvalue problem:

SBr = λSWr . (4.33)

As SBr is always in the direction of µ1 − µ2, it is not necessary to solve for the
eigenvalues and eigenvectors of S−1

W SB. The direction that maximizes J is

r = S−1
W (µ1 − µ2) . (4.34)

Finally, the data is classified by applying a threshold to the projected data. For
each class, the projected samples can, e. g., be fit with a univariate Gaussian. The
threshold is given by the intersection of the posteriors in these one-dimensional dis-
tributions.

In the case of K classes, Fisher’s linear discriminant is generalized by using K −
1 discriminant functions. Thus, the samples are projected from a d -dimensional
space to a K −1-dimensional subspace. Further information on multiple discriminant
analysis can be found in [Duda 00].

The LDA classifier is equivalent to a multivariate Gaussian classifier if the covari-
ance matrices are presumed to be identical for all classes resulting in a linear decision
boundary [Frie 89]. The implementation used for the experiments in this thesis is
based on such a Gaussian classifier.

4.1.4 Artificial Neural Networks

Artificial neural networks try to simulate the functionality of the brain of vertebrate
animals. The human brain consists of approximately 1011 neurons. They are the
core component of the brain and process and transmit information. Information is
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encoded in the frequency of action potentials, “spikes” of electrical discharge, which
are transmitted over nerve tracts from one neuron to others. Synapses are the junc-
tions between the nerve tracts and the neuron. They are located on the surface of the
cell body and on the dendritic tree (cellular extensions in form of many branches).
On average, each neuron of an adult human brain has about 7,000 synaptic connec-
tions to other neurons. In chemical synapses, action potentials release excitatory or
inhibitory post-synaptic potentials in the neuron. These electrical potentials sum up
and trigger a new action potential at the axon of the neuron if a certain threshold is
exceeded. The threshold is not reached if the number of activated inputs is too small,
the frequency of the incoming action potentials is too low, or due to asynchronism of
the incoming action potentials.

In the following, multilayer perceptrons, a very popular kind of artificial neural
networks, are introduced.

Multilayer Perceptrons A multilayer perceptron consists of L + 1 layers of neu-
rons, L ≥ 1. M (l) denotes the number of neurons or nodes in layer l . The first
layer (l = 0) is called input layer, the last layer (l = L) output layer, and all other
layers (0 < l < L) inbetween hidden layers. Each node of layer l − 1 transmits its
information to all nodes of the following layer l , l ∈ {1, . . . ,L}, resulting in the unidi-
rectional graph shown in Figure 4.5. Weights are assigned to all edges in this graph.
The weight w (l)

ij denotes the weight assigned to the edge from node i of layer l − 1
to node j of layer l . The net activation of a unit is the weighted sum of its inputs
minus a neuron specific threshold w (l)

0j .

net
(l)
j =

M (l−1)∑
i=1

y (l−1)
i w (l)

ij − w (l)
0j (4.35)

Equation 4.35 can be expressed as the scalar product (y (l−1))tw
(l)
j of the inputs

and the weights if the input vector as well as the weight vector are augmented by
appending -1 and w (l)

0j , respectively. Thus, the bias w
(l)
0j can be treated mathematically

like any other weight. The emitted output of a unit is obtained by applying an
activation function f which is generally a non-linear function, e. g. the sign function.

y (l)
j = f (net

(l)
j ) (4.36)

The training algorithm described in the following section requires the activation func-
tion to be differentiable. Hence, the sigmoid or the hyperbolic tangent function shown
in Figure 4.6 are frequently used activation functions.

The input layer distributes the values of a feature vector c to the neurons of
the first hidden layer. Thus, the number of nodes in the input layer is equal to the
dimension of the feature vector. Applying Equation 4.35 and 4.36, the input is fed
forward from the input layer through the hidden layers to the output layer. In general,
the number of nodes in the output layer M (L) is equal to the number of classes K . If
so, the multilayer perceptron decides for the class with the highest output value y (L)

j .
Theoretical constructions show that already multilayer perceptrons with only one

hidden layer can implement every desired function, given a sufficient number of hidden
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Figure 4.5: Topology of a multi-layer perceptron (MLP)
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Figure 4.6: Different activation functions for artificial neural networks [Kies 97]

nodes, proper nonlinearities, and weights. Unfortunately, these considerations are of
greater theoretical interest than of practical use since they are not a constructive
proof and neither give the number of hidden units required nor the proper weights.
Furthermore, the desired function is also not known as it is related to the training
patterns in a very complicated way.

Backpropagation Algorithm The Backpropagation algorithm is a supervised
training for multilayer networks. Using a gradient descent the weights are adjusted
in order to reduce the training error ε:

∆w (l)
j = −η ∂ε

∂w (l)
ij

. (4.37)

A typical error function is the mean squared error εMSE defined as the sum of the
squared differences between the desired target output tj and the actual output y (L)

j
of the units in the output layer L.

εMSE(w) =
1

2

M (L)∑
k=1

(tk − y (L)
k )2 (4.38)

The error depends on all weights w (l)
ij in the network which are subsumed in the

vector w . In general, tj equals 1 if the feature vector belongs to class Ωj and -1 if it
belongs to another class. For the output layer, the desired outputs tk are known. In



62 Chapter 4. Classification and Visualization Techniques

order to differentiate with respect to the weights w (L)
jk between the last hidden layer

and the output layer, the chain rule of differentiation is applied:

∂εMSE

∂w (L)
jk

=
∂εMSE

∂net
(L)
k

· ∂net
(L)
k

∂w (L)
jk

= −δ(L)
k · y

(L−1)
j . (4.39)

The term δ
(L)
k is called sensitivity and describes how the overall error changes with

the net activation of unit k of the output layer. Applying the chain rule again results
in:

δ
(L)
k = − ∂εMSE

∂net
(L)
k

= −∂εMSE

∂y (L)
k

· ∂y
(L)
k

net
(L)
k

= (tk − y (L)
k ) f ′(net

(L)
k ) . (4.40)

Unfortunately, the desired output values for the hidden layers are not known. Again,
the chain rule is applied several times in order to differentiate w. r. t. the weights
w (L−1)

ij of the last hidden layer.

∂εMSE

∂w (L−1)
ij

=
∂εMSE

∂y (L−1)
j

·
∂y (L−1)

j

∂net
(L−1)
j

·
∂net

(L−1)
j

∂w (L−1)
ij

=
∂εMSE

∂y (L−1)
j

· f ′(net
(L−1)
j ) · y (L−1)

i (4.41)

The following derivation shows that the differentiation of ∂εMSE w. r. t. y (L−1)
j can be

computed as the sum of the sensitivity values δ(L)
k of the layer above weighted by the

weights w (L)
jk :

∂εMSE

∂y (L−1)
j

=
∂

∂y (L−1)
j

[
1

2

M (L)∑
k=1

(tk − y (L)
k )2

]

= −
M (L)∑
k=1

(tk − y (L)
k )

∂y (L)
k

∂y (L−1)
j

= −
M (L)∑
k=1

(tk − y (L)
k )

∂y (L)
k

net
(L)
k

· net
(L)
k

∂y (L−1)
j

= −
M (L)∑
k=1

(tk − y (L)
k ) f ′(net

(L)
k )w (L)

jk

= −
M (L)∑
k=1

δ
(L)
k w (L)

jk . (4.42)

Defining the sensitivity δ(l)
j for any hidden layer l , 0 < l < L, in terms of the sensitivity

values δ(l+1)
k of the layer above as

δ
(l)
j = f ′(net

(l)
j )

M (l+1)∑
k=1

w (l+1)
jk δ

(l+1)
k , (4.43)
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the weights w (l)
ij can be updated with

∆w (l)
ij = η δ

(l)
j y (l)

i (4.44)

beginning at the output layer and moving backwards through the hidden layers. With
the backpropagation algorithm, a simple algorithm for training multilayer perceptrons
is available.

4.2 Evaluation of Decoders
The last section shed some light on the functioning of the machine classifiers that
are employed in the experiments of this thesis. In the next section, methods are pre-
sented to evaluate how well decoders actually perform in the given classification task.
Decoders can be both human beings and automatic classifiers. Yet, the techniques
used for evaluation are the same. In the following, the presentation is restricted to
measures for category labels as these have been used to label the FAU Aibo Emotion
Corpus.

4.2.1 Recognition Rate and Average Recall

It is obvious to use traditional evaluation methods used in machine learning to eval-
uate decoders. The total recognition rate (RR) is a widely used measure defined as
the percentage of correctly classified samples:

RR :=
1

N

K∑
κ=1

nκκ · 100 % . (4.45)

K is the number of classes, nκκ are the number of cases where class Ωκ is correctly clas-
sified as class Ωκ (diagonal elements in the confusion matrix illustrated in Table 4.1),
and N is the total size of the sample set. The total recognition rate indicates how
many correct decisions the classifier makes. In an application scenario with a forced
decision and a (0,1)-cost function (see Chapter 4.1.1), the classifier which minimizes
the costs maximizes the probability pc = 1− pe of a correct decision. Unfortunately,
the recognition rate highly depends on the prior probabilities pκ = Nκ/N of the K
classes in the training set. A naïve classifier (in the sense of uninformed, clueless)
which always decides in favor of the class Ωκ with the highest prior probability pκ
independently of the feature c has a total recognition rate which is equal to pκ. The
effect is particularly high if the distribution of the classes is highly unbalanced as it
is the case in emotion recognition experiments with real data. For example, if 84%
of the samples in the training set are neutral, already this naïve classifier attains a
recognition rate of 84%. Thus, high recognition rates do not necessarily imply a good
classification performance.
Recall and precision are two measures which are specific for a single class Ωκ:

recallκ =
nκκ∑K
i=1 nκi

=
nκκ
Nκ

, (4.46)

precisionκ =
nκκ∑K
i=1 niκ

. (4.47)
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hypothesis
Ω1 Ω2 Ω3 . . . ΩK

∑

re
fe
re
nc
e

Ω1 n11 n12 n13 . . . n1K N1

Ω2 n21 n22 n23 . . . n2K N2

Ω3 n31 n32 n33 . . . n3K N3
...

...
...

... . . . ...
...

ΩK nK1 nK2 nK3 . . . nKK NK∑
N

Table 4.1: Confusion matrix with absolute frequencies for a K -class problem

Recall is the fraction of cases belonging to class Ωκ which are classified correctly as
Ωκ whereas precision is the fraction of cases being classified as Ωκ which actually
belong to class Ωκ.

The classwise averaged recognition rate (CL), defined as the (unweighted) average
of the K recall values, is a useful measure combining the advantages of the total
recognition rate RR and the measures recall and precision: it is a single performance
figure and it does not depend on the prior probabilities of the classes.

CL :=
1

K

K∑
κ=1

nκκ
Nκ

· 100 % (4.48)

A naïve classifier that always decides for the class Ωκ with the highest prior probability
pκ or randomly picks one of the K classes has only a CL rate of 1

K . If the prior
probabilities pκ are the same for all K classes,

p1 = p2 = . . . = pK =
1

K
,

CL is equal to RR as ∀κ : Nκ = N
K . The weighted average of the K recall values

weighted with the prior probabilities pκ = Nκ
N is equal to the total recognition rate

RR.
For the case of only two classes, the F-measure is defined as the harmonic mean

of precision and recall and can also be used as one single performance measure:

F :=
2

1
precision

+ 1
recall

=
2 · precision · recall

precision + recall
=

2 · n11

2 · n11 + n12 + n21

. (4.49)

The presented performance measures evaluate the overall performance of a de-
coder or its classification performance for single classes, but they do not tell which
classes the decoder mixes up. According to [Sche 03a], confusion patterns of human
listener judges are very specific for each emotion and there is evidence that these
patterns are similar even across different cultures. In [Bans 96] for example, hot
anger is confused consistently only with cold anger and contempt. In general, similar
emotions (similar on one or more dimensions, see Chapter 3.2) are more likely to be
confused than others. Scherer states that confusions of a decoder are arguably even
more interesting than the number of errors and confusion matrices of the type shown
in Table 4.1 should be reported routinely in experiments on emotion recognition.
This definitely also holds for machine classification experiments.
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4.2.2 Entropy based Evaluation

The evaluation measures presented in the last section, including confusion matrices,
assume that a sample belongs to exactly one class and that this class (called the
reference or the ground truth) is known. A decision is correct if the reference class
is chosen, all other decisions are incorrect. A distinction between the incorrect cases
w. r. t. the severity of the confusion is not possible.

The more similar the emotions or emotion-related states in a speech corpus are,
the less appropriate is the classification in white and black, in absolutely correct and
totally wrong. A confusion of emotions of the same emotion family which differ only
in their emotional intensity, like ‘feeling distaste’ and ‘feeling disgust’, is obviously
less severe than a confusion of disgust and sadness, for example, or disgust and joy.
Furthermore, individual differences in the assessment of emotional intensity render it
impossible to define objective boundaries between emotional states which differ only
slightly in their intensity. In a certain range between similar emotions, confusions are
not only less severe but have to be accepted as correct. The same holds for blends of
emotions where it is hard to decide which component prevails.

In contrast to the full-blown emotions usually portrayed in corpora of acted
speech, speech corpora of natural emotions often include to a large extent weak
emotions or blends of different emotions or emotion-related states. In most cases, the
ground truth is not known. Because of their low intensity, weak emotions are likely
to be confused with neutral.

In this thesis, an entropy based measure is presented which measures how well each
decision of the decoder fits to the decisions of a group of reference labelers [Stei 05].
The decoder can be a machine classifier or a single human labeler. Henceforth, the
other human labelers excluding the human decoder are denoted as reference labelers.
The entropy based measure is especially suited for nominal classes. It neither requires
prior knowledge of typical confusion patterns nor a distance measure for emotional
states. The single decisions of the reference labelers are not transformed into a single
decision for the whole group by majority vote. Each reference labeler decides for
one emotional state out of a set of pre-defined states. The decisions of the reference
labelers are then transformed into a soft decision label l ref as shown in Figure 4.7.
If the group of reference labelers is representative, the components of the vector
l ref contain the probabilities that the given sample belongs to the corresponding
emotional state. Unambiguous samples will have one component set to one and all
others set to zero. The example in Figure 4.7 shows a sample with emotion-related
states taken from the FAU Aibo Emotion Corpus (for details see Chapter 5.3.7).
The majority of the reference labelers (60%) decides for the cover class Anger. The
remaining reference labelers vary between Emphatic (30%) and Neutral (10%). None
of the reference labelers opts for Motherese. As Emphatic can be interpreted as some
kind of pre-stage of emotion (see p. 41), the sample obviously belongs to a state at
the barrier between a non-emotional state in which the child already speaks in a
pronounced, hyper-articulated way and the emotional state ‘slight anger’.

In order to be able to compare a machine classifier to a human labeler later on,
one of the L human labelers is omitted. The soft label for sample i of the remaining
L− 1 reference labelers without the human labeler l̄ is denoted as l ref (̄l , i). The hard
decision of the decoder (machine classifier or human labeler l̄) is also transformed
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labeler class
1 A
2 E
3 A
4 E
5 A
6 N
7 A
8 A
9 E
10 A

→ A E N M
0.6 0.3 0.1 0.0

Figure 4.7: Conversion of the hard decisions of ten labelers into a soft reference label
l ref . The four classes are Anger, Motherese, Emphatic, and Neutral

into a soft label, denoted as ldec(i). The information entropy H [Shan 48] of a soft
decision vector l , defined as

H = −
K∑

k=1

lk · log2 lk with 0 · log2 0 = 0 (4.50)

is a measure of the degree of agreement of the labelers. The entropy is equal to zero if
all labelers agree on one emotion class and it reaches its maximum if all components
of the vector have the same value which is then equal to 1

K . The maximum depends
on the number of classes and is equal to log2 K .

The decision of the decoder is added to the decisions of the reference labelers
what will change the entropy value. If the decision of the decoder is the same as
the majority vote of the reference labelers, the entropy will decrease (or remain zero
if all labelers decide consentaneously for one class). The less probable the emotion
class is which the decoder picked, the more the entropy will increase. The highest
increase results from a decoder decision for a class which has not been picked by any
reference labeler. The basic idea is to compare the influence on the entropy caused
by a machine classifier with the influence caused by an average human labeler. In
this comparison, both the reference label l ref(¯̀, i) and the label of the decoder ldec(i)
are weighted equally to be independent of the number of reference labelers.

l(¯̀, i) = 0.5 · l ref(¯̀, i) + 0.5 · ldec(i) (4.51)

The entropy of this combined soft decision label for a given sample i is

H (¯̀, i) = −
K∑

k=1

lk(¯̀, i) · log2 lk(¯̀, i) . (4.52)

As one human labeler is omitted, the decoder (either the machine classifier or the
omitted human labeler) is compared in a leave-one-labeler-out procedure to the re-
maining L− 1 reference labelers and the average entropy value is taken:

H (i) =
1

L

L∑
¯̀=1

H (¯̀, i) . (4.53)
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Figure 4.8: Entropy histograms: comparison of the average human labeler with dif-
ferent naïve classifiers (random choice, always Neutral, always Motherese) and the
majority vote of the human labelers

Thereby, a machine classifier can be compared to the average human labeler of the
group of human labelers. Finally, the entropy is averaged over all samples of the data
set:

Hdec =
1

N

N∑
i=1

H (i) . (4.54)

Instead of calculating one single entropy value for the whole data, a histogram of
the entropy values H (i) can be plotted. Figure 4.8 shows the entropy histogram for
the average human labeler in comparison to the histograms of four other decoders: a
naïve decoder which randomly picks one of the four classes (random choice, top left),
an artificial decoder which decides for the majority vote of the human labelers (human
majority voting, top right), and two more naïve decoders which always choose Neutral
(bottom left) and Motherese (bottom right), respectively. The figures are based on
the labeling of the FAU Aibo Emotion Corpus [Stei 05]. The high mean entropy of
the average human labeler (Hdec = 0.721) reflects the difficulty of labeling non-acted
emotional speech data. The ‘human majority voting’-decoder (Hdec = 0.542) clearly
outperforms the average human labeler and marks the upper performance limit for
any decoder. As to be expected, the three different naïve decoders do clearly worse
than the average human labeler. Due to the high confusion of the emotional states
with the neutral state, the decoder which always chooses Neutral (Hdec = 0.843)
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outperforms the ‘random choice’-decoder (Hdec = 1.050) and the ‘always Motherese’-
decoder (Hdec = 1.196).

4.3 Visualization Techniques
Humans lack the ability to visualize high-dimensional data and thus cannot discover
its inherent structure. The problem is further aggravated if the data represents simi-
larity or dissimilarity measures that generally miss the familiar properties of distances.
In the following, two different techniques are presented which map N points ci from
a high-dimensional space to a low-dimensional one with mostly only two or three
dimensions:

ci ∈ Rd −→ x i ∈ Rd ′ with 1 ≤ i ≤ N and d ′ � d . (4.55)

Both methods approximately preserve the inherent structure of the data, which finally
can be visualized easily for d ′ ≤ 3.

4.3.1 Sammon Transformation

The Sammon transformation [Samm69] is a nonlinear mapping such that the in-
terpoint distances in the lower-dimensional space dij between two points x i and x j

approximate the distances δij between the points ci and cj in the original high-
dimensional space. It has been used successfully for a variety of problems, for exam-
ple recently for the separation of different speaker groups (laryngectomized speakers
with tracheoesophageal substitute voice, speakers with a hoarse and with a normal
voice) in a two-dimensional space given the high-dimensional mixture weights of a
speech recognizer based on semi-continuous hidden Markov models which have been
adapted to the present speaker by HMM interpolation [Hade 06, Stei 03].

An error measure represents how well the present configuration of the N points in
the d ′-dimensional space fits the N points in the original d -dimensional space. The
error E1 is defined as follows:

E1 =
1∑

i<j δij

N∑
i<j

(δij − dij )
2

δij
. (4.56)

Other error functions are also reasonable, e. g.

E2 =

∑
i<j (δij − dij )

2∑
i<j δ

2
ij

and (4.57)

E3 =
∑
i<j

(
δij − dij

δij

)2

. (4.58)

Since only the distances between points are involved, all of these error functions
are invariant to rigid-body motions (translations, rotations) of the configuration.
Furthermore, the normalizations make the minimum of the error functions invariant
to dilations of the sample points. E2 emphasizes large errors regardless of whether
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Figure 4.9: Illustration of the error functions E1, E2, and E3

the distances δij in the high-dimensional space are large or small. E3 emphasizes large
fractional errors only. E1 is a compromise of both, emphasizing large errors as well
as large fractional errors. In the left part of Figure 4.9, an example is given showing
three points c1, c2, and c3 and their high-dimensional distances δ12, δ13, and δ2,3. In
the right part, three different mappings into the low-dimensional space are shown;
all of them are not optimal. The error in terms of E2 (squared error) is the same for
the left and the middle mapping. Yet, the fractional error (E3) is clearly smaller for
the mapping in the middle since there, the error does not occur at the short edge but
at the long edges of the triangle. According to the visual impression, the triangle in
the middle represents the high-dimensional distances better than the left one. If the
mapping in the middle is compared to the right one, the error E2 is reduced while
keeping E3 constant. The error E1 is reduced both from the left to the middle and
from the middle to the right mapping.

The error function is a function in N ·d ′ variables. The steepest descent procedure
is used to search for the minimum of the error function. Using the definition of the
Euclidian distance dij between the points x i and x j

dij =

√√√√ d ′∑
k=1

(x i
k − x j

k )2 , (4.59)
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the gradient of the error function E1 w. r. t. the k th component of point x n is

∂E1

∂xn
k

=
−2∑
i<j δij

·
N∑

j=1,
j 6=n

[
δnj − dnj

δnj dnj

]
(xn

k − x j
k ) . (4.60)

An extension to the Sammon transformation to reduce the dependency on the record-
ing conditions such as the use of different microphones is presented in [Maie 08].

4.3.2 Nonmetric Multidimensional Scaling

Nonmetric multidimensional scaling (NMDS) [Krus 64a, Krus 64b] is suited for prob-
lems where the quantities δij are similarities (or dissimilarities) that miss the proper-
ties of distances and where only the rank order is important, but not the exact numeri-
cal values. In NMDS, the rank order of the distances dij in the low-dimensional space
approximates the rank order of the distances δij in the original high-dimensional
space. In the following, the quantities δij are assumed to be dissimilarities with
∀i , 1 ≤ i ≤ N : δii = 0 and ∀i 6= j : δij = δji . The M = N (N − 1)/2 quantities δij are
ordered in ascending order:

δi1j1 ≤ δi2j2 ≤ . . . ≤ δiM jM . (4.61)

Any M numbers d̂ij for which the monotonicity constraint

d̂i1j1 ≤ d̂i2j2 ≤ . . . d̂iM jM (4.62)

holds is an ideal configuration. The stress function S is a measure of the deviation
of the present configuration from the given ideal configuration.

S (x 1, . . . ,xN , d̂i1j1 , . . . , d̂iM jM ) =

√√√√∑i<j (dij − d̂ij )2∑
i<j d

2
ij

(4.63)

From all possible values d̂ij which satisfy Equation 4.62 those values are chosen that
minimize the stress for a fixed configuration x 1, . . . ,xN .

S (x 1, . . . ,xN ) = min
d̂ij satisfying

Eq. 4.62

√√√√∑i<j (dij − d̂ij )2∑
i<j d

2
ij

(4.64)

The situation is illustrated in the left part of Figure 4.10. Each star in the scatter
diagram has abscissa δij and ordinate dij . The corresponding ideal values d̂ij are
indicated with circles if they differ from the values dij of the present configuration.
Horizontal dashed lines indicate the deviation of the present configuration from the
ideal one. S (x 1, . . . ,xN ) is a function in N · d ′ parameters. Again, the steepest
descent procedure is applied to search for a configuration which minimizes the stress
function.

According to Equation 4.64, the ideal values d̂ij have to be determined in each
iteration step. This can be done by a rapid, efficient algorithm described in [Krus 64b].
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Figure 4.10: Nonmetric Dimensional Scaling: scatter diagram of the present configu-
ration showing the deviation of the dij from the ideal values d̂ij (left) and illustration
of the algorithm to find the ideal values d̂ij (right)

The dissimilarities δij are partitioned into consecutive blocks b1, . . . , bµ. Within each
block b the value d̂b is constant and equal to the average of all values dij in this block.
The algorithm starts with the finest possible partition into blocks as illustrated in
the right part of Figure 4.10, which consists of M blocks, each block bm containing
only a single dissimilarity δim jm . A block bm is called up-satisfied if db < dbm+1

and down-satisfied if dbm−1 < dbm . The first and the last block are also up-satisfied
and down-satisfied, respectively. At the beginning, the first block is up-active. At
each stage, exactly one block is active, either up-active or down-active. An up-active
block bm is compared to the next higher one and if block bm is not up-satisfied it
is joined with block bm+1. Thereby, the partition is changed and the number of
blocks is decreased by one. If block bm is already up-satisfied, the partition remains
unchanged. In both cases, block bm becomes down-active and is compared to the
next lower one. If block bm is not down-satisfied, it is joined with block bm−1. Then,
block bm becomes up-active again. This alternation stops if block bm is both up-
and down-satisfied and activity is then transferred to the next higher block. The
algorithm terminates if the highest block is both up- and down-satisfied. Finally, the
values d̂ij are set to the values db of the corresponding block.

The right part of Figure 4.10 shows the situation where block b1 is both up- and
down-satisfied. In the present stage of the algorithm, block b2 becomes up-active and
is compared to block b3. Since d̂b2 = di2j2 is smaller than d̂b3 = di3j3 , the monotonicity
constraint is violated and block b2 is not up-satisfied. The violation is removed by
joining block b2 with block b3. The new value d̂b2 of the new block b2 is the average of
di2j2 and di3j3 and illustrated with two circles in the scatter diagram. In the following
stage, the new block will become down-active and will be compared to block b1.
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Summary In this chapter, the fundamentals of machine classification are addressed.
From a theoretical point of view, the optimal classifier is introduced. The mathe-
matical fundamentals of Gaussian mixture models, linear discriminant analysis, and
artificial neural networks are presented. These three classifiers cover different classifi-
cation approaches and are used in the classification experiments of this thesis. Various
measures like the total recognition rate, the precision and the recall of one class, the
(unweighted) average recall of all classes, and the F-measure are given to evaluate
the performance of a machine classifier or a human labeler. Furthermore, a new eval-
uation measure based on the entropy is introduced where confusions of the decoder
are weighted accordingly to the decisions of the reference labelers for the particular
segment under consideration. In order to visualize high-dimensional data, two tech-
niques – the Sammon transformation and the nonmetric multidimensional scaling –
are presented. Both techniques map points from a high-dimensional space onto points
in a low-dimensional space such that the interpoint distances in the low-dimensional
space approximate the distances between the points in the high-dimensional space.
In contrast to the Sammon transformation, nonmetric dimensional scaling only pre-
serves the rank order of the interpoint distances.



Chapter 5

FAU Aibo Emotion Corpus

This work aims at the automatic classification of emotion-related user states in an
application-oriented scenario using speech as input modality. In order to avoid the
disadvantages associated with emotion portrayals enumerated in Chapter 1.2, this
work focuses on the investigation of speech data containing naturalistic emotions.
Only a few databases of naturalistic emotions exist (s. Chapter 1.2). Moreover, many
of these corpora are either not available for scientific research or are not appropriate
for our purposes. The reasons are manifold: the small size of the corpus rendering
machine learning impossible, the low number of subjects so that speaker independent
systems are not possible, the focus on other input modalities than speech, etc. Hence,
a new corpus of spontaneous speech in various emotion-related states, the FAU Aibo
Emotion Corpus, has been recorded and is described in detail in this chapter. The
description begins with the experimental design and the recording conditions.

5.1 Experimental Design and Recording

In 2002, the experimental setup of the FAU Aibo Emotion Corpus was designed with
the goal to collect speech that is both spontaneous and emotional. The emotions
ought to be as naturalistic as they can be in a staged recording scenario, with a
preferably wide range of emotions. The collection of the data was funded by the
European Community within the project Pf-Star (Preparing Future Multisensorial
Interaction Research)1 and was combined with the needs from another work package
within Pf-Star we were involved in, namely the collection of speech data of chil-
dren. Our Pf-Star partners from the School of Engineering2 at the University of
Birmingham reran parts of the Aibo recordings in a similar way so that a German
and an English version of the FAU Aibo Emotion Corpus is available (cf. [Batl 04a]).
The experiments in this thesis focus only on the German data.

In the chosen scenario, children play with the Sony robot Aibo3 that is designed
like a small dog. For our experiments, Sony placed the Aibo ERS-210A, shown in
Figure 5.1, at our disposal. The ERS-210A belongs to the second generation of the
Aibo robot series and includes wireless LAN movement control and voice and name

1http://pfstar.itc.it, last visited 01/12/2009
2http://www.eece.bham.ac.uk/, last visited 01/12/2009
3http://support.sony-europe.com/aibo/, last visited 01/12/2009
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Figure 5.1: Sony Aibo ERS-210A, by courtesy of Sony Deutschland GmbH [Sony 06]

recognition of about 50 simple words. Various sensors allow Aibo to react to external
stimuli. With its enhanced robot technology, Aibo can take its own decisions. The
communication between Aibo and the child takes place by various means. By turning
the head towards the child and ear movements or blinking LED lights, the impression
that the child has Aibo’s attention can be generated. In contrast, Aibo can ignore
the child by turning or walking away. Furthermore, joy can be signaled by letting
Aibo move its tail. Begging, for example, can be signaled by letting it sit down and
move its paws.

The whole experiment consists of six parts: five rather simple object localization
tasks where the child should direct Aibo to one out of two or three feeding dishes and
the main experiment where the child should direct Aibo along a given parcours and
let Aibo perform certain tasks at predefined places, e. g. let Aibo sit down, dance, or
go to the three blue cups positioned in the parcours. The experiments are illustrated
in Appendix A.1.1 and A.1.2. The parcours experiment took place between the third
and the fourth object localization task. The children were told to talk to Aibo like
they would talk to a real dog, especially to reprimand Aibo if it disobeys, or to praise
it if it takes orders.

In Germany, the recordings were carried out at two different schools in Erlangen,
the Ohm-Gymnasium (Ohm) and the Montessori-Schule (Mont). 51 children (30 fe-
male and 21 male pupils, see Table A.7 in Appendix A.2.1 for details) at the age of
10 to 13 took part in the experiments. The recording sessions took place in separate
class rooms. Besides the child, the instructor, who told the child what to do, the
controller, who stayed in the background pretending to control the video camera,
and a third assistant, who helped to arrange the different scenarios, attended the
recording session. During the recordings, they effaced themselves in order not to
disturb the child. The wireless head set Shure UT 14/20 UHF series with the micro-
phone WH20TQG was used in combination with the DAT recorder Tascam DA-P1
at a sampling rate of 48 kHz and a quantization of 16 bits. The audio data was trans-
ferred to a computer via a digital audio interface. Corresponding to the standard
sampling rate in automatic speech recognition, the speech recordings were downsam-
pled to 16 kHz. In addition to the audio recordings, the whole scene was recorded
with a consumer video camera and a wide-angle lens at 25 fps in PAL resolution and
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Figure 5.2: Experimental setup: object localization (left) and parcours (right)

interleaved mode. Figure 5.2 shows two takings from the video camera recordings
at the Montessori-Schule during the experiments: on the left hand side the starting
position of the second object localization experiment and on the right hand side the
parcours experiment shortly after the beginning. In addition to the audio recordings
with the close-talk microphone, the audio track of the video recordings contains the
same utterances of the child under noisy and reverberated conditions. The evaluation
of the effects of those conditions on the automatic classification of emotion is not part
of this work, but has been investigated in [Schu 07c].

In Great Britain, only the parcours experiment was carried out. However, each
child had to direct Aibo through the parcours twice: In the first run, Aibo follows the
instructions of the child, in the second run, Aibo carries out its fixed, predetermined
sequence of actions not taking into account what the child is saying. 30 pupils at
the age of 4 to 14 of a school in Birmingham were recorded in a special multi-media
studio in the Centre for Educational Technology and Distant Learning (CETADL)
in the Department of Electronic, Electrical and Computer Engineering (EECE). In
addition to the Shure wireless head set a second wireless microphone, a Sennheiser
ew100 range lapel microphone, clipped to the Shure head mount, in combination with
a Sennheiser SK100 transmitter and EK100 receiver was used. The analog data was
digitized with the external sound card Edirol UA-5 with USB interface at a sampling
rate of 44.1 kHz and 16 bit quantization and stored directly on a computer hard disk.
The data was downsampled to 16 kHz, too. The scene was recorded by three video
cameres recording a view of the full face, a left angle and a rear angle top track view.
Two video streams at a 352 x 288 resolution and a framerate of 25 fps exist; one of
the full face view and one quad display stream incorporating the views of the three
cameras and an informative view of the computer display.

Our experiments are Wizard-of-Oz experiments where Aibo was fully remote-
controlled by the experimenter. Aibo’s autonomous behavior and the integrated
voice recognition function were disabled. Independently of the orders of the child,
Aibo performed its actions in a fixed, predefined order (see Chapter 5.3.1 and Ap-
pendix A.1.1 and A.1.2) in order to be able to compare the behavior of the children
towards Aibo. To evoke emotions, the children were put slightly under time pressure
by telling them to direct Aibo as fast as possible through the parcours. At certain
predefined situations in the course of the experiment, Aibo did not obey to evoke
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anger. The task to let Aibo dance was supposed to induce joy. In the object local-
ization tasks, up to three feeding dishes are placed on the carpet. The child was told
that one of them contains poison and that they have to make sure that Aibo does
not go to this cup under any circumstances. Nevertheless, Aibo approaches exactly
this cup in three of the five object localization tasks in order to elicit slight forms
of fear or panic. Only in the first object localization task OLA, Aibo obeys. It was
not intended to induce emotions but is meant to be some sort of “warm-up” to get
acquainted with Aibo.

Although the Aibo scenario is a Wizard-of-Oz experiment, it differs from many
other Wizard-of-Oz experiments in the respect that the participants did not pretend
to be interested in the use of the system. For example, they did not have to book
a flight although they actually did not need one. Instead, the children enjoyed very
much playing with Aibo according to the impressions of the instructors and to the
feedback of the children. The real purpose of the experiment, the elicitation of emo-
tions, was not known to the children. None of the pupils realized that Aibo was
remote-controlled.

5.2 Transliteration and Automatic Segmentation
For some emotion features, especially for linguistic features, but also for our prosodic
features on the word level, the spoken sequence of words has to be known. It is
obtained by a manual transliteration of the data. Besides complete words and word
fragments, non-verbals like breath sounds, laughter, coughing, human and non-human
noise, and vocal or nasal hesitations have been transliterated. The transliteration of
the Aibo data has been revised during the subsequent emotion labeling steps. Since
manual information is not available in a fully automatic system, the transliteration
can be replaced by the most probable word chain obtained by an automatic speech
recognition (ASR) system. The quality of the output depends on the quality of the
speech recognizer, the audio quality of the data, and the correspondence between the
actual test data and the data which has been used for training the ASR system. In
any case, the recognized word chain will be partly erroneous with smaller or greater
impacts on the subsequent emotion recognition module. As both the German and
English version of the FAU Aibo Emotion Corpus are labeled on the word level,
the correct wording is indispensable. The corresponding word segmentation, i. e. the
information at which point of time a word begins and ends, respectively, is preferable
for classification experiments on the word level in order to be able to calculate word
level features for the correct region of the signal.

For easier handling of the German speech data, the recordings of each speaker
are split into smaller audio files. The split is carried out automatically at pauses
that are at least 1 s long. On the one hand, this heuristic threshold is supposed to
guarantee that no split occurs during a single utterance of a child, on the other hand,
it is warranted that the resulting audio files are not too long. It is assumed that the
child is waiting for a reaction of the Aibo robot during the pause that follows the
utterance. At this point in a conversation, the other conversational partner would
take over. Hence, these units are often called turns. This term is adopted for the FAU
Aibo Emotion Corpus. After the removal of larger pauses between turns, the German
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BEGIN_LATTICE
1 2 [-] 1.00 2 49 (AP (Z - 2))
2 3 Aibolein 1.00 50 141 (AP (Z aI 50 b 77 o: 86 l 88 aI 102 n 135))
3 4 [-] 1.00 142 170 (AP (Z - 142))
4 5 lauf 1.00 171 195 (AP (Z l 171 aU 173 f 187))
5 6 nach 1.00 196 222 (AP (Z n 196 a: 205 x 213))
6 7 rechts 1.00 223 303 (AP (Z r 223 E 233 C 255 ts 274))
7 8 [-] 1.00 304 304 (AP (Z - 304))

END_LATTICE

Figure 5.3: Example of a word hypothesis graph for the utterance “Aibolein, lauf
nach rechts!” (“Cute little Aibo, move to the right!”). A description of the WHG
format is given in the text

FAU Aibo Emotion Corpus consists of 8.9 hours of speech and 48,401 words in 13,642
turns. On average, a turn is 3.5 words long. The lexicon contains 1,147 entries. A
list of the most frequently used words is given in Table A.11 in Appendix A.2.8.

The segmentation is obtained by a forced time alignment of the spoken word
sequence to the audio data using the ASR system that has been developed within
our research group. To achieve the best segmentation results that are possible, the
ASR system is trained on the FAU Aibo Emotion Corpus. A recent description of
our system can be found in [Stem05]. It is based on standard MFCC features that
are calculated every 10ms for frames that are 16ms long (256 samples at a sampling
rate of 16 kHz). Words are modeled using context dependent polyphones which are a
generalization of the well-known triphones and allow larger contexts to be modeled.
The size of the context depends on the frequencies with which a polyphone is observed
during the training phase. The polyphones are modeled with semi-continuous hidden
Markov models. The output probability density functions are Gaussian mixture
models with full covariance matrices. The multi-codebook approach as described
in [Hack 03] is applied: Two separate codebooks, each consisting of 250 Gaussian
densities, are used for static and dynamic MFCC features. The result of the forced
alignment is a word hypothesis graph (WHG) as shown in Figure 5.3. For each word
of the spoken word sequence and for pauses between words, which are denoted as
[-], the WHG contains one line with the following information: the number of the
logical start node and the logical end node, the word itself, the a posteriori score
of the recognizer, which is 1.0 in the case of a forced alignment, the frame number
where the word begins and the frame number where it ends, and acoustic-prosodic
information (AP). In our case, the acoustic-prosodic information contains the time
alignment (Zuordnung, engl. alignment) of the phonemes, i. e. the frame number
where a phoneme begins. Due to implementation issues, the frame numbering starts
with 2. Details of the extendable WHG format are given in [Noth 93].

For the German Aibo data, the noisy and reverberated data of the video camera
has been segmented using the segmentation information of the close-talk microphone
data in order to obtain the same number of turns and turns containing the same
utterances. Unfortunately, the recordings of the DAT recorder and those of the video
camera are not totally synchronous. As time goes on both audio streams diverge.
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Although all turns do contain the same utterances, the utterances do not necessarily
start at the same frame in the audio files.

The British FAU Aibo Emotion Corpus has been transliterated manually as well.
Due to the remarkably smaller size of the British version of the corpus, the audio files
of each speaker are split manually into turns such that a turn contains only a single
command. Again, larger pauses between the turns have been removed. Thereafter,
the corpus consists of 1.3 hours of speech and 8,474 words in 5,302 turns. On average,
a turn is only 1.6 words long and thus less than half as long as a turn in the German
corpus. The size of the lexicon of the British version is remarkably smaller as well.
With 236 entries, its size is only one fifth of the one of the German version. Due to
the instructions that might have been slightly different for the British children, the
British pupils regard Aibo much more as a machine than as a pet. Their speaking
style is characterized primarily by short commands resulting in smaller turns and a
smaller size of the vocabulary that is used. In Table A.12 in Appendix A.2.8, a list of
the words that are used most frequently in the British version can be found. Whereas
‘Aibo’ is the word used most often by the German children, it is used rather seldom
by the British pupils (rank 17).

5.3 Annotation
The outstanding qualities of the FAU Aibo Emotion Corpus – besides the type of
the emotional data itself – are its annotations. On the German FAU Aibo Emotion
Corpus and partly also on the British version, a variety of annotations and manual
corrections has been carried out. Some of them are rather time-consuming and hence,
quite unique for a large corpus like this one. The turns of the children have been
aligned to Aibo’s pre-defined behavior, the automatic segmentation and the automat-
ically calculated values of the fundamental frequency have been manually corrected,
and the data has been labeled with part-of-speech tags, syntactic and prosodic la-
bels, and emotion categories. The emotion labels on the word level are used to assign
emotion labels on higher levels such as the chunk and the turn level.

5.3.1 Alignment to Aibo’s Behavior

Aibo’s actions are pre-defined and independent of the commands of the child. The
detailed description of Aibo’s behavior is given in Appendix A. Table A.1 lists Aibo’s
actions in the parcours experiment, tables A.2, A.3, A.4, A.5, and A.6 list the plots
for the five object localization tasks OLA, OLB, OLC, OLD, and OLE.

For the parcours experiment of the German FAU Aibo Emotion Corpus, the turns
have been manually aligned to the plot of Aibo’s actions which can be categorized into
co-operative actions (+C), non-cooperative actions (-C), and non-verbal actions (NV).
Furthermore, it is annotated when Aibo reaches certain landmarks in the parcours
(POS). Figure 5.4 shows the alignment of the first turns in the parcours experiment of
child Ohm_18. The child addresses Aibo, Aibo reacts by showing its greeting gesture
and the child continues to ask Aibo to get up and to walk forward. At first, Aibo
obeys and the child praises Aibo, but then, Aibo stops and then even starts to walk
backwards. The child calls on Aibo not to walk backwards but to walk forward.
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Ohm_18_049: Aibo steh auf komm Aibo aufstehen
Aibo get up come on Aibo get up

Ohm_18_050: ja fein aufstehen lauf mal g’radeaus ja g’radeaus
yes fine get up walk forward yes forward

NV: gesture ‘Hi’
Ohm_18_051: ja g’radeaus aufstehen hopp aufstehen

yes forward get up get up
+C: gets up
+C: goes forward
Ohm_18_052: ja lauf mal *z ja lauf mal fein gut *gema

yes go on *t yes go on fine well *do
Ohm_18_053: ganz *fa

very *fi
-C: stops
Ohm_18_054: nein Aibo g’radeaus

no Aibo straight forward
-C: goes backwards
Ohm_18_055: nein auch nicht rückwärts stopp Aibolein

no not backwards either stop little Aibo
Ohm_18_056: g’radeaus

straight forward

Figure 5.4: Alignment of the turns to the pre-defined plot of Aibo’s actions (NV:
non-verbal action, C+: co-operative action, C-: non-cooperative action of Aibo); an
example taken from the beginning of the parcours experiment

As Aibo’s non-cooperative behavior was intended to produce anger whereas cer-
tain non-verbal actions were, for example, intended to elicit joy, the alignment allows
to study the direct influence of Aibo’s behavior on the emotional state of the child.

5.3.2 Manually Corrected Segmentation

The word segmentation obtained by a forced alignment yields acceptable results.
Nevertheless, the segmentation certainly contains errors to some degree which will
influence the emotion feature calculation on the word level and by that probably also
the performance of the emotion classification module. So far, it is unknown how big
the actual influence is. In order to find out, the segmentation of the German FAU
Aibo Emotion Corpus has been manually corrected using our tool eLabel which has
been developed especially with the purpose of processing the large number of turns in
the FAU Aibo Emotion Corpus efficiently without the need to load and save the single
audio and transcription files manually for each turn. The tool displays the waveform
of the audio file, the transcription, and the spectrogram which is very important
to identify the word boundaries. Fricatives, for example, are clearly visible in the
spectrogram even if the signal energy being displayed in the waveform is close to zero
(see Figure 5.5). However, identifying the exact word boundaries is not that simple as
one might expect. Although a close-talk microphone is used, reverberation makes it
hard to determine the end of a word. The influence of reverberation can be seen in the
spectrogram of the word g’radeaus (’gra:|d@|?aUs, straight forward) in Figure 5.5.
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g r a: d ? aU s@

g’radeaus

Figure 5.5: Manual correction of the word segmentation: the word boundaries, espe-
cially at the end of a word, are not clear-cut as illustrated by the manually inserted
dashed line

At the end of the word, the energy in different energy bands first diminishes in
the higher frequency bands before it diminishes gradually also in the lower bands.
Finally, the signal turns into noise. The tool eLabel highlights the word boundaries
both in the waveform and in the spectrogram. They can be easily adjusted in steps of
one frame (10ms) using the arrow keys. The control via the keyboard facilitates an
effortless operation to process a large amount of data. Screenshots of the tool eLabel
can be found in Appendix C.

The correlation between the word durations of the manually corrected segmen-
tation lmanu and the durations lauto obtained by the forced alignment of the spoken
word chain is very high (correlation value of 0.93). The two-dimensional histogram in
Figure 5.6 shows the frequencies of pairs (lmanu, lauto) on a logarithmic gray scale. The
average word duration in the automatic segmentation is 36.8 frames. It is 3.4 frames
longer than the average word duration in the manually corrected segmentation. This
is due to the fact that the speech aligner avoids small pauses between words.

Let ts,manu and te,manu be the left and the right word boundary of the manually
corrected segmentation in terms of frames, and ts,auto and te,auto be the ones of the
forced alignment. Then, the signed segmentation error at the beginning of the word
is ∆ts = ts,auto− ts,manu, the error at the end of the word is ∆te = te,auto− te,manu. The
total absolute segmentation error ∆t of the word is defined as ∆t = |∆ts|+|∆te|. The
histograms in Figure 5.7 show how many words are wrongly segmented by the forced
alignment in dependency of the size of the segmentation error. The left figure shows
the histogram of the total segmentation error ∆t , the right figure the two histograms
of the segmentation errors ∆ts and ∆te at the beginning of the word and the end,
respectively. On average, a word in the forced alignment begins 1.5 frames too early
and end 2.0 frames too late.

In order to have a closer look at the occurring segmentation errors, they are
categorized into six groups which are illustrated in Figure 5.8. Errors of type s3 and
s6 indicate that the automatically segmented word is either too short (s3) or too
long (s6). Automatically segmented words that are shifted slightly to the left on the
time axis, i. e. words that begin and end too early but where the automatic and the
manual segmentation do overlap to some degree, are of type s2. Those words that are
shifted to the right are of type s4. In the case of no overlap between the automatic
and manual segmentation, the words are of type s1 or s5 depending on whether
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Figure 5.6: Comparison of the manually corrected word segmentation with the au-
tomatic segmentation obtained by forced alignment of the spoken word chain. The
histogram frequencies are displayed on a logarithmic gray scale
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Figure 5.7: Histograms of the total segmentation error ∆t (left) and the segmentation
error at the beginning ∆ts and the end ∆te of the word (right)

the automatically segmented words appear before (s1) or after (s5) the manually
segmented one. The frequencies of the different error types are given in Table 5.1.
Deviations of at most three frames at both word boundaries are tolerated. Using this
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s1 s5

s2 s4

ts,manu te,manu

s6

s3

tmanual
segmentation

automatic
segmentation

Figure 5.8: Different types of segmentation errors

type of error s1 s2 s3 s4 s5 s6
∑

frequency 300 2,598 1,133 6,249 149 8,427 18,856
0.6% 5.4% 2.3% 12.9% 0.3% 17.4% 39.0%

Table 5.1: Frequencies of different types of segmentation errors

threshold, the segmentation of 39.0% of all words in the corpus is incorrect. In most
cases (17.4%) the automatically segmented words are too long (error type s6) what is
due to the fact that the speech aligner avoids small pauses between words. In about
1% of the cases, the words are completely misplaced by the automatic alignment
(types s1 and s5).

Due to the size of the FAU Aibo Emotion Corpus, it is impossible to manually cor-
rect the alignment of the phonemes within a single word. A forced alignment of each
word providing the start and end frames has been carried out and new word hypoth-
esis graphs have been created. Our speech recognition system is based on polyphones
which are modelled with linear HMMs. In general, each HMM consists of three or
four states. Polyphones with the ‘@’ phoneme in the nucleus are the only exception.
They are modeled by an HMM of only one state. In contrast to Bakis or left-right
models, linear HMMs do not allow to skip certain states. Instead, each HMM state
has to be entered at least once in the decoding. Thus, the minimal duration of a word
is given by the total number of HMM states of the pertaining polyphones. Words
like “and”, for example, can only be aligned if the duration of the word is at least
nine frames long. These circumstances led to the fact that a few words could not be
aligned according to the manual segmentation. To solve the problem, the phoneme
models in our system have been extended by parallel alternatives which consist of
two or only one state. For details of our system ISADORA, please see [Schu 95]. Still
it is not possible to skip whole phonemes. Figure 5.9 shows two histograms of the
phoneme durations over all phonemes obtained by the forced alignment. The left
histogram emerged from the original HMM models. The ‘@’ phoneme is the only one
that can be one or two frames long. Most phonemes are three frames long. Words
that could not be aligned are missing. The right histogram shows the distribution of
the phoneme durations obtained by a forced alignment with HMM models that can
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Figure 5.9: Phoneme durations obtained by forced alignment of the words using the
manually corrected segmentation. Left: each phoneme is modeled by an HMM with
three or four states (except the phoneme ‘@’). Right: additionally to the standard
models, phoneme models consist of alternatives containing less states

also have only one or two states. Obviously, many phonemes are shorter than three
frames if given the possibility. This is an interesting by-product as in speech recog-
nition of read and spontaneous speech, the best recognition performance is generally
achieved with models of three or four states.

5.3.3 Manually Corrected F0

Prosodic features play a major role in emotion recognition. They model supraseg-
mental characteristics of the speech, amongst others the contour of the pitch within
a single word or over the whole turn. The acoustic correlate of the perceived pitch
is the fundamental frequency F0. For a long time, much effort has been put into
the development of robust F0 extraction algorithms. An overview up to 2003 over
various techniques is given in [Gerh 03]. So far, it is still an open question to what
extent F0 extraction errors influence the performance of emotion recognition systems
based on state-of-the-art prosodic features. For this reason, the F0 values of a certain
part of the German FAU Aibo Emotion Corpus, the Aibo turn set (3,996 turns, see
Chapter 5.4), have been manually corrected by a phonetician [Stei 08]. As a starting
position, the F0 has been calculated automatically using the freely available and well
established F0 algorithm of the popular Entropic Signal Processing System (ESPS)
toolkit which is often used for benchmarking. Due to the large amount of data (> 106

frames), it is impossible to examine the F0 value of each frame. The manual deter-
mination of the length of each period is totally out of the scope of what can be done
with a reasonable effort. Hence, the focus is set on the manual correction of obvious
errors like voiced/unvoiced errors, octave jumps, or other gross errors. Besides real
errors of the pitch extraction algorithm, irregularities in the speech production exist
which actually change the fundamental frequency of the signal and can be perceived
as suprasegmental irritations modulated onto the pitch contour, but which are not
perceived as jumps up or down [Batl 07a, Batl 93]. Since the manual correction is
geared to human perception, a better term of ‘correction’ would be ‘smoothed and
adjusted to human perception’. We use the term laryngealization for various types of
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diplophonia damping

subharmonic aperiodicity waste-paper-basket

glottalization

Figure 5.10: Prototypical examples of five different types of laryngealizations and the
waste-paper-basket type; from [Batl 93]

irregular voiced stretches of speech. In [Batl 93], five types of laryngealizations have
been established: glottalization, diplophonia, damping, subharmonic, and aperiodic-
ity. Prototypical examples of these types are illustrated in Figure 5.10.
The manual correction mostly dealt with the following phenomena:

(1) octave jumps: The ESPS F0 has been corrected by one octave jump up, in
some rare cases also two octave jumps up, or one octave jump down. This concerns
rather smooth curves which had to be transposed. In most cases, it is a matter of
irregular phonation where the extraction algorithm modelled pitch rather ‘close to
the signal’ instead of ‘close to perception’. In a few cases, however, no clear sign of
laryngealization can be observed. Sometimes, the context and/or the perception had
to decide whether an octave jump has to be corrected or not. If the whole word is
laryngealized and the impression is low pitch throughout, then laryngealization is not
modulated onto pitch and the pitch was kept unchanged.

(2) smoothing at irregularities: The ESPS curve is not smooth but irregular
due to laryngealizations or voiceless parts which ESPS wrongly classified as voiced.
Here, often the F0 values between the context to the left and the context to the right
were interpolated in order to result in a smoothed curve. In case of voiceless parts,
the F0 values were set to zero.

(3) other phenomena like irregularities at transitions which are not necessarily
due to irregular phonation: Smoothing at transitions is admittedly a bit delicate –
when should it be done if the phenomenon is well known, e. g. in the case of higher
F0 values after voiceless consonants. Sometimes, the context and/or the perception
had to decide whether an octave jump had to be corrected or not. A typical problem
is a hiatus, i. e. the lack of a consonant separating two vowels in separate syllables.
The perception is rather no pitch movement but ‘something’ modulated onto the
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Figure 5.11: Manual F0 correction for the utterance “Aibo, *tanz!” (Aibo, *dance! ).
Word fragments are marked with a ‘*’ in the transliteration. An explanation of the
F0 values being displayed is given in the text

pitch curve. In these cases, various F0 extraction errors can occur: the F0 values may
be set to zero, i. e. the segment is classified as voiceless, octave jumps up or down
may occur, the F0 values may be fully irregular, or values from low to higher may
occur. Here, the F0 was sometimes interpolated, sometimes doubled, or sometimes
not corrected (in the case from ‘low to higher’). Sometimes, clear criteria for the
one or the other solution could not be found, at least not with a reasonable effort.
In voiced-unvoiced-voiced sequences within a word, e. g. in the word “Aibo”, the
plosive sometimes was set to voiceless even if voiced would have been possible – F0

postprocessing sometimes interpolates in such cases anyway. In some rare cases, it
had to be “educated guessing” and was not really based on strong criteria.

Figure 5.11 shows an example with F0 correction: below, the time signal, in the
middle, the spectrogram, and above, the F0 values (0 – 600Hz) per frame à 10ms.
Manually corrected F0 values are displayed with gray, filled circles. The color of the
background is set to gray if ESPS and manually corrected F0 values differ. The first
part (the [a] in [aI]) of /Aibo/ is clearly laryngealized: first glottalization, then
diplophonia, and in the last irregular part, aperiodicity. The intervocalic plosive [b]
was set to voiceless (note that this is regular in south German dialects). Without
using the ‘magnifying glass’ to scale up the time signal, the [a] in /tanz/ does not
display clear signs of irregular phonation.

To illustrate which types of F0 extraction errors occur how often, a two-dimensional
histogram of the pairs (F0,manu, F0,auto) is given in Figure 5.12. The frequencies of
these pairs are displayed on a logarithmic gray scale in order to make less frequent
errors visible as well. Cases where both ESPS and the human corrector decided
for voiceless, i. e. pairs (0, 0), are discarded in the histogram due to their very high
frequency. The histogram shows that the F0 extraction errors can be categorized
into various types of errors. They are denominated with f1 to f7 and are defined
in Table 5.2. Since only obvious errors have been corrected, the F0 values of most
frames (94.3%, see Table 5.3) have been kept unchanged resulting in the dark diag-
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Figure 5.12: Comparison of the automatically calculated and the manually corrected
F0 values. The frequencies in the histogram are displayed on a logarithmic gray scale

12000

10000

8000

250

50

0

16000

6000

4000

2000

0

100

150

14000
200

f3

f4

f6

f5

f0

0 6000 600200 300100 400 500 100 200 300 400 500

manually corrected F0 values [Hz]manually corrected F0 values [Hz]

ab
so
lu
te

fr
eq
ue

nc
y

ab
so
lu
te

fr
eq
ue

nc
y

Figure 5.13: Histograms of correct F0 values (f0) and octave errors of type f5 (left)
and unvoiced errors (f3) and octave errors of type f4 and f6 (right)

onal (f0) in the histogram. Voiced errors (f2), i. e. F0 values which are considered
to be voiceless by the human corrector and voiced by ESPS, result in the vertical
straight line. Unvoiced errors (f3), i. e. F0 values which are wrongly considered to be
voiceless by ESPS, yield the horizontal straight line. Three more straight lines result
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symbol short description long description
f0 identical F0 value calculated by ESPS is not changed

by the manual correction
f1 minor error deviation of the ESPS F0 value from the

manually corrected F0 value is less than 10%
f2 voiced error ESPS calculates a F0 value for a frame which

is considered to be unvoiced by the manual
correction

f3 unvoiced error a frame which is considered to be voiced by
the manual correction is marked as unvoiced
by ESPS

f4 octave error ↑ ESPS F0 value is twice the manually cor-
rected F0 value with a tolerance of 10%

f5 octave error ↓ ESPS F0 value is half the manually corrected
F0 value with a tolerance of 10%

f6 octave error ↓↓ ESPS F0 value is one fourth of the manually
corrected F0 value with a tolerance of 10%

f7 other gross error deviation of the ESPS F0 value of more than
10% but not one of the octave jumps men-
tioned above

Table 5.2: Description of different F0 error types

evaluation
type of error whole turn only within words
f0 identical 1,050,450 94.3% 574,485 93.7%
f1 minor errors 455 0.0% 452 0.1%
f2 voiced errors 32,774 2.9% 8,804 1.4%
f3 unvoiced errors 1,884 0.2% 1,877 0.3%
f4 octave errors ↑ 247 0.0% 239 0.0%
f5 octave errors ↓ 23,718 2.1% 23,498 3.8%
f6 octave errors ↓↓ 375 0.0% 364 0.1%
f7 other gross errors 3,634 0.3% 3,559 0.6%

Table 5.3: Frequencies of the different F0 error types on the Aibo turn set; evaluation
on the whole turn or only within words

from one (f5) or two (f6) octave jumps down (one half and one fourth of the manually
corrected F0 value, respectively) or one octave jump up (f(4), ESPS F0 value is twice
the manually corrected one). Hence, the angles of these lines with the horizontal
line are arctan(1

2
) ≈ 26.6◦, arctan(1

4
) ≈ 14.0◦, and arctan(2) ≈ 63.4◦, respectively.

Other gross F0 errors are located between these lines. One-dimensional histograms
for identical F0 values (f0) and the error types f3 to f6 are shown in Figure 5.13.

The frequencies of the different error types are given in Table 5.3. Numbers are
given for the evaluation on the whole turns and for the evaluation only within words.
As our prosodic features are word based, F0 values outside words (45% of all frames)
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are irrelevant for our feature extraction. The comparison reveals that – as expected
– almost all F0 errors occur within words. Only voiced errors appear mostly outside
words (73%). Within words, octave errors of type f5 (one octave jump down) make
up the largest part of the F0 errors. Octave jumps up (f4) are rare since in most cases,
they are prevented by the upper F0 limit of the F0 extraction algorithm. Only F0

values below 300Hz are candidates for octave jumps up, but deep male voices are not
included in the corpus since the male pupils are before their puberty vocal change.
The average F0 values for male and female pupils is nearly the same: 281.2Hz for male
and 280.9Hz for female pupils. Figure A.5 in Appendix A.2.5 shows the distribution
of the manually corrected F0 values on the Aibo turn set (3,996 turns) for which the
manual correction has been performed. The table also lists a few minor errors defined
as deviations of less than 10%. As explained above, minor errors were not in the focus
of our manual correction. Anyway, state-of-the-art F0 features only model the rough
contour of the fundamental frequency. Thus, minor errors are highly unlikely to
influence the emotion recognition.

Again, our tool eLabel was used to process the data set efficiently. eLabel offers
two possibilities to determine the fundamental frequency for a single frame: the first
method is to manually define periods within the frame. The program then calculates
the average frequency of these periods and assigns this value to the frame. The second
opportunity is to manually select the maximum of the auto-correlation function which
eLabel is able to plot. eLabel offers various window lengths and windowing functions.
To fix errors efficiently, eLabel offers to set the F0 values for single frames or for a
selection of frames to zero (errors of type f2), to double or halve the values (errors of
type f4, f5, and f6), or to interpolate values between the selected ones. eLabel shows
both the original F0 values by ESPS and the manually corrected ones. Screenshots
can be found in Appendix C.

5.3.4 Part-of-Speech Tags

All entries of the German Aibo lexicon, which consists of all word forms occurring in
the German FAU Aibo Emotion Corpus, are annotated manually with part-of-speech
(POS) tags. In general, a word has to be examined in its syntactic context in order
to annotate the correct POS label. Depending on its position in a sentence, one and
the same word can have different POS tags. For our purpose, we use a set of only
six coarse lexical and morphological main word classes (see [Batl 03a]) and annotate
the isolated words of the lexicon without examining their context. If in doubt, we
refer to the transliteration. In the case of near-homographs, for example, the initial
letter (upper or lower case) can tell apart noun from adjective. Nevertheless, this
approach will yield erroneous results in some cases. We believe that for our purposes
where the vocabulary is very limited the effects are neglectable. Sentences can also be
annotated by automatic POS taggers using more than six POS categories. Due to the
rather simple structure of the sentences in the FAU Aibo Emotion Corpus and to the
fact that the corpus contains spontaneous speech with sometimes non-grammatical
utterances, the use of those POS taggers with more POS classes seems not to be
beneficial.
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frequencies
POS description types tokens
NOUN nouns, proper names, fragments of a

noun or proper name
165 14.4% 8,275 17.0%

API inflected adjectives (attributive),
fragments (¬ noun)

64 5.6% 354 0.7%

APN participles (present/past, not in-
flected), adjectives (not inflected)

104 9.0% 1,584 3.2%

VERB (all other) verbs, infinitives (or 1st
or 3rd person plural)

222 19.4% 13,197 27.3%

AUX auxiliaries, copulative verbs 50 4.4% 474 1.0%
PAJ articles, pronouns, particles (ad-

verbs, prepositions, conjunctions),
interjections

542 47.2% 24,517 50.7%

1,147 100.0% 48,401 100.0%

Table 5.4: Description of the part-of-speech (POS) tags and their frequencies for the
lexicon (types) and in the transliteration (token) of the German FAU Aibo Emotion
Corpus

We use one class for nouns, proper names, and fragments of both of them (NOUN),
one for inflected adjectives and word fragments excluding fragments of nouns (API),
one for not inflected adjectives and not inflected present and past participles (APN),
one for non-copulative verbs and infinitives including verbs in the first or third per-
son plural (VERB), one for auxiliaries and copulative verbs (AUX), and finally one for
articles, pronouns, interjections, and particles like adverbs, propositions, and conjunc-
tions (PAJ). An overview in table form is given in Table 5.4. This table also includes
the frequencies of these six POS classes within the lexicon (types) and within the
German FAU Aibo Emotion Corpus (tokens). Concerning types, the most frequent
POS class is PAJ (47.2%) followed by VERB (19.4%) and NOUN (14.4%). The other
three classes AUX, APN, and API play only a minor role. In the case of tokens, this
situation becomes even clearer: PAJ, VERB, and NOUN make up 95% of all words in
the corpus.

5.3.5 Syntactic Labels and Splitting into Chunks

As mentioned in Chapter 5.2, the speech recordings of the children have been split
automatically into smaller units – the turns – at pauses that are at least 1 s long.
To be able to capture even quick changes of the emotional state within single turns,
the emotional state is annotated on the word level (see Chapter 5.3.7). These labels
on the word level can be mapped onto labels for larger segments like turns (see
Chapter 5.3.8) without the need to relabel the whole data. Nevertheless, the optimal
unit for emotion analysis is neither the word nor a long unit like a turn but is some
intermediate, syntactically and semantically meaningful chunk (see [Batl 03a] for a
study on appointment scheduling dialogs in a Wizard-of-Oz scenario).
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type description example
s3 boundary between two

main clauses
geh ein Stückchen nach links s3 geh nach
links (turn a little bit to the left s3 go to the
left)

s2 co-ordination of main/
subordinate clauses,
boundary between main
and subordinate clause

steh auf s2 und geh nach links (get up s2
and go to the left)

s1 ‘sentence-initial’ particle
or imperative “komm”

komm s1 lauf vorwärts (come on s1 go for-
wards)

p3 boundary after/between
free phrases/particles

okay p3 jetzt wieder aufstehen (okay p3 now
get up again)

d2 dislocation to the right
or left

lauf vorwärts d2 noch weiter (forwards d2
keep on going)

v2 after vocative Aibo v2 steh auf (Aibo v2 get up)
v1 before vocative lauf weiter v1 Aibo (keep on walking v1 Aibo)
v2v1 between vocatives böser Aibo v2v1 Aibo v2 steh wieder auf (bad

Aibo v2v1 Aibo v2 get up again)
eot end-of-turn, functions

the same way as s3/p3
jetzt steh wieder auf eot dreh dich um eot
(now get up again eot turn around eot)

f1 no syntactic boundary
at the end of the turn

lauf nach f1 (go to f1)

Table 5.5: Description of the syntactic boundaries annotated for the German FAU
Aibo Emotion Corpus and prototypical examples

This is especially true for our scenario where no real dialog between conversa-
tional partners exists: only the child is speaking, Aibo is only acting. Using only
the speech channel, the different turns are hard to identify since a ‘tidy’ stimulus-
response sequence cannot be observed. Aibo’s action during or slightly before or
after a child’s utterance is not conveyed via this channel. Many pauses of varying
length can be found. They are either pauses segmenting into different dialog acts (the
child is waiting for Aibo’s actions before he/she reacts to them) or simple hesitation
pauses. Longer pauses like those that are longer than 1 s are more likely to separate
different turns. Another peculiarity of the FAU Aibo Emotion Corpus is the speak-
ing style which, besides some ‘well-formed’ utterances, is dominated by a mixture of
short sentences and one-word commands. Neither ‘integrating’ prosody as in the case
of reading, nor ‘isolating’ prosody as in the case of TV reporters can be observed.
Therefore, hybrid syntactic-prosodic criteria are used for segmenting into chunks:
higher syntactic boundaries always trigger chunking, lower syntactic boundaries only
in combination with pauses that are at least 500ms long. By that, vocatives that
simply function as ‘relators’ can be distinguished from vocatives with specific illocu-
tions like ‘Hi, I’m talking to you’ or ‘Now I’m, getting angry ’ [Batl 09]. Since there
is a rather high correlation between prosodic, syntactic, and dialog act boundaries
(see [Batl 98]), chunk triggering based on prosodic boundaries alone might not result
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syntactic pause duration
boundary P1 P2 P3 P4

∑
s3 801 44.0% 407 22.4% 340 18.7% 273 15.0% 1,821
s2 165 83.8% 10 5.1% 12 6.1% 10 5.1% 197
s1 328 75.2% 48 11.0% 32 7.3% 28 6.4% 436
p3 885 59.8% 276 18.7% 183 12.4% 135 9.1% 1,479
d2 56 80.0% 5 7.1% 7 10.0% 2 2.9% 70
v2 3,278 74.8% 498 11.4% 376 8.6% 228 5.2% 4,380
v1 3,226 84.3% 217 5.7% 204 5.3% 178 4.7% 3,825
v2v1 20 10.2% 49 24.9% 59 29.9% 69 35.0% 197
eot 13,642
f1 17

Table 5.6: Frequencies of the annotated syntactic boundaries for the German FAU
Aibo Emotion Corpus. P1: pause duration lpause < 250ms; P2: 250ms ≤ lpause <
500ms; P3: 500ms ≤ lpause < 750ms; P4: 750ms ≤ lpause < 1,000ms. Gray rows and
columns indicate chunk triggering boundaries

in a (much) worse classification performance. From the point of view of an end-to-
end processing system where some modules are based on syntactic segments whereas
other modules process prosodic segments, the segmentation using both syntactic and
prosodic criteria results in smaller segments but simplifies the time alignment of the
prosodic and linguistic units which is in general needed at some later stage in the
system.

The whole German FAU Aibo Emotion Corpus has been annotated with syntactic
labels along the lines of [Batl 98]. The set of labels has been reduced and adapted
to the lower linguistic variety of our data. The syntactic labels are summarized in
Table 5.5 together with a brief description and examples. We annotated syntactic
boundaries between two main clauses (s3), between co-ordinated main or subordinate
clauses and between a main clause and a subordinate clause (s2) as well as boundaries
after free phrases or particles or between a sequence of free phrases or particles (p3).
Furthermore, there are labels for dislocations to the left or to the right (d2), for
vocatives (post vocative v2, prae vocative v1, between two vocatives v2v1), and for
the particle “komm” (come on) at the beginning of a sentence (s1). In our scenario,
“komm” is obviously rather a particle (“komm” in the meaning of “come on”) than a
‘real’ imperative (“komm” in the meaning of ”come to me”).

The label f1 signals that the end of a turn (label eot) does not correspond to
a syntactic boundary. Fortunately, this happens only in a very few cases as the
frequencies of the syntactic labels given in Table 5.6 indicate. The cross-tabulation
in Table 5.6 reveals how long the pauses are at syntactic boundaries. The pause
durations lpause are quantized into four categories P1 to P4 in steps of 250ms.

The following heuristic is used to split turns into chunks: A turn is split at
the syntactic boundaries s3 and p3 as the emerging chunks behave like full-fledged
sentences. Furthermore, turns are split between consecutive vocatives (v2v1) since
the emotional states of both vocatives can be different: ‘dreh dich nach links Aibo
v2v1 Aibo’ (turn to the left Aibo v2v1 Aibo). The child asks Aibo to turn to the
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unit of analysis description
words entries of the lexicon of the speech recognizer such as

• single words: ‘Aibo’
• short forms: ‘ist’s’ instead of ‘ist es’
• dialectal forms: ‘des‘ instead of ‘das’
• word fragments: ‘*fei’ instead of ‘feiner’

turns the audio file of a speaker is split automatically into turns at
pauses ≥ 1 s

chunks syntactically and semantically meaningful, intermediate unit
between words and turns obtained by splitting turns at manu-
ally labeled higher syntactic boundaries and at lower syntactic
boundaries in combination with pauses ≥ 500ms

Table 5.7: Units of analysis: definition of words, turns, and chunks

left and as Aibo does not obey, the child calls Aibo’s name again to enforce his/her
command. The way of speaking changes from a neutral style at the beginning to
a reprimanding or angry way at the second vocative. In addition, we split at large
pauses, i. e. pauses that are at least 500ms long (P3 and P4). The chunk triggering
boundaries are highlighted in Table 5.6. The definitions of the three different levels
of analysis – the word, the turn, and the chunk level – are summarized in Table 5.7.

5.3.6 Prosodic Labels

It can be assumed that the children change their way of speaking if they want to
persuade Aibo to take orders, to reprimand Aibo if it does not obey or to reward
Aibo for its obedient behavior. For this reason, prosodic peculiarities have been
annotated for the German FAU Aibo Emotion Corpus by an experienced labeler. The
annotations are along the same lines as the annotations for the SympaFly database
[Batl 03b, Batl 04b] and for the emotional Wizard-of-Oz data in the Verbmobil project
[Batl 03a]. Eleven different phenomena are annotated on the word level: strong
emphasis of particular syllables, careful, hyper-clear articulation of words, unusual
lengthening of syllables, insertion of extra syllables, shift of the accent position to
another syllable, unusual pauses within or between words or phrases as well as extra
long pauses where the child is waiting for Aibo to fulfil the given command, speech
distortions due to laughter, loud speech and shouting, and vocatives that are produced
in a prosodically peculiar way. The prosodic phenomena and their description are
summarized in Table 5.8. More than one label can be attributed to the same word.
A cross-tabulation of the prosodic peculiarities and the emotion categories, which are
described in the following chapter, can be found in Chapter 5.3.9.

The frequencies of these eleven prosodic labels for the German FAU Aibo Emotion
Corpus are given in Table 5.9. About 20% of the words are annotated with one or
more prosodic labels. The most frequent prosodic phenomena is emphasis (37.7% of
all prosodic labels), followed by unusual lengthening of syllables (31.4%) and hyper-
clear articulation (21.4%). The other phenomena are rather rare (less than 2.5%).
In 11.6% of the cases where a word is labeled as prosodically peculiar, more than
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prosodic label description
CLEAR_ART careful, very clear articulation; avoidance of contractions, dele-

tions, etc.
EMPHASIS strong emphasis on particular syllables
SHOUTING shouting
ACC_SHIFT shift of accent position, for instance /Aibo/ [aI|’bo:]
LENGTH_SYLL unusual, pronounced lengthening of syllables
INS_SYLL insertion of syllables, for instance /stop/ [’StO:|hOp]
PAUSE_LONG very long pauses (child is waiting for Aibo to fulfil a command)
PAUSE_WORD pauses between words inside syntactic/semantic units; for in-

stance, between preposition, article, and noun
PAUSE_SYLL pauses within a word, between syllables
LAUGHTER speech distorted by laughter
VOCATIVE prosodically peculiar vocative (only for the words Aibo and Ai-

bolein)

Table 5.8: Description of the prosodic labels

prosodic label frequency
words with prosodic peculiarities 10,341 21.4%
words without prosodic peculiarities 38,060 78.6%
CLEAR_ART 2,482 21.4%
EMPHASIS 4,371 37.7%
SHOUTING 180 1.6%
ACC_SHIFT 11 0.1%
LENGTH_SYLL 3,636 31.4%
INS_SYLL 85 0.7%
PAUSE_LONG 174 1.5%
PAUSE_WORD 267 2.3%
PAUSE_SYLL 34 0.3%
LAUGHTER 77 0.7%
VOCATIVE 273 2.4%

Table 5.9: Number of words in the German FAU Aibo Emotion Corpus that are
annotated with the respective prosodic label

one prosodic label is annotated. The most frequent combinations of prosodic labels
are emphasis combined with unusual lengthening of syllables (536 cases), emphasis
combined with hyper-clear articulation (218 cases), and a combination of unusual
lengthening of syllables and hyper-clear articulation (110 cases). Other combinations
are clearly less frequent: unusual lengthening of syllables and vocative (39 cases),
emphasis and pauses between words (31 cases), unusual lengthening of syllables and
shouting (30 cases), hyper-clear articulation and pauses between words (28 cases), etc.
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5.3.7 Emotion Labels for Words

While playing with the Sony robot Aibo, the emotion-related user state of the children
changes over time. This is expressed in changes of the voice and the speech of the
children. As we are only interested in the vocal changes and not in the underlying
emotional state itself, it does not matter whether the child actually is emotional or
only deliberately changes its voice to make Aibo react in a certain way. The labeling
is based on the speech of the children only. Neither antecedent conditions like Aibo’s
behavior, nor body movements and gestures, or facial expressions of the children in
the case of the British FAU Aibo Emotion Corpus, have been used for the purpose
of labeling since this information will not be available to the automatic classification
system either in our experiments.

For the German FAU Aibo Emotion Corpus, five human labelers (advanced stu-
dents of linguistics) have been employed who listened to the utterances of each child
in sequential (not randomized) order and labeled independently from each other each
word using category labels. The labelers had to decide for exactly one of the given
categories. The context information has an effect on the decision a labeler makes
[Caul 00]. By giving the opportunity to listen to the whole turn, the surrounding
context within one turn was made available. Furthermore, the preceding turns are
known to the labelers. Although the approach to label emotions on the word level is
unique and very time-consuming, we opted for it as the emotion-related user states
can change rather quickly, even within single turns. That way, the problem that turns
are labeled as a whole with only one category but in fact do contain more than one
emotion-related user state is avoided. However, this approach does not exclude the
opportunity to merge words of the same category to larger units or to map emotion
labels on the word level onto labels for fixed units of larger size like, for example,
whole turns.

The categories that have been utilized have been obtained in advance by inspection
of the data. Besides neutral, which is the default user state, the following ten other
categories are used: angry, touchy/irritated, joyful, surprised, bored, helpless, moth-
erese, reprimanding, emphatic, and a category other for all remaining phenomena
which are rare and not covered by the other classes. Whereas the first five categories
describe emotional states in a narrower sense of emotion, the latter describe typical
user states (e. g. helpless) and behavioral patterns (motherese, reprimanding) in this
scenario which are not emotions proper but emotion-related. The categories are listed
and described in Table 5.10. Certainly, these categories do not represent emotions of
children in general, but we claim that they are adequate for modeling the behavior
of the children in this specific scenario.

The state emphatic has to be commented on especially (see [Batl 05a]): As already
mentioned in Chapter 3.1, any marked deviation from a neutral speaking style can
(but need not) be taken as a possible indication of some (starting) trouble in commu-
nication [Batl 03a]. If a user gets the impression that the machine does not understand
him, he will try different strategies like the use of repetitions, re-formulations, other
wordings, or simply a pronounced, marked speaking style. Such a speaking style does
not necessarily mean that the state of the user is not neutral anymore but the prob-
ability that the user state will be changing soon is significantly higher. Of course,
this speaking style can also be caused by other circumstances. It can be due to
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user state description
joyful (J) the child enjoys Aibo’s action and/or notices that something

is funny
surprised (S) the child is (positively) surprised, because obviously she/he

did not expect Aibo to react that way
motherese (M) the child addresses Aibo in the way mothers/parents address

their babies (also called ’infant-directed speech’) – either be-
cause Aibo is well-behaving or because the child wants Aibo
to obey; this is the positive equivalent to reprimanding

neutral (N) default user state, not belonging to any other category; not
labeled explicitly

other (O) not neutral but not belonging to any of the other categories,
i. e. some other spurious emotions

bored (B) the child is (momentarily) not interested in the interaction
with Aibo

emphatic (E) the child speaks in a pronounced, accentuated, sometimes
hyper-articulated way but without showing any emotion

helpless (H) the child hesitates, seems not to know what to tell Aibo next;
can be marked by disfluencies and/or filled pauses

touchy (T)
(irritated)

the child is slightly irritated; pre-stage of anger

reprimanding (R) the child is reproachful, reprimanding, ‘wags the finger’; this
is the negative equivalent of motherese

angry (A) the child is clearly angry, annoyed, speaks in a loud voice

Table 5.10: Category labels describing the emotion-related user states of the children
in the FAU Aibo Emotion Corpus; ordered from positive to negative valence

user idiosyncrasy or caused by the conversation with a computer (‘computer talk’),
a child, a non-native person, or an elderly person who is hard of hearing. Besides
modeling emphasis as an indication of arising problems in communication, there are
two other – practical – arguments for the annotation of emphatic: Firstly, it is to a
large extent a prosodic phenomenon and thus, it can be modeled and classified with
prosodic features. Secondly, if the labelers are allowed to label emphatic, it might be
less likely that they confuse it with other user states.

For the German FAU Aibo Emotion Corpus, Table 5.11 lists the frequencies of
the eleven user states separately for each of the five labelers. As expected, the pre-
dominant portion of these raw labels is neutral (71% on average over all labelers). It
is followed by emphatic with only 17% on average. Motherese is with 4.3% of all raw
labels on third place, followed by reprimanding with 2.4%. Only in a few cases, the
children got (slightly) angry or were joyful (both 0.6%). The other states occurred
even less frequently.

Not only the differences between the categories but also the differences between
the labelers are high. Labeler No. 1 and No. 5 labeled about 90% of the words as
neutral, labeler No. 2 only 35%. On the other hand, labeler No. 2 is the one with the
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labeler total frequency
user state No. 1 No. 2 No. 3 No. 4 No. 5 abs. rel.
neutral (N) 43,417 17,173 30,908 36,857 44,220 172,575 71.3%
emphatic (E) 2,279 22,916 10,792 3,594 361 39,942 16.5%
motherese (M) 767 3,560 2,297 2,241 1,548 10,413 4.3%
touchy (T) 244 1,962 3,130 780 1,300 7,416 3.1%
reprimanding (R) 1,049 1,396 152 2,611 716 5,924 2.4%
angry (A) 210 413 189 740 42 1,594 0.6%
joyful (J) 259 679 171 289 89 1,487 0.6%
bored (B) 111 134 223 593 92 1,153 0.5%
hesitant (H) 4 162 217 480 17 880 0.4%
other (O) 60 5 292 213 14 584 0.2%
surprised (S) 1 1 30 3 2 37 0.0%

Table 5.11: Distribution of the eleven user states for each single labeler for the whole
German FAU Aibo Emotion Corpus (48,401 words) ordered by the total frequency
of the user states

highest proportion of emphatic (47%). In contrast, labeler No. 5 decided for emphatic
in less than 1%. For the other categories, the situation is similar.

Although the inter-labeler agreement seems to be bad, it would be wrong to
blame the labelers or the system of category labels that has been used, nor is the
data ‘bad’. It just shows that the addressed problem is a very complicated one – not
only for machines but also for human beings. It might be well possible to use the
decisions of only one labeler to train a machine classifier. The machine would then
try to decide exactly the same way this single human does. If the information of
more labelers is available, one can only gain, either by training the classifier so that
it decides as the majority of the labelers does or by focusing on more prototypical
examples by selecting samples of high agreement. There are reasons why the inter-
labeler agreement is that low: Labeling with categories forces the labeler to choose
exactly one category. This decision has to be made independently of the intensity of
the emotional state. In the case of the FAU Aibo Emotion Corpus, the emotional
or emotion-related states that can be observed are rather weak compared to the full-
blown emotions one might be used to from emotion portrayals. Hence, the choice
of one category is much more difficult and the emotional/emotion-related states are
much more likely to be confused with neutral. The problem is even aggravated by the
fact that humans have their individual thresholds up to which they rate the state of
another person as (still) neutral and above which they consider the state as (already)
emotional. In a similar way, it is hard to tell the exact transition from a neutral to
a marked, pronounced speaking style. It gets even harder if this speaking style does
not indicate a change in the user state but is just the speaking style the child uses
all the time to talk to Aibo. Nevertheless, this is the data one gets from a realistic
scenario and humans can perceive little changes in the states of a person, although
these changes are not always perceived in the same way by different humans. If
one wants to employ machines for emotion recognition in real scenarios, one has to
address these problems.
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labeler total frequency
user state No. 1 No. 4 No. 5 abs. rel.
neutral (N) 6,874 5,299 8,198 20,371 80.1%
emphatic (E) 991 1,906 49 2,946 11.6%
reprimanding (R) 351 714 41 1,106 4.4%
motherese (M) 82 141 66 289 1.1%
hesitant (H) 31 104 21 156 0.6%
angry (A) 89 58 3 150 0.6%
bored (B) 5 120 13 138 0.5%
touchy (T) 32 37 53 122 0.5%
joyful (J) 17 31 13 61 0.2%
other (O) 2 64 17 83 0.3%
surprised (S) 0 0 0 0 0.0%

Table 5.12: Distribution of the eleven user states for each single labeler for the whole
British FAU Aibo Emotion Corpus (8,474 words) ordered by the total frequency of
the user states

The British FAU Aibo Emotion Corpus has been labeled by only three of the five
labelers who have labeled the German version. The same set of categories has been
used. In Table 5.12, the frequencies of the emotion labels are given for each labeler.
Again, there is a similar picture: The frequencies of the states differ to some degree
and the order of the most frequent states has changed a bit: neutral outweighs by
far the other states (80% of all raw labels). Emphatic is on second place (11.6%),
followed by reprimanding (4.4%) and motherese (only 1.1%).

If more than one labeler is available, it is common to combine the single decisions
of the participating labelers by taking the majority vote as reference label. The
majority vote represents the decision of the average labeler and is more robust against
‘outliers’ of single labelers. The numbers are given in Table 5.13 and Table 5.14 for
the German and the British FAU Aibo Emotion Corpus, respectively. The tables also
contain information about how many labelers agree on the majority label. If four out
of five labelers agree, the agreement is 0.8. For the German FAU Aibo Emotion
Corpus, this is the case in 40.9% of the words where the majority vote is neutral.
The majority does not have to be an absolute majority, i. e. an agreement of two out
of five labelers is possible (e. g. A, E, A, N, R). There are also cases where no clear
majority exists because the same two categories occur twice (e. g. A, T, T, E, A) or
in rare cases, five different categories were chosen. These cases are denoted with ‘–’
in the tables.

In order to be able to train a machine classifier, each of the classes which are to
be separated by the machine has to be observed with a reasonably high frequency
in the training data. This practical reason necessitates the mapping of the rare
categories bored, hesitant, and surprised onto the category Other. Furthermore, the
three categories reprimanding, touchy, and angry are mapped onto Anger. These
categories are frequently confused what justifies this mapping to some degree but it
must be very clear that this new class is a cover class subsuming not only different
types of anger but also other emotion-related states, namely touchy/irritated and
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agreement of the five labelers
user state frequency 0.4 0.6 0.8 1.0
neutral (N) 39,975 82.6% 2.0% 26.1% 40.3% 31.6%
emphatic (E) 2,807 5.8% 9.9% 68.1% 19.6% 2.4%
motherese (M) 1,311 2.7% 3.9% 56.1% 38.8% 1.2%
reprimanding (R) 463 1.0% 33.0% 51.8% 11.4% 3.7%
touchy (T) 419 0.9% 46.3% 48.4% 5.0% 0.2%
angry (A) 134 0.3% 37.3% 53.7% 9.0% 0.0%
joyful (J) 109 0.2% 7.3% 74.3% 18.3% 0.0%
bored (B) 16 0.0% 31.3% 50.0% 18.8% 0.0%
other (O) 10 0.0% 70.0% 30.0% 0.0% 0.0%
hesitant (H) 4 0.0% 25.0% 75.0% 0.0% 0.0%
surprised (S) 0 0.0%
– 3,153 6.5%
all 48,401 100.0% 9.6% 28.2% 35.7% 26.3%

Table 5.13: Distribution of the user state labels according to the majority voting of
the five labelers in the whole German FAU Aibo Emotion Corpus ordered by the
frequency of the user state

agreement of the
three labelers

user state frequency 0.66 1.0
neutral (N) 7,171 84.6% 32.1% 67.9%
emphatic (E) 631 7.4% 97.1% 2.9%
reprimanding (R) 127 1.5% 93.7% 6.3%
motherese (M) 55 0.6% 70.9% 29.1%
angry (A) 23 0.3% 95.7% 4.3%
hesitant (H) 20 0.2% 95.0% 5.0%
joyful (J) 11 0.1% 72.7% 27.3%
touchy (T) 7 0.1% 85.7% 14.3%
bored (B) 0 0.0%
other (O) 0 0.0%
surprised (S) 0 0.0%
– 429 5.1%
all 8,474 100.0% 36.9% 58.0%

Table 5.14: Distribution of the user state labels according to the majority voting of
the three labelers in the whole British FAU Aibo Emotion Corpus ordered by the
frequency of the user state

reprimanding. The mapping onto cover classes is summarized in Table 5.15. The
abbreviations of the six cover classes are given in bold face to distinguish them from
the original emotion-related user state categories.

The frequencies of the majority vote for the cover classes are given in Table 5.16
and Table 5.17 for the German and the British FAU Aibo Emotion Corpus, respec-
tively. The labels are mapped before the majority voting, resulting in 1,718 words
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user state label cover class
angry (A)
touchy (T) Anger
reprimanding (R)
emphatic (E) Emphatic
neutral (N) Neutral
motherese (M) Motherese
joyful (J) Joyful
bored (B)

Otherhesitant (H)
surprised (S)
other (O)

Table 5.15: Mapping of the eleven user state labels onto six cover classes (given in
bold face)

agreement of the five labelers
cover class frequency 0.4 0.6 0.8 1.0
Neutral 39,408 81.4% 0.6% 26.4% 40.9% 32.1%
Emphatic 2,605 5.4% 3.0% 73.4% 21.1% 2.6%
Anger 1,718 3.5% 4.2% 57.1% 27.5% 11.1%
Motherese 1,300 2.7% 3.1% 56.5% 39.2% 1.2%
Joyful 107 0.2% 5.6% 75.7% 18.7% 0.0%
Other 45 0.1% 33.3% 53.3% 8.9% 4.4%
– 3,218 6.6%
all 48,401 100.0% 7.6% 29.2% 36.5% 26.7%

Table 5.16: Distribution of the six cover classes according to the majority voting of
the five labelers in the whole German FAU Aibo Emotion Corpus ordered by the
frequency of the cover classes

of the cover class Anger for the German FAU Aibo Emotion Corpus. This number
is much more than the sum (1,016) of the original labels angry (134), reprimand-
ing (463), and touchy (419) given in Table 5.13. It has been mentioned before that
the speaking style of the British children is characterized primarily by short com-
mands as they are typical for controlling machines whereas the German pupils often
address Aibo more like a real dog. The proportion of Motherese in the British
corpus (0.6%) is clearly lower as for the German corpus (2.7%); only 55 cases of
Motherese can be observed in the British data. Thus, only the three cover classes
Anger, Emphasis, and Neutral occur frequently enough to be used for classification
experiments. Hence, classification experiments are carried out only on the German
FAU Aibo Emotion Corpus. The analysis of the confusions of the human labers (see
Chapter 5.5) suggest that there are no principal differences between the German and
the British emotion-related states.
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agreement of the
three labelers

cover class frequency 0.66 1.0
Neutral 7,171 84.6% 32.1% 67.9%
Emphatic 631 7.4% 97.1% 2.9%
Anger 214 2.5% 86.9% 13.1%
Motherese 55 0.6% 70.9% 29.1%
Joyful 11 0.1% 72.7% 27.3%
Other 30 0.4% 80.0% 20.0%
– 362 4.3%
all 8,474 100.0% 37.4% 58.3%

Table 5.17: Distribution of the six cover classes according to the majority voting of
the three labelers in the whole British FAU Aibo Emotion Corpus ordered by the
frequency of the cover classes

5.3.8 Emotion Labels for Larger Units

If the emotion labels are annotated on the word level, they can be used to deter-
mine an emotion label for larger units like turns (see Chapter 5.2) or chunks (see
Chapter 5.3.5).

It turned out that a simple majority vote on the raw labels (the decisions of
the single labelers for each word in the turn or chunk) does not necessarily yield a
meaningful label for the whole sequence. A whole turn which, for example, consists
of two main clauses – one clause which is labeled as Neutral and one slightly shorter
clause which is labeled as Anger by the majority – would be labeled as Neutral. A
chunk consisting of five words, two of them clearly labeled as Motherese, three of
them being Neutral, can be reasonably labeled as Motherese although the majority
of raw labels yields a different result. Thus, the mapping of labels from the word level
onto higher units is not that clear as one might expect. A more practical problem
of a simple majority vote is that the sparse data problem, which already exists on
the word level, is even aggravated on higher levels since the dominating choice of the
label neutral on the word level yields an even higher proportion of neutral chunks
and turns.

The structogram in Figure 5.14 illustrates the heuristic algorithm used for map-
ping emotion labels from the word level to the turn and the chunk level. The algo-
rithm uses the raw labels on the word level mapped onto the cover classes Neutral,
Emphatic, Anger, and Motherese (see Table 5.15). Because of their low frequency,
labels of the remaining two cover classes Joyful and Other are ignored. Let h(·) be
the number of raw labels for the respective cover class, s· denotes the sum of the raw
labels for the cover classes given in the index. The resultant chunk label is stored in
the variable l.

If the proportion of raw labels for Neutral is above a threshold θN, the whole unit
is considered to be Neutral. This threshold depends on the length of the unit; it has
to be higher for turns than for chunks. For turns, it has been set to 70%, for chunks
to 60%.
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sAENM ← h(A) + h(E) + h(N) + h(M)
sAEM ← h(A) + h(E) + h(M)
sAE ← h(A) + h(E)
m ← argmax

e∈L
h(e) with L = {A,E,N,M}
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Figure 5.14: Mapping of the cover classes on the word level onto the chunk level
(θN = 0.6, θM = 0.4, θAE = 0.5) and the turn level (θN = 0.7, θM = 0.0, θAE = 0.0)

If this threshold is not reached, the frequency of the raw labels Motherese is
compared to the sum of the frequencies of Emphatic and Anger which are pooled
since emphatic is considered as a possible pre-stage of anger. If Motherese prevails,
the turn or the chunk is labeled as Motherese, provided that the relative frequency
of Motherese w. r. t. the other three cover classes is above a certain threshold θM. If
not, the whole unit is considered to be Neutral.

If Motherese does not prevail, the frequency of Emphatic is compared to the one
of Anger. The label of the whole unit is the one of the prevailing class, again provided
that the relative frequency of this class w. r. t. the other three cover classes is above
a threshold θEA. For the mapping onto the chunk level, θM is set to 40% and θEA to
50%. These thresholds are set heuristically by checking the results of the algorithm
for a random subset of chunks. On the turn level, a more simple algorithm has been
used where both thresholds are set to zero. If the frequencies of the raw labels of
Anger and Emphatic are equal, Anger wins on the turn level.

5.3.9 Cross-tabulation of POS/Prosodic Labels and Emotion
Categories

Part-of-speech tags (POS, Chapter 5.3.4) can only be used successfully for emotion
recognition if the distributions of the POS tags differ significantly for different emo-
tion categories. The cross-tabulation in Table A.9 in Appendix A.2.6 contrasts the
six POS classes NOUN, API, APN, VERB, AUX, and PAJ with the emotion cover classes
Anger, Emphatic, Neutral, and Motherese. To be complete, the rare cover classes
Joyful and Other are included, as well as those cases where the majority vote of
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Figure 5.15: Distribution of the part-of-speech tags for different emotion categories

the five labelers is ambiguous (–). POS tags and emotion cover classes on the word
level are contrasted for the whole German FAU Aibo Emotion Corpus. The POS dis-
tributions for the different emotion cover classes are depicted in Figure 5.15. Clear
differences between these distributions can be observed illustrating the high impact of
the rather coarse taxonomy of part-of-speech tags. Emphatic is characterized mainly
by a high proportion of verbs (VERB) and particles (PAJ), but a low proportion of
nouns (NOUN). Almost no adjectives (API, APN) are used. In this state, the children
use short commands such as “Geh (VERB) nach (PAJ) links (PAJ)!” (Go to the left! ) or
“Setz (VERB) dich (PAJ) wieder (PAJ) hin (PAJ)!” (Sit down again! ). Anger displays
the largest proportion of nouns. As in the state Emphatic, the children use many
short commands characterized by verbs and particles, but they reinforce their com-
mands very often by addressing Aibo by its name (Aibo, sit down! ) leading to the
high proportion of nouns. Adjectives are used rarely; the most widely used adjective
is ‘böser’ (bad). In contrast, Motherese (good boy) is characterized by a remarkably
high proportion of adjectives (API, APN). In this state, the children praise Aibo for its
obedient behavior using adjectives such as ‘fein’, ‘brav’, and ‘gut’ (all synonyms for
good). Figure A.6 in Appendix A.2.6 depicts the same cross-tabulation from a differ-
ent point of view: it shows the distributions of the emotion cover classes for different
POS tags. If an adjective (APN, API) is observed, the most probable emotion cover
class the observed word belongs to is still Neutral due to its high a priori probability
in the whole corpus, although Motherese is characterized by the highest proportion
of adjectives.

Along the same lines, a cross-tabulation for prosodic labels and emotion cover
classes is given in Table A.10 in Appendix A.2.7. The eleven prosodic phenomena
defined in Table 5.8 are contrasted with the emotion cover classes. As a single word
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Figure 5.16: Distribution of the prosodic labels for different emotion categories

can be annotated with more than one prosodic label, the occurrence of exactly one
prosodic peculiarity and combinations of prosodic labels are distinguished. Again,
clear differences between the distributions of the prosodic labels can be observed.
As to be expected, most of the words belonging to Neutral (86.9%) are not anno-
tated with any prosodic label. Nevertheless, strong emphasis on particular sylla-
bles (EMPHASIS, 4.1%), unusual, pronounced lengthening of syllables (LENGTH_SYLL,
3.3%), and careful, very clear articulation (CLEAR_ART, 4.0%), or combinations of
them (0.6%) can be observed to some degree for Neutral words, too. The pro-
portion of words that are annotated with at least one prosodic label increases from
Neutral (13.1%), to Motherese (39.1%) and Joyful (47.7%), and finally to Emphatic
(71.5%) and Anger (73.5%). Hence, a large proportion of the words belonging to
Emphatic and Anger are marked prosodically. Emphatic is mainly characterized by
its high proportion of EMPHASIS (40.0%). To some degree, unusual lengthening of
syllables (LENGTH_SYLL, 8.6%) and very clear articulation (CLEAR_ART, 6.4%) can be
observed. Frequently, combinations of prosodic labels (14.1%) are annotated. The
highest proportion of such combinations is annotated for Anger (18.0%). Anger
is characterized by the occurrence of many different prosodic peculiarities such as
EMPHASIS (18.0%), LENGTH_SYLL (20.2%), CLEAR_ART (7.5%), prosodically peculiar
vocatives (VOCATIVE, 5.2%) and shouting (SHOUTING, 2.9%). Hence, states with a
higher emotional intensity are characterized by a larger number of different prosodic
peculiarities as well as a larger number of combinations. Motherese is primarily char-
acterized by its high proportion of LENGTH_SYLL (31.8%). Frequently, the words ‘ja’,
‘fein’, ‘feiner’, ‘brav’, ‘braver’, ‘gut’, ‘ganz’, and ‘so’ are lengthened (a translation of
the words is given in Table A.11). Other prosodic labels or combinations are rare.
Joyful is mainly characterized by the large proportion of words that are distorted
by laughter (LAUGHTER, 27.1%). The distributions of the emotion cover classes for
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Aibo word setAibo chunk setAibo turn setAibo corpus

Figure 5.17: Data sets of the German FAU Aibo Emotion Corpus used in the exper-
iments

data set number of taken from
words # chunks # turns

Aibo corpus 48,401 18,216 13,642
Aibo word set 6,070 4,543 3,996
Aibo chunk set 13,217 4,543 3,996
Aibo turn set 17,618 6,413 3,996

Table 5.18: Data sets of the German FAU Aibo Emotion Corpus used in the experi-
ments

different prosodic labels are depicted in Figure A.7 in Appendix A.2.7. The figure
shows, for example, that if a word distorted by laughter is observed, it belongs to
Joyful in 46.0% of the cases, but in 41.3% of the cases, it is labeled as Neutral.

5.4 Data Selection

The experiments described in this thesis (see Chapter 7) are conducted on the German
FAU Aibo Emotion Corpus. Neutral outweighs the other cover classes by far. In order
to train a machine classifier, the classes in the training set should be roughly balanced.
This holds especially for artificial neural networks. A balanced training set can be
achieved either by upsampling the samples of less frequent classes or by downsampling
the samples of frequent classes. If the data is upsampled, the size of the training set
is drastically enlarged – 81.4% of the data is Neutral – resulting in a massively
delayed training process. However, no new information about less frequent classes
is obtained as the samples are only copied. In contrast, if the samples of frequent
classes are downsampled, the training set is kept compact, but some information that
is available for frequent classes is not used. We decided for the latter approach.

For classification experiments on the word level, the Aibo word set is defined. It
is a subset of 6,070 words of the original 48,401 words. The words in this subset are
labeled as belonging to one of the four cover classes Motherese, Neutral, Emphatic,
and Anger. Words belonging to any of the two other cover classes Joyful and Other
are omitted due to their low frequency. Only words have been selected where all five
labelers decided for one of the four cover classes and at least three of them agreed.
This resulted in 1,223 words labeled by the majority as Motherese and 1,557 words
labeled as Anger. Both Emphatic and Neutral are downsampled to 1,645 words
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frequency
cover class Aibo turn set Aibo chunk set Aibo word set
Anger 868 21.7% 914 20.1% 1,557 25.7%
Emphatic 1,349 33.8% 1,045 23.0% 1,645 27.1%
Neutral 1,282 32.1% 1,998 44.0% 1,645 27.1%
Motherese 497 12.4% 586 12.9% 1,223 20.1%
all 3,996 100.0% 4,543 100.0% 6,070 100.0%

Table 5.19: Distribution of the labels on the turn level (Aibo turn set), on the chunk
level (Aibo chunk set), and on the word level (Aibo word set)

1 2 3 4 5
1 1.0 0.49 0.52 0.52 0.42
2 1.0 0.78 0.76 0.46
3 1.0 0.78 0.53
4 1.0 0.58
5 1.0

Table 5.20: Weighted kappa values for pairs of labelers on the Aibo word set

each by randomly picking samples of the respective class. It is important to mention
that in doing so the distribution of the agreement of the five labelers is preserved,
i. e. the selection did not favor prototypical samples where all five labelers agreed.
Although this would make the automatic classification easier and result in a higher
recognition performance, it would be a further deviation of the circumstances in a
real application.

For experiments on larger units, two more data sets are defined: the Aibo chunk
set and the Aibo turn set. The Aibo chunk set contains those chunks which consist
of at least one word of the Aibo word set resulting in 4,543 chunks and 13,217 words
in total. Along the same lines, the Aibo turn set is defined as the set of those
turns which contain at least one word of the Aibo word set resulting in 3,996 turns
containing 17,618 words in total. The 3,996 turns are split into 6,413 different chunks.
As illustrated in Figure 5.17, the Aibo word set is a subset of the Aibo chunk set which
itself is a subset of the Aibo turn set. The three different subsets are summarized
w. r. t. the number of words, chunks, and turns once more in Table 5.18. In Table 5.19,
the distribution of the four emotion cover classes Anger, Emphatic, Neutral, and
Motherese is given for the word, the chunk, and the turn level. The mapping of the
labels from the word level onto chunk and turn level labels (Chapter 5.3.8) results in
a less balanced distribution of the four cover classes on the chunk and the turn level.

In Table 5.20, weighted kappa values (see Chapter 3.5.2) are given for the Aibo
word set. In order to use a weight function, the categories have to be arranged on a
linear scale such that the distances can be interpreted meaningfully as dissimilarities.
The function defined in Equation 3.8 based on the squared differences is used. As
Anger and Motherese are quite opposite, 1 is assigned to the former and 4 to the
latter. Neutral is arranged between them and assigned the number 3. Emphatic as
some sort of pre-stage of Anger is arranged between Neutral and Anger and given
the number 2. The numbers in Table 5.20 show that labelers 2, 3, and 4 agree very
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Figure 5.18: Histogram of the ‘confidence’ (proportion of raw labels matching the
label for the whole unit) of the labels on the word level (Aibo word set), on the
chunk level (Aibo chunk set), and on the turn level (Aibo turn set)

well. For these three labelers, the weighted kappa value is 0.77 compared to 0.56 for
all five labelers. For the majority vote, it is sufficient if only three of them agree.

To assess the quality of single labels on the different levels, the proportion of raw
labels, i. e. the original decisions of the five labelers on the word level, matching the
label for the whole unit is computed. Figure 5.18 shows histograms of this ‘confidence’
measure for the word, the chunk, and the turn level. The confidence is evaluated on
the Aibo word set, Aibo chunk set, and Aibo turn set, respectively. The highest
confidence values are obtained on the word level. The distribution of the confidence
values shifts to lower values from the word to the chunk and to the turn level.

5.5 Data-driven Dimensions of Emotion

On the basis of dimensional emotion theories (Chapter 2.2.2), emotions can be de-
scribed in terms of a few dimensions (see Chapter 3.2, Dimensional Labeling). The
most widely used dimensions are valence and arousal. This two-dimensional space
is suited to represent prototypical, full-blown emotions. Yet, naturally occurring
emotional/emotion-related states that can be observed in real application scenarios
differ strongly from those full-blown emotions and it is an open question whether
valence and arousal are the two most appropriate dimensions to model these states.
Therefore, we derive dimensions in a data-driven approach based on confusion ma-
trices of human labelers. The confusion of one class with another is interpreted as
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emotion category A T R E N M J words
m
aj
or
ity

vo
te

angry (A) 43.3 13.0 12.9 12.1 18.1 0.1 0.0 134
touchy (T) 4.5 42.9 11.7 13.7 23.5 1.0 0.1 419
reprimanding (R) 3.8 15.7 45.8 14.0 18.2 1.3 0.1 463
emphatic (E) 1.3 5.8 6.7 53.6 29.9 1.2 0.5 2,807
neutral (N) 0.4 2.2 1.5 13.9 77.8 2.7 0.5 39,975
motherese (M) 0.0 0.8 1.4 4.9 30.4 61.1 0.9 1,311
joyful (J) 0.1 0.6 1.1 7.3 32.4 2.0 54.2 109

Table 5.21: Confusion matrix in percent of the five labelers for the German FAU
Aibo Emotion Corpus. The entries of the rare categories helpless, bored, surprised,
and other are not displayed

similarity measure. Non-metric dimensional scaling (NMDS, Chapter 4.3.2) is used
to arrange the emotion categories in a one- or two-dimensional space such that the
distances in the low-dimensional space match the similarities given in the confusion
matrix. That way, highly similar states are arranged close to each other whereas dis-
similar states are located far away from each other. Alternatively, the similarities can
be obtained from the results of machine classification experiments like in [Truo 07] or
by calculating Euclidean distances between feature vectors for acoustic of linguistic
features like the mean MFCC feature vectors for one emotion category over all ut-
terances/words [Batl 08b]. As far as we know, both approaches – the one based on
confusion matrices of human labelers and the one based on distances between feature
vectors – are applied for the first time for this purpose.

We focus on the methodologically interesting 7-class problem angry, touchy, rep-
rimanding, emphatic, neutral, motherese, and joyful [Batl 05a, Batl 08b]. The other
four remaining categories helpless, bored, surprised, and other are omitted because
of their low frequency in the German FAU Aibo Emotion Corpus. For the British
FAU Aibo Emotion Corpus, the same set of categories is investigated. The confusion
matrices for the German and the British FAU Aibo Emotion Corpus are given in
Table 5.21 and Table 5.22, respectively. The majority vote of the human labelers is
taken as reference label. In some cases, the majority vote is not unique because two
categories get both two votes (2+2+1, occurring 3,070 times in the German FAU Aibo
Emotion Corpus) or because all labelers decide for different categories (1+1+1+1+1
and 1+1+1, respectively, occurring 81 times in the German version and 429 times
in the British corpus). In these cases, each of the possible majority votes is taken
once as reference for which the other raw labels are entered as confusions into the
matrix. Hence, these words appear more than once (up to the number of labelers) in
the matrix putting more emphasis on these non-prototypical cases.

The two-dimensional NMDS results for the 7-class problem are shown for both
the German and British corpus in Figure 5.19. They are obtained with the ALSCAL
procedure of the statistical package SPSS. To assess the quality of the NMDS results,
Kruskal’s stress S (Equation 4.64) and the squared correlation RSQ are given in the
figures. For a more intuitive graphical representation, the figures are transformed
by translation, scaling, rotation, and reflexion such that neutral is located in the
origin of the coordinate system, whereas motherese is located in the first, angry in
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emotion category A T R E N M J words
m
aj
or
ity

vo
te

angry (A) 41.8 5.0 8.9 16.3 28.0 0.0 0.0 23
touchy (T) 5.6 37.4 17.4 16.4 17.4 0.5 0.0 7
reprimanding (R) 1.8 3.1 44.3 19.4 29.1 1.2 0.1 127
emphatic (E) 1.6 1.2 8.4 55.7 31.1 0.4 0.1 631
neutral (N) 0.4 0.3 3.5 7.2 86.4 0.7 0.2 7,171
motherese (M) 0.0 0.4 6.4 3.2 24.8 58.5 2.1 55
joyful (J) 0.0 0.0 1.7 6.7 25.0 8.3 56.7 11

Table 5.22: Confusion matrix in percent of the three labelers for the British FAU
Aibo Emotion Corpus. Along the lines of Table 5.21, the entries for the other emotion
categories are not displayed

the third, and joyful in the fourth quadrant. The figures are scaled to the region
[−1,+1][−1,+1] using the same factor on both axis. Regarding the German FAU
Aibo Emotion Corpus, the first, most important direction is the direction from west to
east, which can be clearly interpreted as valence: from negative (angry, reprimanding,
and touchy) in the west over neutral to positive (motherese and joyful) in the east.
However, the second dimension from north to south cannot be interpreted as the
traditional dimension arousal. Although angry and joyful represent high, emphatic
medium, and neutral no arousal, motherese and reprimanding cannot be interpreted
as having lower arousal than neutral. Moreover, by listening to the data it is not
justifiable that joyful in our scenario represents more pronounced arousal than angry.
Rather the opposite can be observed. Interpersonal intimacy is partly entailed in
the second dimension – motherese and reprimanding characterize a more intimate
speech register [Batl 06a] than emphatic and neutral – but angry and joyful cannot
be interpreted as less intimate than neutral. Instead, the second dimension can be
interpreted in more general terms as orientation towards the speaker himself/herself
or towards the conversational partner (in our case Aibo), as dialog aspect (monolog
vs. dialog), as social aspect, or as interaction (−interaction vs. +interaction). For
the Aibo scenario, we decided in favor of the term interaction. In other contexts, the
other names might be more adequate. The states angry (negative valence) and joyful
(positive valence) both represent −interaction since subjects can be in these states
even if they are alone. In contrast, reprimanding (negative valence) and motherese
(positive valence) require a conversational partner to be addressed (+interaction).
The two dimensions valence and interaction can also be found in the British corpus.

The left figure in Figure 5.20 shows the one-dimensional NMDS solution for the
7-class problem of the German FAU Aibo Emotion Corpus. Obviously, the remain-
ing dimension is valence. But the markedly higher stress and lower RSQ values
compared to the two-dimensional solution indicate that the second dimension clearly
constributes to interpretation. For the computation of weighted kappa, the distances
in this one-dimensional space can be used to weight confusions of the labelers. The
one-dimensional NMDS solution confirms the arrangement of the four cover classes
Anger, Emphatic, Neutral, and Motherese in exactly this order (see Chapter 5.4).
The two-dimensional NMDS solution for these four cover classes on the Aibo word
set of the German corpus is depicted in the right figure in Figure 5.20. Again, the
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most important dimension is valence. Yet, the second dimension is hard to interpret
since reprimanding is subsumed under Anger and Joyful is not included in the Aibo
word set since the frequency of Joyful is too low for classification experiments. There
are only four items; hence, this two-dimensional solution is not stable.

As mentioned above, distances between feature vectors can be used instead of
confusion matrices of labelers. This approach is dealt with in Chapter 6, Features for
Emotion Recognition from Speech. For a more extensive examination of the subject
including dimensions derived from another type of data, namely the SympaFly corpus,
please see [Batl 08b].
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5.6 Initiative Ceices

Ceices (Combining Efforts for Improving Automatic Classification of Emotional
User States) is an initiative originated by our research group under the guidance of
the European Network of Excellence Humaine (2004-2007). The goal of Ceices is
to force co-operation in the area of automatic emotion recognition from speech by
bringing together people from different sites with excellence in this area of research.

Humaine has been planned as an interdisciplinary network to facilitate the ex-
change between all the different branches of science working in the vast field of emo-
tion research. The backgrounds of the partners participating in Ceices reflect this
diversity: they come, for example, from a general engineering background, from au-
tomatic speech recognition, from speech pathology, and from basic research such as
phonetics and psychology. Moreover, sites from outside Humaine have been invited
to take part in this co-operation. Please see Appendix A.3.1 for a list of the Ceices
members. The different traditions affect the tools that the Ceices members use as
well as the types of their features. Linguistic information, for example, is typically
only used by sites having some expertise in speech recognition. Features modeling
aspects of intonation theories are normally only used by sites coming from basic (pho-
netic) research. The idea behind Ceices was to combine this heterogeneous expertise
by gathering the features that are extracted at the partner sites. By that, the di-
versity of state-of-the-art features for emotion recognition can be covered to a large
extent. Of course, the sheer number of features is not a virtue in itself, automatically
paying off in classification performance. The results in [Batl 06b] document that one
site using ‘only’ 32 features produces a classification performance in the same range
as other sites using more than 1,000 features. But chances are that relevant fea-
tures are not missed. Apart from the goal to increase the classification performance,
the available set of features is suited to investigate the topic which types of features
contribute the most to the recognition of emotion [Batl 09, Schu 07b, Schu 07c].

The originator site provides speech files, a phonetic lexicon, manually corrected
word segmentation and manually corrected F0 values, a segmentation into chunks,
emotional labels on the word, the chunk, and the turn level, a definition of train
and test samples, etc. All partners committed themselves to share their extracted
feature values with all the other partners. In addition, the partners provide informa-
tion about the format the features are stored in, which feature models which acoustic
or linguistic phenomenon, which classifier was used to achieve the reported classifi-
cation performance, etc. For details, please see the text of the Ceices contract in
Appendix A.3.2. Thus, each site can assess the features provided by the other sites,
together with their own features, aiming at a repertoire of optimal features.

In order to be able to compare different types of features across different sites,
an agreed-upon machine readable representation of the extracted features has been
defined within Ceices. For details, please see [Batl 09].

Up to now, the following publications have been published within the framework of
Ceices: [Batl 09, Batl 08a, Sepp 08a, Sepp 08b, Schu 08, Batl 07b, Schu 07c, Schu 07b,
Batl 06b]. Major achievements being relevant for this thesis are presented in 7.4.
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Summary The FAU Aibo Emotion Corpus is a speech corpus with naturally occur-
ring emotion-related states of children that is suited for classification experiments. In
this chapter, the experimental design and the recording conditions are described. A
lot of time-consuming and exceptional annotations such as the manual correction of
the word segmentation and the F0 values have been carried out on the data. Different
types of segmentation and F0 errors which might have an impact on the subsequent
feature calculation are identified and quantified. Emotion categories are labeled on
the word level. In addition, larger units are defined using syntactic and prosodic
criteria and algorithms are presented to map emotion categories from the word level
onto the chunk and the turn level. It is shown that the distribution of part-of-speech
tags and prosodic labels differs to a large extent for different emotion categories. As
most of the words are neutral, different subsets of the German FAU Aibo Emotion
Corpus are defined which are more balanced and thus better suited for the classifica-
tion experiments described in Chapter 7. The two dimensions valence and interaction
are derived in a data-driven approach from the confusion matrix of the human la-
belers. By that, the second dimension differs from activation and perceived control
which are generally proposed in psychological studies. The chapter closes introducing
our initiative Ceices where state-of-the-art features from the participating sites are
gathered to evaluate different types of feature w. r. t. their importance for emotion
recognition. The evaluation is based on the speech corpus presented here. Important
results are presented in Chapter 7.4.
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Chapter 6

Features for Emotion Recognition
from Speech

In Chapter 1.2, State-of-the-Art, an overview is given over acoustic and linguistic fea-
tures that are currently being used successfully for emotion recognition from speech.
These features can be categorized into acoustic and linguistic features. The acous-
tic features can be divided into prosodic features, spectral features, and voice quality
features. In this chapter, those features are described that are evaluated in the exper-
iments of this thesis. The implemented features cover all four groups of features. Our
prosodic features are described in Chapter 6.1, the spectral features in Chapter 6.2,
and the voice quality features in Chapter 6.3. The linguistic features are addressed
in Chapter 6.4. In Chapter 6.5, the emotion-related states are correlated with Aibo’s
behavior which is known to be co-operative or non-cooperative for a given turn. The
experimental results are described in Chapter 7.

6.1 Features of the Erlangen Prosody Module

The Erlangen Prosody Module has been originally designed to detect prosodic events
such as phrase boundaries, phrase accents, and sentence mood in order to improve
the automatic processing of speech [Warn 03, Gall 02, Noth 02, Komp97, Kies 97,
Noth 91, Noth 88]. The Erlangen Prosody Module has been an integral component
of the German Verbmobil project [Batl 00c, Batl 00a, Noth 00] and the SmartKom
project [Zeis 06]. Our prosodic features have also been used successfully for emotion
recognition [Hube 02, Batl 00b, Batl 00c].

Many research groups rely on the discriminative power of prosodic features. Mostly,
these features are calculated for the whole speech segment, i. e. the whole chunk or the
whole turn in the case of the FAU Aibo Emotion Corpus. In contrast, our prosodic
features are calculated for each word separately and are thus suited for the subse-
quent classification on the word level. Besides the speech signal itself, the Erlangen
Prosody Module requires information about which words are contained in the speech
segment and when these words begin and end. The word hypothesis graph (WHG,
s. Chapter 5.2) provides this information. The basis is the sequence of words that
are actually spoken, which is obtained by a manual transliteration of the audio data.
In a fully automatic system, the actually spoken word chain has to be replaced by

113
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the recognized sequence of words obtained by an automatic speech recognizer. For
this thesis, the problem of speech recognition and the one of recognizing emotions
are separated and only the latter one is considered. In a fully automatic system, the
recognition of emotions with features of the Erlangen Prosody Module will profit nec-
essarily from future improvements in automatic speech recognition. The experimental
results shown here are an upper limit for a perfect automatic speech recognition. Yet,
there is another reason why the actually spoken word chain is used, which is even
more important if the emotion-related state is classified on the word level: the FAU
Aibo Emotion Corpus is labeled on the word level which requires that the sequence of
actually spoken words is known. These emotion labels that are assigned to the actu-
ally spoken words cannot be assigned to the automatically recognized words since an
actually spoken word and an automatically recognized one may cover different time
periods. On the turn and the chunk level, automatic speech recognition can be ap-
plied if the segment boundaries are kept constant. Results within Ceices [Schu 07c]
are reported in Chapter 7.4.

The features of the Erlangen Prosody Module model the contour of the fundamen-
tal frequency and the short-term energy, aspects of temporal lengthening of words,
and the duration of pauses. In total, the Erlangen Prosody Module computes 100
prosodic features for each word: 26 F0 based features, 33 energy based features, 33
duration based features, and 8 features based on pauses.

Besides its main purpose to calculate prosodic features, the Erlangen Prosody
Module can also be used to calculate some non-prosodic features such as jitter and
shimmer features, which are described in the section on voice quality features (s.
Chapter 6.3.1), and part-of-speech features, which are described in the section on
linguistic features (s. Chapter 6.4.2). In the following four subsections of this section,
a detailed description of the prosodic features is given.

6.1.1 F0 based Features

The F0 based features model the contour of the (logarithmic) fundamental frequency
as it is illustrated in Figure 6.1. In detail, the contour is described by the slope
of the regression line, the error that occurs if the contour is approximated by this
line, the maximum and the minimum of the fundamental frequency, and the F0 onset
and the F0 offset, i. e. the F0 values at the first voiced frame and the last voiced
frame, respectively. Furthermore, the average of the F0 values within one word is
included. The position of both extrema and the positions of the on- and the offset
are temporal measures specifying the distance from a given reference point that is
defined as the end of the current word. In the experiments, these temporal features
are treated separately or in combination with the duration based features described
in Chapter 6.1.3.

Many algorithms exist to extract the fundamental frequency. The quality of the
F0 algorithm that is used might have an impact on the quality of the F0 features. In
the experiments of this thesis, the RAPT algorithm [Talk 95], which is implemented
in ESPS, and an algorithm by Medan [Meda 91] and Bagshaw [Bags 93] that has
been modified by M. Nutt [Zeis 09] are compared. Furthermore, the F0 contour of
the ESPS algorithm has been manually corrected in terms of ‘smoothed and adjusted
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Figure 6.1: Features of the Erlangen Prosody Module after [Buck 99b]

to human perception’ (s. Chapter 5.3.3). In comparing automatic algorithms and
manual correction, the impact of the automatic extraction errors on the performance
of the emotion recognition can be evaluated.

The feature vector for the word under consideration is extended by the features
of the words constituting the left and the right context. A context of at most two
words to the left and two words to the right is considered since former experiments
have shown that larger context sizes do not improve the classification performance
[Batl 00a]. Reasons that are pointed out are either the fact that a larger context does
not contain relevant information to model the local events, or the rather limited size
of the training data that has been used in the Verbmobil project. Regarding the size
of the FAU Aibo Emotion Corpus, the latter reason certainly holds for the experi-
ments in this thesis as well. Table 6.2 shows which features are calculated for which
context [Hube 02, Kies 97]. The slope of the regression line and the corresponding
approximation error is also calculated for speech segments covering two words. Fur-
thermore, the mean F0 value for the whole turn is included. In total, 26 F0 based
features are extracted for each word.

6.1.2 Energy based Features

Similar to the F0 based features, the energy based features model the contour of
the short-term energy of each frame (frames of 16ms duration, time shift of 10ms).
Certain statistics like the minimum, which is always zero or close to zero, and the
on- and the offset do not make any sense and are excluded [Kies 97]. In contrast,
the position of the minimum may make sense very well. Again, the positions of the
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feature context
−2 −1 0 +1 +2

maximum • • •
minimum • • •
mean • • •

whole turn
onset • •
offset • •
regression coefficient • • •

•
• •

regression error • • •
•

• •

Figure 6.2: 26 local F0 based features and their context of computation

extrema are treated as duration features. In addition, the energy of the whole word
is included: once as its absolute value and once in a normalized form.

The normalized energy of a word is based on the work of Wightman [Wigh 92].
The energy factor τen specifies how much louder or softer the speaker produces the
words in an interval I compared to an average speaker. In the Erlangen Prosody
Module, the interval I is equal to the whole audio file, i. e. one turn in the case of the
FAU Aibo Emotion Corpus.

τen(I ) :=
1

#I

∑
w∈I

en(w)

µen(w)
(6.1)

en(w) denotes the energy of the word w . The statistics µen(w) and σen(w) are the
average energy of the word w produced by an average speaker and the corresponding
standard deviation, respectively. Both statistics are estimated on the German FAU
Aibo Emotion Corpus in a leave-one-speaker-out procedure (s. Chapter 7) such that
the data of the test speaker is not used for the estimation. If the frequency of the
given word is too small to obtain robust estimates of the statistics, they can be
approximated based on the energy statistics of the syllables or phonemes that the
word consists of. The energy factor τen is added to the feature vector and is constant
for all words within one turn. Furthermore, the factor τen is used to scale the expected
energy µen(w) of the word w in order to adapt the expected energy to the energy
level of the whole turn. The difference en(w) − τen(I )µen(w) in the numerator of
Equation 6.2 is the deviation of the energy of the current word from its expected
energy. In order to get rid of the speech sound dependent variation, this deviation is
normalized with the standard deviation σen(w) which is also scaled by the factor τen.
The resulting feature ζen(J , I ) for single words – in this case the interval J consists
of only the current word – or for larger contexts is defined as follows:

ζen(J , I ) :=
1

#J

∑
w∈J

en(w)− τen(I )µen(w)

τen(I )σen(w)
. (6.2)
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regression error • • •
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τen whole turn

Figure 6.3: 33 local energy based features and their context of computation

As for F0 based features, features describing the context of the word are included
resulting in 33 energy based features. Table 6.3 illustrates which features are calcu-
lated for which context.

6.1.3 Duration based Features

Duration based features model aspects of temporal lengthening of words. Besides the
absolute duration of a word, two normalized forms are added to the feature vector.
The first normalization is rather simple and normalizes the duration of a word by
the number of syllables the word consists of. The second normalization is along the
same lines as for the energy normalization. The factor τdur is the speaking rate. For
its computation, only ‘en’ has to be substituted by ‘dur’ in Equation 6.1. dur(w)
denotes the duration of the word w . The statistics µdur(w) and σdur(w) are the
average duration of word w produced by an average speaker and the corresponding
standard deviation, respectively. Again, both statistics are estimated on the FAU
Aibo Emotion Corpus in a leave-out-speaker-out procedure using only the data of
the 50 speakers that are not used for testing. Analogously to Equation 6.2, the
normalized duration ζdur(I , J ) is computed for single words or larger contexts J .

Table 6.4 shows which features are computed for which contexts resulting in a 17-
dimensional feature vector. In addition, there are 16 features describing the positions
of the F0 and energy extrema as it has been mentioned in the previous two sections.
All in all, there are 33 duration based features.



118 Chapter 6. Features for Emotion Recognition from Speech

feature context
−2 −1 0 +1 +2

absolute duration of a word • • •
• •

duration of a word normalized • • •
with the number of syllables • •
normalized duration ζdur • • •

•
• •

speaking rate τdur whole turn
position of the F0 maximum • • •
position of the F0 minimum • • •
position of the F0 onset • •
position of the F0 offset • •
position of the energy maximum • • •
position of the energy minimum • • •

Figure 6.4: 33 local duration based features and their context of computation

feature context
−2 −1 0 +1 +2

filled pauses before the word • •
after the word • •

silent pauses before the word • •
after the word • •

Figure 6.5: 8 local features based on pauses and their context of computation

6.1.4 Features based on Pauses

The features in this group measure the duration of the pauses which might be before
or after the word. Filled pauses (e. g. “uhm”, “uh”, . . . ) and silent pauses are dis-
tinguished. In Table 6.5, the various contexts are listed for which these features are
calculated. In total, eight features based on pauses are extracted.

6.1.5 Features for Larger Units

To obtain features for larger segments such as chunks and turns, the varying number
of words within one turn or chunk has to be handled. A simple concatenation of
the features on the word level would result in feature vectors of varying length which
are not suited for classification. Hence, features on turn/chunk level are obtained
by averaging the features on word level. Furthermore, the standard deviation is
added as well as the maximum and the minimum of the feature values within the
segment. Inevitably, this approach increases the number of features by a factor of
four. Fortunately, the features describing the context can be discarded. The features
τen, τdur and the average fundamental frequency for the whole turn are constant for
all words within one turn and can be added as they are. Eventually, there are 29
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Figure 6.6: Steps to compute the Mel frequency cepstral coefficients

F0 based features, 25 energy based features, 37 duration based features (24 features
describing the position of the F0 and energy extrema and 13 original duration based
features), and 16 features based on pauses. All in all, the feature vector for turns and
chunks consists of 107 prosodic features. Approximately, this matches the number
of prosodic features on the word level (100). However, the proportions of the four
groups of features differ. If larger units are classified, the number of samples available
for training and testing the classifier decreases: The Aibo word set consists of 6,070
samples (words), the Aibo chunk set of 4,543 samples (chunks), and the Aibo turn
set of only 3,996 samples (turns). Details are given in Table 5.18.

6.2 Spectral Features
The features of this group are based on the spectral short-term analysis. The Mel fre-
quency cepstral coefficients (MFCC) are the standard features in speech recognition.
They have been designed to discriminate phones and to represent what is spoken in
a very compact way. Other information like the information how something is spo-
ken should be removed. The computation of the MFCC features consists of several
steps, which are illustrated in Figure 6.6. In each steps, the dimension of the feature
vector is reduced: the 256 samples of the speech signal, a frame typically consists
of, are finally reduced to only 12 MFCC coefficients. Despite this large reduction
of information and despite the design goal to remove as much of the information
how something is spoken, MFCC features have been used successfully for emotion
recognition. One reason certainly is that long-term MFCC features model linguistic
information. Nevertheless, features of earlier stages in the computation of the MFCC
features with less reduction should contain more information about the emotional
state of the speaker and might be more appropriate for emotion classification. In
the following, the individual steps in the computation of the MFCC features are de-
scribed. In the experiments in Chapter 7, the 128 coefficients of the Discrete Fourier
Transformation and the 22 logarithmic Mel frequency coefficients are compared to
the 12 MFCC coefficients. Formants describing the resonance frequencies of the vo-
cal tract are another type of spectral features, which are described at the end of this
chapter.

6.2.1 DFT Features

Speech signals are non-stationary signals whose spectral properties change at least
from one phone to another. Hence, the spectral analysis is performed on small periods
of the discrete speech signal fn , which are about 5-30ms long. Within these so-called
windows or frames, the signal can be assumed to be approximately stationary. In
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Figure 6.7: Speech signal of the word “Aibo”

automatic speech recognition, a frame is typically 16ms long corresponding to Ns =
256 samples at a sampling rate of 16 kHz. For computational reasons, it is beneficial
if Ns is a power of 2. Every 10ms, a new frame is analyzed so that consecutive frames
overlap. Figure 6.7 shows a speech signal of 300ms duration where the word “Aibo”
is spoken. A single frame of 16ms duration is highlighted.

For each frame, the power spectrum is computed using the Discrete Fourier Trans-
formation (DFT). The DFT assumes that the discrete and time limited signal is pe-
riodically continued. To avoid discontinuities at the beginning and the end of the
frame, the amplitude of the signal is extenuated towards the borders of the window
by applying a window function wn . Let f τn denote the samples of a frame that starts
at sample τ after the application of the window function wn :

f τn :=

{
fτ+n · wn 0 ≤ n < Ns

0 otherwise
. (6.3)

The window function wn is centered around τ + Ns−1
2

. Various window functions such
as the Hamming window, the Hann window, the Gauss window, or the Blackman
window are common. For this work, the Hamming window is used which is defined
as follows:

wHamming
n :=

{
0.54− 0.46 cos

(
2πn
Ns

)
0 ≤ n < Ns

0 otherwise
. (6.4)

Figure 6.8 shows the samples of the frame highlighted in Figure 6.7 and the window
function of the Hamming window. The samples of the frame after the application of
the Hamming window are shown in the left part of Figure 6.9.

Instead of the Discrete Fourier Transformation, the Fast Hartley Transformation
(FHT) [Brac 84] is implemented. The FHT is a fast implementation of the Discrete
Hartley Transformation (DHT), a Fourier related transformation transforming an
input of real numbers into an output of real numbers without the involvement of
complex numbers. The DHT coefficients are defined as follows:

cDHT
i ,τ :=

Ns−1∑
n=0

f τn

[
cos

(
2πni
Ns

)
+ sin

(
2πni
Ns

)]
, i = 0, 1, . . . ,Ns − 1 . (6.5)

The first coefficient cDHT
0,τ is the mean of the amplitude values of the signal, which is

often called DC offset. It is identical to the first DFT coefficient cDFT
0,τ . The other
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DFT coefficients cDFT
i ,τ , i = 1, . . . ,Ns/2, are complex numbers and can be obtained

from the real-valued DHT coefficients using the following relationship:

Re(cDFT
i ,τ ) =

1

2

(
cDHT
i ,τ + cDHT

Ns−i ,τ

)
, (6.6)

Im(cDFT
i ,τ ) =

1

2
(cDHT

Ns−i ,τ − cDHT
i ,τ ) . (6.7)

The phase of the speech signal does not contribute to the discrimination of phones.
Furthermore, the phase is highly affected by reverberation. Hence, the power spec-
trum is used to eliminate the phase information:

|cDFT
i ,τ |2 =

1

2

(
(cDHT

i ,τ )2 + (cDHT
Ns−i ,τ )

2
)
, i = 0, 1, . . . ,

Ns

2
. (6.8)

Hence, the dimension of the feature vector is reduced from 256 sample to only Ns

2
+1 =

129 features. The right plot in Figure 6.9 shows the spectrum of the windowed
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Figure 6.10: Mel scales proposed by Beranek [Bera 49] and Fant [Fant 68]

speech signal that is depicted in the left part of the figure. The first local maximum
represents the fundamental frequency, which is about 275Hz in this case. The other
local maxima are the harmonics, which are multiples of the fundamental frequency.
Certain frequency bands are emphasized due to resonance frequencies of the vocal
tract. These frequencies are known as formants and described in more detail in
Chapter 6.2.4. Especially, the frequencies around the second and the third harmonic
and around the sixth and the seventh harmonic are significantly higher than the
surrounding harmonics due to the first and the second formant, respectively.

6.2.2 Mel Features

The Mel scale reflects the non-linear relationship between the frequency of a tone and
the perceived pitch. In experiments by Stevens et al. , tones scattered throughout the
audible range were presented at a constant loudness level of 60 dB to observers who
had to adjust the frequency of a second tone until it sounded just half as high in pitch
as the standard tone [Stev 37]. At a frequency of 1000Hz, the unit of the frequency
and the unit of the perceived pitch are equal: 1000Hz =̂ 1000Mel. Several quite
similar equations describe this non-linear relationship between Hz and Mel found in
the experiments by Stevens, e. g. the equation by Beranek [Bera 49]

fBeranek = 1127.01048 · ln
(

1 +
fHz

700

)
(6.9)

or the one proposed by Fant [Fant 68]

fFant =
1000

ln(2)
· ln
(

1 +
fHz

1000

)
. (6.10)

Both curves are plotted in Figure 6.10. The transformation of the frequency is ap-
proximated by applying a bank of Nfilter filters [Riec 95]:

cMel
i ,τ =

Ns/2∑
j=1

w4i ,j · |cDFT
j ,τ |2 , i = 1, 2, . . . ,Nfilter . (6.11)
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Figure 6.12: Mel spectrum (left) and log-Mel spectrum of the speech frame (right)

The filters are designed for a higher resolution at lower frequencies. For higher fre-
quencies, the number of filters decreases and the filters cover a wider range of fre-
quency bands. This models the decreasing frequency resolution for higher frequencies
of the human auditory system. The weighted summation of adjacent frequency co-
efficients removes the harmonic structure of the spectrum as it can be seen from the
Mel spectrum shown in the left figure of Figure 6.12. Furthermore, the number of
coefficients is reduced from Ns/2 + 1 = 129 to Nfilter. For this work, Nfilter = 22
triangular filters are used. They are depicted in Figure 6.11.

Approximately, the Mel spectrum coefficients cMel
i ,τ are distributed log-normally.

For a classification with Gaussian mixture models (s. Chapter 4.1.2), this is not
favorable if the number of mixtures is low. Hence, the Mel spectrum coefficients are
compressed by taking the logarithm. In order to prevent numerical problems if the
logarithm is taken of values that are close to zero, the Mel spectrum coefficients are
clipped to the interval [ε; 1] prior to the compression:

cnormMel
i ,τ =


cMel
i,τ

max
j

cMel
j ,τ

cMel
i ,τ > εmax

j
cMel
j ,τ

ε otherwise
, i = 1, 2, . . . ,Nfilter . (6.12)
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Figure 6.13: Mel frequency cepstral coefficients (MFCC)

In the experiments, ε is set to 0.000001. Finally, the compressed Mel spectrum
coefficients clogMel

i ,τ are obtained by:

clogMel
i ,τ = log10

(
cnormMel
i ,τ

)
, i = 1, 2, . . . ,Nfilter . (6.13)

The compressed Mel spectrum is shown in the right part of Figure 6.12.

6.2.3 MFCC Features

The output of consecutive Mel filters is correlated. With a suitable linear transfor-
mation the dimension of the feature vector can be reduced further. Because of fewer
parameters that have to be estimated, the models of a statistical classifier can be
trained more robustly and the time to train the models is significantly shorter.

The Mel frequency cepstral coefficients (MFCC) have been proposed by Davis and
Mermelstein [Davi 80]. The Discrete Cosine Transformation (DCT) is applied to the
log-Mel spectrum:

cMFCC
i ,τ :=

√
2

Nfilter

Nfilter∑
j=1

clogMel
j ,τ · cos

(
i(j − 1

2
)π

Nfilter

)
, i = 0, 1, . . . ,Nfilter − 1 . (6.14)

The DCT is a Fourier related transformation that can be applied to real data with
even symmetry. The output of the DFT of the speech signal meets these require-
ments. Hence, the spectrum of the log-Mel spectrum is computed. The domain is
called cepstrum, a term made up by reversing the letters of the first syllable of ‘spec-
trum’. Only the first 12 MFCC coefficients are taken discarding the coefficients that
represent higher frequencies. The MFCC coefficients are depicted in Figure 6.13.
The Discrete Cosine Transformation decorrelates the log-Mel coefficients similar to
the principal component analysis (PCA) [Ahme 74] but with the advantage of a con-
stant transformation matrix and without the need to compute the eigenvectors of the
data.
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The first MFCC coefficient cMFCC
0,τ is substituted by the logarithm of the short-time

energy cen
τ defined as the sum of all Mel spectrum coefficients:

cen
τ = log10

(
Nfilter∑
i=1

cMel
i ,τ

)
. (6.15)

In order to reduce the impact that changes of the environmental conditions such as
noise, room, microphone, or speaker characteristics have on the MFCC features, tech-
niques like the cepstral mean substraction (CMS) are applied where a pre-computed
mean of the MFCC feature vector is substracted. An extension, which is used in
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our implementation, is the dynamic adaptive cepstral substraction (DACS) where the
pre-computed mean is updated while new frames are processed. Only frames that
actually contain speech are used for the adaptation of the mean.

The MFCC coefficients cMFCC
i ,τ are called static features as they describe the spec-

tral properties within one frame where the signal is approximately stationary. The
feature vector is extended by dynamic features, which describe the behavior of the
static features over time. For this purpose, the first and sometimes also the second
derivative of the static features are calculated. These features are often called ∆ and
∆∆ features, respectively. For this work, only ∆ features are investigated. The first
derivative is approximated by the slope of the regression line [Furu 86] that is fitted
to the MFCC feature vectors of five consecutive frames:

c∆MFCC
i ,τ =

∑2
j=−2 j · cMFCC

i ,τ+j∑2
j=−2 j 2

. (6.16)

MFCC features have proven to be suited for emotion recognition. This is sub-
stantiated by the experimental results on the FAU Aibo Emotion Corpus reported
in Chapter 7. The Sammon transformation (s. Chapter 4.3.1) is used to visual-
ize the influence of the emotional state on the long-term average MFCC features.
For this purpose, the average MFCC feature vector for each speaker and for each
emotion-related user state is computed. Only the twelve static MFCC features are
used. The Sammon transformation arranges the long-term MFCC feature vectors
in a two-dimensional space such that the Euclidean distances between the points in
the two-dimensional space approximate the distances between the feature vectors in
the original 12-dimensional space. Figure 6.14 shows the arrangement for the seven
classes angry, touchy, reprimanding, emphatic, neutral, motherese, and joyful. Each
point in the left figure represents the long-term average MFCC feature vector of one
speaker in a particular emotion-related state. The features are calculated on the
whole German FAU Aibo Emotion Corpus. Although the number of classes is quite
high and the features are transformed to only a two-dimensional space, the points that
correspond to the same emotion-related state cluster quite well. This is especially
true for neutral and emphatic whose clusters are very compact. The cluster of moth-
erese is not as compact as the ones of neutral and emphatic, but motherese can still
be distinguished from neutral and emphatic quite well. The clusters of other states
overlap to a higher degree. For a better illustration, the distribution of the points
of the same emotion-related user state is modeled with a two-dimensional Gaussian
probability density function. The mean and the covariance matrix of each class are
depicted in the right figure of Figure 6.14. Along the same lines, Figure 6.15 shows
the arrangement of the four cover classes Anger, Emphatic, Neutral, and Motherese.
Remember that Anger subsumes the three different states angry, touchy, and repri-
manding. The data of the cover classes Joyful and Other are omitted. Again, the
clusters of Neutral and Emphatic are very compact and well separated. The cluster
of Motherese is larger and overlaps with the one of Neutral and the one of Anger to
some degree.
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Figure 6.16: Fant’s source-filter model after [Schu 95]

6.2.4 Formant based Features

Fant’s source-filter model [Fant 60] illustrated in Figure 6.16 models the process of
speech production as a series of linear, time invariant systems. The discrete speech
signal can be obtained by the convolution fn = un ? vn ? rn . The following equation
holds for the z -transform of the speech signal:

F (z ) = U (z ) · V (z ) · R(z ) . (6.17)

The complete transmission function for voiced sounds is H (z ) = σvoiced ·G(z ) ·V (z ) ·
R(z ). G(z ) is the z -transform of the glottis model, V (z ) the one of the vocal tract
and R(z ) models the radiation at the lips.

In order to model the resonance characteristics of the vocal tract, the vocal tract
is modeled in a simplified way by an acoustic tube of the length L consisting of M
cylindrical segments as illustrated in Figure 6.17. The nasal tract and losses at the
wall of the vocal tract are not modeled. All segments have the same length l = L/M
but different cross sectional areas Ai , 1 ≤ i ≤ M . The typical length of the vocal tract
is about L = 170mm for adults. In the direction of the tube, a planar propagation
of the signal can be assumed since the length of the cylindrical segments is far below
the wave length of speech signals [Schu 95]. The acoustic flow in the forward and the
backward direction can be computed iteratively from the reflexion coefficients

ki =
Ai − Ai+1

Ai + Ai+1

, 0 ≤ i ≤ M . (6.18)

The area A0 of the “outside world” cylinder in front of the lips is set to infinity; then
k0 is 1. The area of the terminator at the glottis does not affect the resonance char-
acteristics and can be chosen arbitrarily. The propagation of the signal is disturbed
only at equidistant points of time due to the change of the diameter of the tube at
the transition from one cylinder to another. Hence, a simple term results for the
z -transform of the vocal tract:

V (z ) =

∏
i=0(1 + ki)

1−
∑M

i=1 aiz−i
. (6.19)
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The polynomial coefficients ai = a(M )
i in the denominator can be computed itera-

tively:

a(m)
i =


1 i = 0

a(m−1)
i + km a(m−1)

m−i i < 1 < m
km i = m

. (6.20)

The function V (z ) has M /2 pairs of complex conjugate poles where the polynomial
in the denominator is equal to zero:

1−
M∑
i=1

aiz−i =

M/2∏
i=1

(
1− 2e−ciT cos(biT )z−1 + e−2ciT z−2

)
. (6.21)

These poles are the resonances of the vocal tract well-known as formants. They
are characterized by their center frequencies Fi = bi/(2π) and their bandwidths
Bi = ci/(2π). The formants characterize the current shape of the vocal tract while
a phone is being produced. They are independent of the perceived pitch. Yet, they
do depend on the length of the vocal tract and hence, depend on the age and the
gender of the speaker. Significant differences in the position of the first two formants
between adults and children have been found [Stem05]. Nevertheless, the first two
formants are sufficient to identify vowels. Algorithms that determine the formants
by finding the poles of V (z ) are called root extraction methods.

Other algorithms, called spectral peak picking methods, extract the local maxima of
a smoothed spectrum such as the one obtained by linear prediction coding (LPC). The
LP spectrum is shown in Figure 6.18. LPC assumes that the samples of a stationary
period of the signal can be predicted by a linear combination of the preceding NLP

samples:

f̂ τn = −
NLP∑
j=1

αj · f τn−j . (6.22)

NLP is called the prediction order; αj , 1 ≤ j ≤ NLP, denote the LP coefficients. There
will be a deviation between the predicted value f̂ τn and the actual value f τn :

eτn = f τn − f̂ τn =

NLP∑
j=0

αj · f τn−j with α0 = 1 . (6.23)
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The LP coefficients α1, . . . , αNLP
are determined such that the accumulated squared

error

εLP =
Ns−1∑
j=NLP

(eτn)2 =
Ns−1∑
j=NLP

(
NLP∑
j=0

αj · f τn−j

)2

(6.24)

is minimized. Again, Ns is the number of samples in the speech frame. The error
εLP can be rewritten in a more compact form as a linear combination of quadratic
functions:

εLP =

NLP∑
j=0

NLP∑
k=0

αjφ
τ
jkαk with φτjk =

Ns−1∑
n=0

f τn−j f
τ
n−k . (6.25)

Hence, εLP has a unique minimum which can be found by setting the partial deriva-
tives ∂εLP/∂αk =

∑NLP

j=0 αjφ
τ
jk to zero. This results in a system of NLP linear equations:

NLP∑
j=1

αjφ
τ
jk = −φτjk , 1 ≤ k ≤ NLP . (6.26)

Instead of solving this system, the LP coefficients can be determined in a faster way
using the covariance method or the autocorrelation method. The first one in based
on a Cholesky decomposition of the symmetric matrix φτ , the latter one uses the
autocorrelation function r to compute the components of φτ :

φτjk = r τ|j−k | (6.27)

and benefits from the form of φτ , which is a Toeplitz matrix (constant elements on
each descending diagonal from left to right). In this case, the system of equations can
be solved with the Levinson-Durbin recursion [Levi 47, Durb 60]. In order to compute
the LP spectrum, the LP coefficients are zero padded before applying the Discrete
Fourier Transformation. Finally, the local maxima of the spectrum are determined.
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The number of local maxima strongly depends on the prediction order NLP. If the
order is too low, one local maximum models more than one formant. If NLP is too
high, the local maxima model the harmonic structure. Generally, good results are
obtained if NLP is set to fs + 4; fs is the sampling frequency given in kHz.

In the experiments, the first four formants and their bandwidths are used. They
are extracted using the formant extractor of ESPS, which is incorporated in the
software WaveSurfer. The algorithm is based on the root extraction method. In
order to find the most probable poles related to actual formants, a modified Viterbi
algorithm is used. In [Kim06], the ESPS algorithm is attested sufficiently good
performance in most cases.

Figure 6.19 shows the influence of the four cover classesAnger, Emphatic, Neutral,
and Motherese on the position of the first and the second formant for the long vowels
/e:/, /a:/, /u:/, and /o:/. For each combination of vowel and emotional state,
the average of the first and second formant has been computed. In order to be
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able to average the values of the formants for single phones, a time alignment on
the phone level is necessary. It is obtained by a forced alignment of the manually
transliterated words using the start and end frames of the manual correction of the
segmentation. The distribution of the center frequencies of the first and the second
formant is modeled with a two-dimensional Gaussian probability density function
which is depicted by the mean and the covariance. It can be seen that the emotional
state has some influence on the first and the second formant. The average center
frequency of the first formant of the vowel /a:/, for example, is about 90Hz higher
if the vowel is produced in the state Emphatic compared to Neutral. If the vowel
/u:/ is produced in the state Motherese, for example, the average center frequency
of the second formant decreases by 170Hz compared to Neutral. Nevertheless, the
variance due to different speaker characteristics and due to co-articulation effects is
much higher.

6.3 Voice Quality Features
Voice quality features characterize the source signal which emerges from the oscilla-
tion of the vocal cords. The source signal can be estimated by inverse filtering of the
speech signal canceling the effects of the vocal tract. As pointed out in Chapter 1.2,
inverse filtering techniques tend to perform least well especially for many non-modal
voice qualities due to phases of the glottal cycle that are not completely closed and
due to errors of the automatic extraction of the formants. For this thesis, only voice
quality features are investigated that are obtained directly from the speech signal,
namely jitter and shimmer, the harmonics-to-noise ratio, and a feature that is based
on the Teager energy profile of multiple critical frequency bands.

6.3.1 Jitter and Shimmer

The term jitter denotes cycle-to-cycle variations of the fundamental frequency. Here,
an approximation of the first derivative of the fundamental frequency is used:

jitter(i) =
|F0(i + 1)− F0(i)|

F0(i)
. (6.28)

These variations are not perceived as changes of the pitch but as changes of the voice
quality. Along the same lines, the term shimmer denotes variations of the energy
from one cycle to another:

shimmer(i) =
|en(i + 1)− en(i)|

en(i)
. (6.29)

Cycle-to-cycle variations require that the fundamental frequency is calculated for con-
secutive periods and not as the average F0 for a whole frame of constant length. The
PDDP (period detection by means of dynamic programming) algorithm described
in [Kies 97] is applied. In a first step, segments of voiced speech are located and esti-
mates of the average fundamental frequency in these segments are computed. Then,
the possible candidates for the period boundaries are located at positive zero cross-
ings of the signal. Characteristics like the integral or the extrema in the segments
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from one positive zero crossing to the next one are computed and can be used to
reduce the number of candidates by eliminating irrelevant candidates like those with
negative integral. Within a voiced segment, hypotheses of periods are generated:
Each positive zero crossing can be the starting point of several periods. The period
length is limited to an interval that is defined by the average fundamental frequency
estimated for the whole voiced segment and the maximal relative deviation from this
value that is permitted. Dynamic programming (DP) is used to find the optimal path
in the graph of hypotheses. Two types of cost functions are defined: cost functions
that characterize the period itself and cost functions that characterize the similar-
ity of consecutive periods. Several heuristic cost functions are defined in [Kies 97].
They are combined to a single cost function by an artificial neutral network classifier
which has been trained on manually labeled positions of periods. For a more detailed
description of the algorithm, please see [Kies 97].

Features for words are obtained by averaging the jitter and shimmer values over
all detected periods within the given word. Additionally, the feature vector is ex-
tended by the standard deviation of the jitter and shimmer values. Features for
turns and chunks are obtained along the same lines as for the prosodic features
(s. Chapter 6.1.5).

6.3.2 Harmonics-to-Noise Ratio

The harmonics-to-noise ratio [Boer 93] is a measure for the degree of periodicity of
a voiced signal, which can be found from the relative height of the maximum of
the autocorrelation function. The autocorrelation function rf is computed for short
speech frames to assure that the speech signal is approximately stationary:

rf (x ) :=
Ns−1∑
n=0

f τn · f τn+x . (6.30)

The function has a global maximum at the lag x = 0. If the function f is periodic
with the fundamental frequency F0 = 1

T0
, the length of the frame is a multiple of

T0, and the windowed signal f τn is continued periodically, there will be other global
maxima at positions i · T0 for every integer i . If this is not the case, there can be
still local maxima. The signal is said to have at least a periodic part if the highest
local maximum is at lag xmax and its height rf (xmax) is large enough. The harmonic
strength R0 = r ′f (xmax) is a number between 0 and 1 and results from the normalized
autocorrelation function r ′f

r ′f (x ) :=
rf (x )

rf (0)
(6.31)

at lag xmax. If noise nn is added to a periodic signal hn of period T0 and nn and hn

are uncorrelated, the autocorrelation function of the resulting signal fn at zero lag is
rf (0) = rh(0) + rn(0). If white noise is added, a local maximum can be found at lag
xmax = T0 with height rf (xmax) = rh(T0) = rh(0). The autocorrelation function at
zero lag equals the power of the signal. Hence, the normalized autocorrelation at lag
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xmax represents the relative power of the periodic (or harmonic) component of the
signal whereas its complement represents the relative power of the noise component:

r ′f (xmax) =
rh(0)

rf (0)
; 1− r ′f (xmax) =

rn(0)

rf (0)
. (6.32)

This leads to the definition of the logarithmic harmonics-to-noise ratio (HNR):

HNR = 10 · log10

r ′f (xmax)

1− r ′f (xmax)
. (6.33)

In the experiments of this thesis, the HNR is computed using the speech analysis
tool Praat1. A detailed description of the implemented HNR algorithm is given in
[Boer 93]. A Gaussian window, which has been shown to be superior in comparison
to a rectangular, Hamming, and Hann window, is applied to the speech segment prior
to the calculation of the autocorrelation function. An unintended side effect of any
window is that the autocorrelation function is extenuated smoothly to zero as the
autocorrelation index increases. Hence, the local maximum with the highest peak
does not always correspond to the fundamental frequency. This effect is avoided if
the autocorrelation function of the windowed signal is divided by the autocorrelation
function of the window as it is demonstrated in Figure 6.20 where a Hann window
has been used. The HNR estimation requires a precise estimate of the lag xmax. To

1http://www.fon.hum.uva.nl/praat/, last visited 01/12/2009

http://www.fon.hum.uva.nl/praat/
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increase the resolution of the sampled autocorrelation function, a sinc interpolation
is applied prior to the detection of the local maxima. For each frame, several F0

candidates and their harmonic strength values are computed which form a graph.
The Viterbi algorithm is used to find the globally best path with the lowest costs.
The cost function is chosen such that transitions from voiced to unvoiced frames and
vice versa, and octave jumps are penalized. Furthermore, high harmonic strength
values are favored. On the word, the turn, and the chunk level, the mean HNR values,
averaged over all voiced frames, and the standard deviation are used as features.

6.3.3 Teager Energy Profile based Features

The Teager energy operator is based on the observation that the energy of a simple
oscillation is proportional not only to the square of the amplitude but also to the
square of the frequency of the oscillation [Kais 90]. In a simple mechanical system
where a mass m is attached to a linear spring of force constant k , the motion of the
mass is described by a harmonic motion x (t) = A cos(ωt + φ). A is the amplitude
of the oscillation, ω the angular frequency, which is equal to 2πf and to

√
k/m, and

φ an arbitrary initial phase. The total energy E of the system is the sum of the
potential energy in the spring and the kinetic energy of the mass:

E =
1

2
k x 2 +

1

2
mẋ 2 =

1

2
m ω2A2 . (6.34)

The energy E is proportional to both the square of the amplitude A and the square
of the angular frequency ω: E ∝ ω2A2.

Let xn be the discrete samples of the oscillation xn = A cos(Ωn + φ). The digital
frequency Ω given in radians/samples is equal to 2πf /fs where fs is the sampling
frequency. The function xn depends on the three parameters A, Ω, and φ, which
can be obtained from three samples of the function xn , e. g., the three consecutive,
equally-spaced samples xn−1, xn , and xn+1. The product xn−1·xn+1 can be transformed
using the trigonometric identities cos(α+ β) · cos(α− β) = 1

2
[cos(2α) + cos(2β)] and

cos(2α) = 2 cos2(α)− 1 = 1− 2 sin2(α) into:

xn−1 · xn+1 = A2 cos
(
Ω(n − 1) + φ

)
sin
(
Ω(n + 1) + φ

)
(6.35)

=
A2

2

[
cos
(
2(Ωn + φ)

)
+ cos(2φ)

]
(6.36)

= A2 cos2(Ωn + φ)− A2 sin2(Ω) (6.37)
= x 2

n − A2 sin2(Ω) . (6.38)

For small values of Ω, the sine of Ω is approximately equal to Ω. This leads to the
definition of the Teager energy operator (TEO) with the desired properties:

Ψ(xn) = (xn)2 − xn−1 · xn+1 ≈ A2Ω2 . (6.39)

The TEO is a very local operator, which is computed for each sample of the signal
and not for whole frames. Note that for harmonic oscillations xn = A cos(Ωn+φ), the
TEO output is constant. More properties of this operator are described in [Kais 93].
Its output is called the Teager energy profile (TEP). It is depicted in Figure 6.21 for
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Figure 6.21: Teager energy profile of a bandpass filtered speech signal

a bandpass filtered speech signal. The speech signal is filtered with a Gabor filter
centered at 1 kHz and a bandwidth of 160Hz. The TEP is normalized such that the
maximum of the profile is 1.

Linear speech production models assume that the airflow propagates in the vocal
tract as a plane wave and that this pulsatory flow is the source of the sound produc-
tion. In contrast, studies by Teager [Teag 80, Teag 83, Teag 90] state that concomitant
vortices are distributed throughout the vocal tract and that interactions between the
vortex flows are the true source of sound production. The Teager energy operator
has been developed in order to reflect the instantaneous energy of these nonlinear
interactions.

In [Zhou 01], three features based on the TEP are proposed for the classification
of speech under stress. For the first feature, the TEP is computed for a bandpass
filtered speech signal of a vowel. The bandpass filter is centered around the median
fundamental frequency with the bandwidth of F0/2. Then, the TEP is used to decom-
pose the signal where both the frequency and the amplitude are modulated into its
FM (frequency modulation) and its AM (amplitude modulation) components. The
final feature is computed for segments of constant length as the variation of the FM
component within the respective segment.

The second feature has been proposed to capture modulation variations across
different frequency bands. It is also applied to vowels only. According to the nonlinear
speech production model proposed by Maragos et al. [Mara 93], voiced speech can be
modeled as the sum of AM-FM signals, each of them being centered at a formant
frequency. To avoid tracking the formant frequencies and the difficulties involved, four
fixed bandpass filters are used that cover the frequency bands of 0-1 kHz, 1-2 kHz, 2-
3 kHz, and 3-4 kHz. Depending on the type of stress and the stress level, the formants
can migrate from one frequency band to an adjacent one. Furthermore, additional
harmonics can occur in a frequency band due to changes of the fundamental frequency.
The TEP is estimated for each of the four bandpass filtered signals. Each of the four
profiles is filtered with a bandpass filter centered around F0 as the AM component
for a single formant exhibits periodicity similar to the fundamental frequency. Each
filtered TEO stream is then segmented into frames. The length of the frames is
set to four times the median pitch period. For each frame of each TEP stream, the
autocorrelation function is computed. If there is no pitch variation within a frame, the
TEO output is constant and the values of the normalized autocorrelation function
are 1 (if the signal is periodically continued). In the case of a varying pitch, the
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Figure 6.22: Computational steps of the TEO-CB-Auto-Env features following
[Zhou 01]

band critical band frequency information [Hz]
number lower center upper bandwidth

1 100 150 200 100
2 200 250 300 100
3 300 350 400 100
4 400 450 510 110
5 510 570 630 120
6 630 700 770 140
7 770 840 920 150
8 920 1000 1080 160
9 1080 1170 1270 190
10 1270 1370 1480 210
11 1480 1600 1720 240
12 1720 1850 2000 280
13 2000 2150 2320 320
14 2320 2500 2700 380
15 2700 2900 3150 450
16 3150 3400 3700 550

Table 6.1: Critical frequency bands after [Zhou 01]

area under the envelope of the normalized autocorrelation function will decrease and
reflects the degree of excitation variability within the respective band. In doing so,
four features are obtained for each frame.

A third feature has been proposed with a higher frequency resolution compared
to the only four frequency bands of the second feature. Applied to stress detection
from speech, it has been proven to be the best feature in terms of both accuracy and
consistency across different stress styles since it does not depend on the accuracy of
the pitch estimation. For these reasons, the third feature, entitled critical band based
TEO autocorrelation envelope area (TEO-CB-Auto-Env), has been reimplemented
for this work. The sequence of the computational steps is depicted in Figure 6.22.
In a first step, a filterbank of 16 critical frequency bands is applied to the speech

signal. The critical frequency bands, defined in Table 6.1, are based on empirical ob-
servations suggesting that the human auditory system performs a filtering operation
which partitions the whole frequency range into many critical bands [Scha 70]. Gabor
filters are used because of their excellent sidelobe cancellation [Mara 93]:

hGabor(n) = e−2π(b n/fs)2

cos(2π n fc/fs) . (6.40)
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fs is the sampling frequency, fc the center frequency of the bandpass filter, and b its
bandwidth. Figure 6.23 shows the Gabor filter No. 14 in the time domain as well as
its power spectrum. For each of the 16 bandpass filtered speech signals, the TEP
is estimated. After segmentation into frames of fixed length (32ms, time shift of
10ms), the autocorrelation function and its envelope is computed. Unvoiced frames
are discarded. Figure 6.24 shows the speech signal filtered by Gabor filter No. 14
and its Teager energy profile (left) and the autocorrelation function of the TEP and
the envelope of the autocorrelation function (right). The area under the envelope of
the autocorrelation function is used as a feature resulting in 16 features per frame.
The TEO-CB-Auto-Env features are focused on representing the variations of pitch
harmonics. Experiments in [Zhou 01] have shown that the fundamental frequency
and consequently also the distribution pattern of pitch harmonics across critical fre-
quency bands changes under stressful conditions compared to a neutral speaking
style. The resulting TEO features are influenced both by the differences in the num-
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ber of harmonic terms within each band as well as by differences in the regularity
of each harmonic. The TEO-CB-Auto-Env features have been proposed for stress
classification (stress subsuming the speaking styles angry, loud, and Lombard effect).
In this thesis, they are evaluated for the classification of emotion-related user states.
On the word, the turn, and the chunk level, the mean TEO-CB-Auto-Env features,
averaged over all voiced frames, and the standard deviation are used as features.
Furthermore, the feature vector is extended by the maximum and the minimum of
the TEO-CB-Auto-Env values resulting in 64 features.

6.4 Linguistic Features

In contrast to many other emotional speech corpora, the FAU Aibo Emotion Corpus
does not consist of a limited number of sentences that are portrayed in different
emotions but of spontaneous speech of children interacting with the Aibo robot.
Besides some ‘well-formed’ utterances, the speaking style of the children is dominated
by a mixture of short sentences and one-word commands. Nevertheless, a linguistic
analysis is possible and linguistic features can be used for the classification of the
emotion-related states of the children.

6.4.1 Length of Words, Fragments, and Repetitions

Length of Words

In a first step, the impact of the length of a word on the emotion-related state is
investigated. The length can be defined as the number of letters, the number of
phonemes, or the number of syllables a word consists of. In contrast to the prosodic
feature duration, the number of letters, phonemes, and syllables does not have to
be measured from the speech signal, but can be looked up easily from a dictionary.
Figure 6.25 shows the proportions of the four cover classes Anger, Emphatic, Neutral,
and Motherese for words of different length. The evaluation is performed on the Aibo
word set where the four cover classes are roughly balanced.

At the top of Figure 6.25, the length is defined as the number of letters a word
consists of. Since single letters and words consisting of more than 9 letters make
up less than 1.2% of the words in the Aibo word set, the range of letters shown
in the figure is limited to [2; 9] Significant differences of the proportions of the four
classes can be observed for different numbers of letters. The proportion of Emphatic,
for example, ranges from less than 10% for words consisting of only two and three
letters to almost 60% for words consisting of five letters. Mainly, this maximum is
due to the two words “links” (left) and “stopp” (stop) which are likely to be Emphatic.
The proportion of Motherese tends to decrease for longer words whereas the one for
Anger tends to increase with a higher number of letters. The high proportion of
Motherese for words that are only two letters long is mainly caused by the words
“ja” (yes) and “so” – like in the context of “so ist’s fein” (it’s fine like that) – and to
some degree also by the word “du” (you).

There is a similar picture if the number of letters is substituted by the number
of phonemes as illustrated in the middle of Figure 6.25. Diphthongs such as /aI/,
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/aU/, /OY/, and combinations of a vowel followed by /6/, so-called r-diphthongs, are
treated as one phoneme. Combinations of different consonants that are also modeled
by separate HMMs in the speech recognizer such as /pf/, /br/, /ts/, /ks/, etc.
are treated as two phonemes. The proportion of Emphatic is especially high for
words consisting of four or five phonemes. This peak is caused by the same words as
the peak for words consisting of five letters, namely the word “stopp” (stop), which
consists of four phonemes, and the words “links” (left), “rechts” (right), and to some
degree “stehen” (stand), which consist of five phonemes. The peak of Anger at seven
phonemes is mainly due to the word “aufstehen” (get up).

Finally, the length of a word is defined as the number of syllables the word consists
of as shown in Figure 6.25 (bottom). Only words consisting of up to four syllables
occur in the FAU Aibo Emotion Corpus. Words with only one or two syllables occur
most frequently. Significant differences can be observed between them. The propor-
tion of Anger increases from about 15% to about 44% whereas the proportions of
Emphatic and Motherese fall from 33% to 17% and from 24% to 13%, respectively.
The proportion of Neutral remains nearly constant.

All three different ways to define the length of a word have shown that the propor-
tions of the four cover classes change significantly with the length of the word. This
effect is rather due to single words in the corpus than to general conclusions that the
proportion of one class increases or decreases with the length of a word. It remains
unclear whether these effects also occur in other scenarios with larger lexicons.

On the word level, the length of a word is used directly as a feature. On the turn
and the chunk level, the word length is averaged over all words in the segment.

Repetitions

If Aibo does not obey to the commands of the child, the child will use different strate-
gies to make Aibo obey. Possible strategies are the reformulation of the command
or the simple repetition of the utterance. Here, the number of repetitions of single
words is used that can be determined without performing a semantic analysis. The
proportion of Emphatic and Anger are expected to increase if a word is repeated
whereas the proportion of Neutral is expected to decrease. The evaluation shown
in Figure 6.26 confirms the expectations. Due to the small number of repetitions,
the evaluation is performed on the whole German FAU Aibo Emotion Corpus for the
six cover classes Anger, Emphatic, Neutral, Motherese, Joyful, and Other. Unfortu-
nately, the six classes are highly unbalanced on this data set. The latter two as well
as those cases where no majority vote exists are excluded for a higher clarity of the
presented figure. In total, 5% of the words in the whole corpus are repetitions: 2153
words are repeated once, 235 words are repeated twice, and 72 words are repeated
three or more times (not shown in Figure 6.26 due to their low frequency). The pro-
portion of Anger increases from 3% if the word is not repeated to 10% if the word
is repeated once. For words that are repeated twice, the proportion of Anger is 9%
The proportion of Emphatic increases from 5% over 15% to 18%. The proportion of
Neutral falls from 83% to 61% and finally to 58%, the one of Motherese from 3%
to 1%. On the turn and the chunk level, the average number of repetitions is used
as a feature.
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Figure 6.25: Distribution of the cover classes Anger, Emphatic, Neutral, and
Motherese w. r. t. the length of a word defined as the number of letters (top),
phonemes (middle), or syllables (bottom); evaluated on the Aibo word set

Fragments

Disfluencies are expected to be a sign of emotional arousal. In a study on real
dialogs between customers and agents in a web-based stock exchange customer service
center [Devi 04], hesitations such as silent and filled pauses are reported to be cues
especially for the negative emotions anger and fear. Word fragments are another type
of disfluencies. These word fragments are marked in the transliteration of the FAU
Aibo Emotion Corpus. Figure 6.27 shows the proportions of the four cover classes
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Anger, Emphatic, Neutral, and Motherese for fragments and non-fragments. The
whole German FAU Aibo Emotion Corpus is used for the evaluation. 29% of the
lexicon entries (types) but only 3% of all words in the corpus (tokens) are fragments.
The proportion of Anger and Emphatic decreases from 4% to 2% and from 6% to
1%, respectively, whereas the proportion of Neutral increases from 81% to 89%.
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The proportion of Motherese increases as well from 3% to 6%. This observation
is contradictory to the expectations and a peculiarity of the Aibo scenario. Due to
Aibo’s slow reaction time, the child has plenty of time to choose a strategy how to
make Aibo obey. If the child produces an utterance in one of the emotion-related
states Emphatic or Anger, the utterances are generally well thought out and shorter
than in the other two states leading to less disfluencies. Word fragments are more
likely to occur in off-talk, which is produced in the state Neutral.

6.4.2 Part-of-Speech Features

The FAU Aibo Emotion Corpus has been annotated with part-of-speech tags (s. Chap-
ter 5.3.4). The set of POS tags consists of only six coarse lexical and morphological
main word classes: NOUN, API, APN, VERB, AUX, and PAJ. They are defined in Ta-
ble 5.4. Thus, the entries of the lexicon can be annotated without examining the
context of the words in the utterance. Figure A.9 in Appendix A.2.6 and Figure 5.15
in Chapter 5.3.9 clearly show the impact of the different part-of-speech classes on the
proportions of the six cover classes Anger, Emphatic, Neutral, Motherese, Joyful,
and Other. The impact has been described in detail in Chapter 5.3.4.

Six features are used, one for each part-of-speech class. The feature of the POS
class the word belongs to is set to one whereas the other features are set to zero.
Along the same lines as for the prosodic features, the context of two words to the left
and two word to the right of the current word is incorporated into the feature vector
resulting in 30 POS features per word. On the turn and the chunk level, again,
six features are used, one for each POS class. Each feature contains the relative
frequency how often words of the respective POS class occured within the segment.
This approach is very similar to the bag-of-words approach, which is described in the
following section, if word categories are used instead of single words.

6.4.3 Bag-of-Words

The bag-of-words approach is used in text mining and information retrieval to classify
a text into one of several categories. Each entry of the lexicon wi is assigned to one
element ei of the feature vector. This element specifies the relative frequency of the
corresponding word in the given text:

ei =
#(wi)∑
k #(wk)

. (6.41)

Here, the bag-of-words approach is applied to single chunks or turns. In Figure 6.28,
the principle is illustrated for the utterance “Aibo, geh nach links!” (Aibo go to the
left! ). The word order gets lost. The resulting feature vector is high-dimensional, but
most of the entries are equal to zero. In order to reduce the dimension of the feature
vector, the following steps are employed:

1. Word fragments and auxiliaries are clustered; each cluster is represented by only
one entry. The lexicon consists of 1147 entries, 334 of them are word fragments,
42 entries are auxiliaries. Hence, the dimension of the feature vector is reduced
from 1147 to only 773.
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Figure 6.28: Bag-of-words feature vector of the utterance “Aibo, geh nach links!”
(Aibo walk to the left! )

2. The following alternatives are investigated:

(a) Single words: Words that occur five times or more are represented by
separate entries. Less frequently used words are clustered and represented
by only one common entry since their influence on the emotional state
cannot be estimated robustly enough. Especially words that occur only
once in the whole corpus can only be either in the training set or the test
set. The number of entries is reduced to 254.

(b) Coarse semantic categories: Words are clustered into the five semantic
categories vocatives (2), positive valence (25), negative valence (30), com-
mands and directions (76), and interjections (36). The number in brackets
is the number of words subsumed under the respective category. The re-
maining 602 lexicon entries are put into the category other. By that, the
dimension of the feature space is reduced to eight. If these categories are
substituted by the POS classes, part-of-speech features can be obtained
on the turn and the chunk level.

(c) Lemmatization: This approach combines the previous two. Words that
occur at least ten times are still represented by separate entries. Less
frequently used words are lemmatized, i. e. words such as “böser”, and
“böses” are put into the same category as the lemma “böse” (bad). Terms
with the same semantic meaning such as feeding dish and feeding bowl
are put into one common category as well. The remaining words are
categorized into single characters, nouns with negative valence, nouns with
neutral valence, nouns with positive valence, adjectives and adverbs with
negative valence, adjectives and adverbs with neutral valence, adjectives
and adverbs with positive valence, interjections, infinitives and imperatives
of verbs with neutral valence, inflected verbs, and function words, articles,
etc. The number of features is reduced to 181.

3. The principal component analysis (PCA) is applied to decorrelate the features
and to further reduce the dimension of the feature space.

6.4.4 Unigram Models

It is quite obvious that the emotional state influences the words the user chooses. If
a person uses swear words, the person is highly likely to be angry. In general, this
also holds for the FAU Aibo Emotion Corpus except that the emotion-related states
that can be observed are weak and that the choice of words is not unique for a single
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emotion-related state. Swear words, for example, do not appear at all in the corpus.
Nevertheless, utterances such as “Good dog, Aibo!”, which are used to praise Aibo,
are more likely to be produced in the state Motherese than in the states Emphatic
and Anger.

The conditional probability P(e|w) is the probability that the speaker is in the
emotion-related state e while he/she is producing the word w . Table A.13 shows the
conditional probabilities of the six cover classesAnger, Emphatic, Neutral, Motherese,
Joyful, and Other, and for those cases where no majority vote exists for the 40 most
frequently used words of the German FAU Aibo Emotion Corpus. The high a priori
probability P(N) of the class Neutral leads to high conditional probabilities P(N|w)
for almost all words. Nevertheless, significant differences can be observed: The word
“stopp” (stop), for example, is more likely to be produced in the state Emphatic than
the word “aufstehen” (get up), which is often produced in the state Anger. Yet, both
words are most often observed in the state Neutral. For each of the four cover classes
Anger, Emphatic, Neutral, and Motherese, Table 6.2 shows the 15 words with the
highest conditional probabilities of their class. Only words that occur at least 50
times in the whole corpus are considered. Rare words can have higher but possibly
less precise estimates of the conditional probability.

The conditional probability can be used directly as a feature on the word level. On
the turn and the chunk level, the sequence of words w = w1w2 . . .wNw is classified as
belonging to the emotion class ê with the highest probability P(e|w). It is computed
using the Bayes formula:

ê = argmax
e

P(e|w) = argmax
e

P(w |e) · P(e)

P(w)
= argmax

e
P(w |e) · P(e) . (6.42)

The most likely emotion ê does not depend on the probability P(w) of the word
sequence w . The probability P(w |e) is computed with the help of the probabil-
ities P(wn |w1 . . .wn−1, e), which can be approximated by trimming the context of
the preceding words. Unigram models [Devi 03, Schu 05, Shaf 05] omit the context
completely:

P(w |e) = P(w1|e) · P(w2|w1, e) · . . . · P(wNw |w1 . . .wNw−1, e) (6.43)
≈ P(w1|e) · P(w2|e) · . . . · P(wNw |e) (6.44)

=
P(e|w1)

P(e)
· . . . · P(e|wNw)

P(e)
· P(w1) · . . . · P(wNw) . (6.45)

Due to the limited size of the FAU Aibo Emotion Corpus, the use of bigrams or
trigrams is not promising since they cannot be estimated robustly. Again, the most
probable emotion ê does not depend on the product P(w1) · . . . · P(wNw). On the
word level, four features are used, one for each emotion cover class:

u(w , e) = log10

(
P(e|w)

P(e)

)
. (6.46)

Furthermore, the feature vector is extended by the context of two words to the left
and two words to the right resulting in 20 features. On the turn and the chunk level,
the contour of the features on the word level (without the context) is described by
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Anger P(A|w) Emphatic P(E|w)
böser (bad) 29.2% stopp (stop) 30.5%
stehenbleiben (stand still) 18.9% halt (halt) 29.3%
nein (no) 17.0% links (left) 20.5%
aufstehen (get up) 12.3% rechts (right) 18.9%
Aibo (Aibo) 10.1% nein (no) 17.6%
hinsetzen (lay down) 10.0% sitz (sit) 16.9%
umdrehen (turn around) 9.3% hinsetzen (sit down) 15.8%
nicht (not) 7.4% stehen (stand) 15.2%
Hund (dog) 6.3% bleiben (stay) 14.7%
stehen (stand) 5.6% tanz (dance) 12.3%
bleiben (stay) 5.3% drehen (turn) 12.3%
auf (up) 4.4% vorwärts (forwards) 11.5%
ganz (very) 3.9% stehenbleiben (stand still) 11.3%
los (go) 3.8% zurück (back) 8.6%
drehen (turn) 3.8% g’rad’aus (straight forward) 8.2%

Neutral P(N|w) Motherese P(M|w)
okay (okay) 98.6% fein (fine) 57.5%
und (and) 98.5% ganz (very) 41.9%
Stück (bit) 98.5% braver (good) 36.0%
in (in) 98.2% sehr (very) 23.5%
noch (still) 96.2% brav (good) 21.7%
*n (’n) 96.1% Hund (dog) 18.9%
rum (around) 95.8% gut (good) 17.3%
der (the) 95.6% gemacht (done) 17.1%
wieder (again) 95.4% ja (yes) 14.7%
ein (a) 94.8% das (the, this) 14.6%
mal1 94.5% schön (nice) 12.8%
jetzt (now) 94.3% her (here) 12.0%
zum (to) 94.0% so (like that) 11.8%
geh (go) 94.0% genau (exactly) 11.7%
bisschen (a little) 93.7% hier (here) 10.0%

1 modal particle, typical for German, the equivalent in English is the use of specific
intonation contours

Table 6.2: The 15 words with the highest conditional probability P(e|w) for each of
the four cover classes Anger, Emphatic, Neutral, and Motherese

the average, the standard deviation, the maximum, and the minimum resulting in
16 features. If a word wn produced in emotion e does not appear in the training set
because the size of the training set is too small, the estimate of P(e|wn) is equal to
zero. Hence, the probability P(e|w) is zero for the whole segment. To cope with this
problem, an equal distribution of the conditional probabilities is assumed for words
occurring less than ten times in the training set. Furthermore, each emotion class is
assumed to be observed at least once for every word. The conditional probabilities
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are estimated in a leave-one-speaker-out procedure such that the data of the test
speaker is excluded for the estimation of the statistics.

In [Schu 05], the unigram features are compared to several features based on the
emotional salience [Lee 02] of a word w , which is defined as follows:

sal(w) =
∑

e

P(e|w) · i(w , e) with i(w , e) = log
P(e|w)

P(e)
. (6.47)

A salient word w. r. t. the emotion class e is a word that is produced more often
in emotion e than in other emotional states. The best results are reported for the
feature u(w , e) and the following feature, which are both summed up over all words
in the utterance [Schu 05]:

t(w , e) = P(e|w) · log10

(
P(e|w)

P(e)

)
. (6.48)

Both variants have been evaluated on the German FAU Aibo Emotion Corpus. As
the differences are not significant [Maye 05], only the first variant is used in the
experiments in Chapter 7.

6.5 Knowledge about Aibo’s Behavior
During the recordings of the FAU Aibo Emotion Corpus, the children were led to
believe that they can control Aibo by talking to the robot. They were told to rep-
rimand Aibo if it does not obey or to praise Aibo if it takes orders. Instead, Aibo
was remote-controlled and followed a pre-defined script of actions independently of
the child’s commands. Aibo’s actions are categorized into non-verbal actions, co-
operative actions, and non-cooperative actions. They are annotated for the parcours
experiment as described in Chapter 5.3.1. The following binary function is used to
describe Aibo’s co-operation at a turn t :

co-operation(t) =

{
1 Aibo is co-operative
0 Aibo does not obey . (6.49)

Figure 6.29 shows this co-operation function for speaker Ohm_18 and a subset of the
Aibo turn set (s. Chapter 5.4). Unfortunately, only a subset can be used for the
evaluation since only 2046 of the 3996 turns of the Aibo turn set are actually part
of the parcours experiment. In Figure 6.29, the emotion class of the turns (the turn
label) is color-coded. For this speaker, a high correlation of 0.64 between Aibo’s co-
operation and the 2-class problems Anger vs. no Anger can be observed: the turns
are mostly produced in the state Anger if and only if Aibo shows non-cooperative
behavior. In order to compute the correlation, a binary emotion function is defined
along the same lines as Aibo’s co-operation function: the function is set to 1 if the
turn is produced in the state Anger and to zero if the turn is produced in one of the
three other states Emphatic, Neutral, and Motherese.

If all speakers are evaluated, the correlation for this 2-class problem is 0.37. Other
2-class problems can be correlated with Aibo’s behavior as well. The results are given
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Figure 6.29: Influence of Aibo’s co-operation on the turn labels for speaker Ohm_18:
high correlation (0.64) between the 2-class problems Anger vs. no Anger and non-
cooperative vs. co-operative behavior of Aibo

2-class problem correlation
A vs. N 0.47
A vs. ¬A 0.37
E vs. N 0.08
E vs. ¬E −0.09
M vs. N 0.04
M vs. ¬M −0.08
¬N vs. N 0.18
A,E vs. N 0.23
A,E vs. N,M 0.22

Table 6.3: Correlation of Aibo’s behavior and the cover classes Anger, Emphatic,
Neutral, and Motherese, evaluated on the Parcours subset of the Aibo turn set

in Table 6.3. The highest correlation is obtained for the 2-class problem Anger vs.
Neutral excluding the turns that are produced in one of the other two states. The cor-
relation values vary strongly from one speaker to another. Some speakers show only
little emotional behavior and deviate only seldom from the neutral speaking style.
Hence, their correlation values are rather low. For other speakers, the correlation
values are above 0.75.

The occurrence of the state Emphatic seems to be barely influenced by Aibo’s
behavior as the low correlation values for the 2-class problems Emphatic vs. the other
three states and Emphatic vs. Neutral indicate. This also holds for Motherese.

In summary, if Aibo’s behavior is known, a simple binary feature indicating Aibo’s
co-operation can be helpful to discriminate Anger and Neutral. It will not be able
to distinguish Neutral from Emphatic and Motherese. For our 4-class problem,
this feature will only be useful in combination with others. Experimental results on
the subset of the Aibo turn set are reported in [Maye 05]. The class-wise averaged
recognition rate (CL) could be improved from 44.7% to 49.2% if 55 linguistic features
(mainly part-of-speech features (30) and unigram features (20) on the turn level) were
used. Especially the low recognition rate for Anger could be improved. If bag-of-



148 Chapter 6. Features for Emotion Recognition from Speech

word features were added, the improvement was not significant (54.0% to 55.6%).
Yet, the recognition rates of the four classes were more balanced.

Summary The presented features for emotion recognition from speech cover the
four main categories of features, namely prosodic, spectral, voice quality, and linguis-
tic features. The features of the Erlangen Prosody Module differ from those of other
research groups as a compact set of selected features is used to model energy, F0,
and temporal aspects for single words instead of whole utterances. This approach is
especially suited for the classification on the word level, but can be used for larger
segments as well by computing statistics of the word level features.

The presented spectral features model short-term spectral characteristics. The
standard MFCC features for speech recognition and features of less compressed pre-
stages of their computation, namely DFT and log-Mel frequency features, are de-
scribed as well as features based on formants. The spectral features can be classified
directly on the frame level. The a posteriori probabilities of the frames are then mul-
tiplied to obtain probabilities on the word level or for larger segments. Alternatively,
the features can be averaged over the whole segment before classification.

The group of voice quality features is represented by jitter and shimmer, the
harmonics-to-noise ratio, and features based on the Teager energy profile.

A special characteristic of the FAU Aibo Emotion Corpus is the spontaneous
speech of the children which can be analyzed linguistically. The evaluation of simple
features such as the length of a word, the number how often a word is repeated, and
the information whether a word is a fragment or not have been shown to influence
the emotion-related state of the child. Furthermore, part-of-speech features using
six coarse lexical and morphological main word classes and bag-of-words features are
presented. Three approaches to reduce the high dimensionality of the bag-of-words
vector are suggested. Unigram models based on the conditional probabilities P(e|w)
are another type of linguistic features.

In the Aibo scenario, where Aibo follows strictly pre-defined plot of actions, it
is known whether Aibo behaves co-operatively or not. The evaluation has shown
that the emotion-related state Anger is produced mainly if Aibo does not obey. In
contrast, there is almost no correlation with the states Emphatic and Motherese.



Chapter 7

Experimental Results on Emotion
Recognition

In this chapter, the features described in Chapter 6 are evaluated on the German FAU
Aibo Emotion Corpus for the 4-class problem consisting of the four cover classes
Anger, Emphatic, Neutral, and Motherese. As the emotion-related state of the
speaker changes even within utterances, each single word of the corpus is labeled as
belonging to one of these cover classes (s. Chapter 5.3.7). Hence, the main focus is set
on the classification on the word level. The different types of features are evaluated
separately as well as in combination with the other feature types. In Chapter 5.3.8,
procedures are described how emotion labels for turns (s. Chapter 5.2) and chunks,
which are defined in Chapter 5.3.5, are obtained from the labels on the word level.
By comparing the experimental results on the word level with those on the turn
and the chunk level, conclusions can be drawn which unit of analysis is the most
appropriate one for emotion recognition. If the whole German FAU Aibo Emotion
Corpus is used for classification, the four cover classes are highly unbalanced. Neutral
is the most dominating emotional state by far. The performance of some classifiers,
especially the artificial neural networks, which are mainly used in our experiments,
decreases if the classes are unbalanced. To avoid the upsampling of rare classes on a
large scale and the disadvantages involved, subsets of the corpus (s. Chapter 5.4) are
defined where the four cover classes are more balanced. Smaller differences between
the frequencies of the four classes that still exist are compensated by upsampling
prior to the classification. In the following section, the classification experiments on
the word level are described, followed by the experiments on the turn and the chunk
level. The chapter ends with a comparison of our classification results with the ones
of the Ceices partners.

7.1 Word Level

On the word level, the experiments are conducted on the Aibo word set consisting
of 6,070 words (tokens, s. Chapter 5.4). The word level features are classified using
artificial neural networks (s. Chapter 4.1.4). In general, the choice of the classifier
affects clearly the classification results. More elaborated classifiers such as a artifi-
cial neural networks (ANN) and support vector machines (SVM) perform generally
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Figure 7.1: Leave-one-speaker-out procedure

clearly better than rather simple classifiers such as k nearest neighbor classifiers. In
[Schu 07a], various classifiers for emotion recognition as well as different bagging and
boosting strategies are compared on two databases of emotion portrayals – the Berlin
Emotional Speech Database and the Danish Emotional Speech Corpus – and the Ger-
man FAU Aibo Emotion Corpus albeit a different subset with a higher inter-labeler
agreement has been chosen. The two classifiers with the highest performance are
artificial neutral networks and support vector machines, which yielded even better
results than the bagging and boosting strategies. If the whole feature set is used,
no significant differences between ANNs and SVMs could be observed for all three
databases. If a reduced set of selected features is used, slightly better results are
reported for SVMs than for ANNs mainly due to the feature selection procedure.
In both cases, the features have been selected using the sequential forward floating
search (SFFS) algorithm in combination with the SVM classifier.

Own experiments on the FAU Aibo Emotion Corpus using linear discriminant
analysis (LDA, s. Chapter 4.1.3) have shown that equivalent results are achieved
using the simple classifier LDA compared to ANNs. One reason may be overlapping
class areas of the four cover classes such that more elaborated classifiers cannot profit
by more complex separation functions compared to simple hyperplanes. Nevertheless,
the results reported here are based on ANNs.

To get the most out of the small data set, a leave-one-speaker-out (LOSO) proce-
dure is applied as depicted in Figure 7.1. The data of one of the 51 speakers is used
for testing, the data of the other 50 speakers is split into a training and a validation
set. The training set consists of the data of 40 speakers, the validation set of the data
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Figure 7.2: Feature processing before classification with SNNS

of the remaining 10 speakers. The procedure is repeated 51 times such that each
speaker is used once for testing and the classifier can be evaluated on the complete
Aibo word set. The data used for testing and the one for training and validation are
disjoint not only w. r. t. the utterances but also w. r. t. the speakers. Within Ceices,
a speaker-independent three-fold cross-validation is proposed using the splits defined
in Appendix A.2.10. The splits are balanced as far as possible w. r. t. to the gender
of the speakers, the two schools Mont and Ohm, and the frequencies of the four cover
classes on the chunk level (chunk labels). Only slight improvements can be achieved
using the 51-fold cross-validation compared to the 3-fold cross-validation. For those
experiments where the PCA is used to reduce the number of features, only the 3-fold
cross-validation is used to optimize the dimension of the feature vector in order to
reduce the computational effort.

The experiments are conducted using the Stuttgart neural network simulator 1

(SNNS). The backpropagation algorithm is applied to estimate the weights w (l)
ij on

the training set that are assigned to the edges of the artificial neural network (s. Chap-
ter 4.1.4). For each node, the same activation function is applied, namely the hy-
perbolic tangent. Besides the weights w (l)

ij , the topology of the ANN as well as the
initialization of the weights and the weight decay η controlling the step size of the
gradient descent (s. Equation 4.44) has to be optimized. Topologies with one hidden
layer and a varying number of hidden nodes and one topology without hidden layer
are evaluated on the validation set for each of the 51 splits. Furthermore, five different
random seeds providing different but fixed initializations of the weights with random
numbers and five different values of the weight decay η (0.1, 0.3, 1.0, 3.0, and 5.0) are
tested. The experiments have shown that these three parameters greatly influence
the performance of the ANN. Only the combination of the three parameters yields
good results. To keep the effort within reasonable limits, the number of topologies is
reduced after the first ten splits to only those topologies that occurred so far.

Before classification, the data is pre-processed as shown in Figure 7.2. The max-
imum and the minimum of each feature is determined on the training set and used
to map the data of the training, the validation, and the test set onto the interval
[−1; +1]. This is necessary as the values of the activation function change only little
outside this interval. After this normalization, the features are decorrelated using
the principal component analysis (PCA). The PCA is based on the eigenvalues and
eigenvectors, which are calculated only on the training set. Furthermore, the PCA

1http://www.ra.cs.uni-tuebingen.de/SNNS/, last visited 01/12/2009

http://www.ra.cs.uni-tuebingen.de/SNNS/
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can be used to reduce the dimension of the feature vector. Finally, the class frequen-
cies on the training and on the validation set are balanced by upsampling. Samples
of less frequent classes are copied unless the frequency of the most frequent class is
reached.

7.1.1 Acoustic Features

In this section, the acoustic features, i. e. the prosodic features of the Erlangen
Prosody Module, the spectral features, and the voice quality features, are evaluated
on the Aibo word set.

Prosodic Features

First of all, the prosodic features are evaluated. The feature vector of the prosodic
features is extended by the context of two words to the left and two words to the
right of the word under consideration (s. Chapter 6.1). Since the Aibo word set is a
subset of the Aibo corpus created by downsampling, the words of the context are not
included in the Aibo word set in general. In order to use still the correct context, the
features are calculated for the complete FAU Aibo Emotion Corpus and after that,
only the features of the words that are part of the Aibo word set are selected for
classification.

The experimental results for the prosodic features of the Erlangen Prosody Module
are reported in Figure 7.1. The classification performance is given in terms of the
classwise averaged recognition rate (CL) defined in Chapter 4.2.1. As the frequencies
of the four cover classes are almost balanced in the Aibo word set, the classwise
averaged recognition rate and the absolute recognition rate (RR) are almost identical.
Results are reported for the case where all prosodic features are used in combination
as well as for those cases where only features of one single type are evaluated.

The calculation of the features on the word level requires that the correct seg-
mentation of the word, i. e. the information when a word begins and when it ends,
has to be known. The segmentation has been obtained by a forced alignment of the
actually spoken word sequence as described in Chapter 5.2. This automatic segmen-
tation is error-prone and has been manually corrected. The segmentation errors are
categorized and quantified in Chapter 5.3.2. Furthermore, the F0 based features as
well as those duration based features that model the position of the F0 extrema are
influenced by errors of the automatic F0 extraction algorithm. Two automatic F0 al-
gorithms, a modified version of an algorithm by Medan and Bagshaw and the RAPT
algorithm implemented in the Entropic Signal Processing System (ESPS) toolkit, are
compared to a manually corrected version of the ESPS F0 values. The types of F0

errors and their quantification is given in Chapter 5.3.3. The following combinations
of different segmentation and F0 extraction variants are evaluated:

S1: automatic segmentation obtained by a forced alignment of the actually spoken
word sequence and F0 values obtained by a modified version of an algorithm by
Medan and Bagshaw (mbn)

S2: manually corrected word segmentation but automatically extracted F0 values
using the mbn algorithm
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feature set S11 S22 S33 S44

pause based features (8) 36.1 35.5
F0 based features (26) 46.3 45.7 47.1 48.1
energy/F0 position features (16) 49.3 50.3 50.9 50.5
duration based features (17) 54.0 54.0
duration and position features (33) 55.1 53.4 53.9 55.4
energy based features (33) 55.4 56.6
all prosodic features (100) 59.4 59.2 59.7 58.7

1 automatic word segmentation and F0 values (mbn algorithm)
2 manually corrected word segmentation and automatic F0 values
(mbn algorithm)

3 manually corrected word segmentation and automatic F0 values
(ESPS algorithm)

4 manually corrected word segmentation and F0 values

Table 7.1: Classification results of the word based features of the Erlangen Prosody
Module on the word level. Results are reported in terms of the classwise averaged
recognition rate (CL)

S3: manually corrected word segmentation but automatically extracted F0 values
using the RAPT algorithm implemented in ESPS

S4: manually corrected word segmentation and manually corrected F0 values based
on the automatically extracted ESPS values

First, the results for different feature types are evaluated for the combination of
automatic segmentation and automatic F0 extraction using the mbn algorithm (S1).
The eight features based on pauses perform worse than the other feature types. Only
a classwise averaged recognition rate (CL) of 36% is achieved. One reason may be
the low number of features. Certainly, the meaning of pauses in the Aibo scenario
plays an important role: The pauses before or after words are much more due to
the fact that the child is waiting for Aibo’s reactions than to hesitations that may
characterize the emotion-related state of the child. Still, the result is clearly above
chance level, which is only 25% for four classes. The set of 26 F0 based features
performs clearly better than the features based on pauses: a CL of 46.3% is achieved.
Features modeling the position of the energy and F0 extrema belong to the group
of duration based features. If these 16 features are evaluated on their own, a CL of
49.3% is achieved. This result is slightly better than the one for F0 based features.
The ‘original’ 17 duration features yield a CL of 54.0%. This result can be improved
by adding the other temporal features modeling the positions of the energy and F0

extrema. Then, a CL of 55.1% is achieved. Hence, the 33 duration based features
clearly outperform the 26 F0 based features. Energy based features perform slightly
but not significantly better than the duration based features. With 33 energy based
features, a CL of 55.4% is achieved. Hence, energy and duration based features
are the most important types of prosodic features for emotion recognition in this
scenario. This is true even though the emotional-related states in the Aibo scenario
are weak and no full-blown emotions can be observed, for which a high importance
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e A 59.4% 15.9% 16.1% 8.5% 1557

E 19.8% 61.3% 13.6% 5.3% 1645
N 13.5% 14.4% 55.4% 16.7% 1645
M 10.5% 7.3% 20.6% 61.7% 1223

Table 7.2: Confusion matrix for the classification with all prosodic features (S1) on
the word level

of the energy based features could be expected. The best classification result (59.4%
CL) is obtained if all 100 prosodic features are used. The results are summarized in
Table 7.1.

The comparison of the results for the automatic and the manually corrected word
segmentation (S1 vs. S2) show that the segmentation errors do not influence the
emotion recognition. Only slight, not significant changes of the classwise averaged
recognition rates can be observed.

The same holds for the comparison of the two automatic F0 extraction algorithms
mbn and ESPS (S2 vs. S3). The performance of the prosodic features cannot be
improved if coarse F0 errors are manually corrected (S3 vs. S2). Our F0 based
features model the course of the fundamental frequency within words. Some features,
especially the extrema, are influenced by octave or other coarse errors. 4.5% of
all frames within words (s. Figure 5.3) are coarse errors. Nevertheless, the emotion
recognition is not influenced significantly by these errors. From a current perspective,
the quality of automatic F0 extraction algorithms is sufficient for emotion recognition.

Table 7.2 shows the confusion matrix for the classification with all prosodic fea-
tures based on the automatic word segmentation and the mbn algorithm to extract
the fundamental frequency. Due to their low emotional intensity, the non-neutral
states Anger, Emphatic, and Motherese are likely to be confused with Neutral. Fur-
thermore, Anger and Emphatic are confused to some degree. They are confused
only seldom with Motherese. Hence, the confusion pattern of the machine classifier
is similar to the one obtained by human labelers. The lowest recognition rate for a
single class is obtained for Neutral. This does not mean that the machine classifier
generally recognizes this state with a lower performance than the other states. By a
higher weighting of the a posteriori scores of the classifier for one state, the perfor-
mance of this class can be increased – however, only at the cost of the performance
for the other three classes.

Spectral Features

Next, the spectral features are evaluated. Theses features are computed for single
frames and can be classified directly on the frame level. For this purpose, Gaussian
mixture models (GMMs, s. Chapter 4.1.2) are used. The pre-processing of the features
is depicted in Figure 7.3 and slightly differs from the one for ANNs: As no parameters
have to be optimized on the validation set, the validation set is used to extend the
training set. Furthermore, GMMs are less vulnerable to an unbalanced distribution
of the classes. An initial codebook is estimated on the complete training set using
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Figure 7.3: Feature processing before classification with GMMs

the samples of all four classes. This initial codebook is then adapted separately to
each class using only the samples of the respective class. The parameters of these
adapted codebooks cannot be estimated more robustly if the data is upsampled since
no new information is added. For most experiments, 25 Gaussian probability density
functions per class are used. Up to this number, the recognition rates increase and
then remain at a high level for higher numbers. Hence, the number of Gaussians is
not optimized on the validation set.

On the basis of the logarithmic DFT features (s. Chapter 6.2.1), the four cover
classes can be classified on the frame level with an accuracy of 40.2% CL and 39.7%
RR, respectively. Since only segments of 16ms duration are classified, these results
are impressive. Again, chance level is 25% CL. The logarithmic DFT coefficients
are the least compressed form in the chain of computational steps towards the final
MFCCs. Nevertheless, experiments using PCA to decorrelate the features and to
reduce the dimension of the feature space have shown that the best performance
is achieved if the dimension is reduced from originally 129 to only 10. For higher
numbers of features, the accuracy decreases slightly. This confirms the assumption
that the DFT coefficients of adjacent frequency bands highly correlate. Furthermore,
if the number of coefficients is not reduced, the number of GMM parameters that
have to be estimated in the training phase increases quadratically with the dimension
of the feature vector. For a robust estimation of all parameters, a large amount of
data is required. Otherwise, the recognition rates drop as it is obviously the case on
the Aibo word set. A posteriori probabilities on the word level can be obtained by
multiplying the a posteriori probabilities on the frame level for all frames within one
word. The classwise averaged recognition rate on the word level (53.4%) is clearly
above the value on the frame level (40.2%). The absolute recognition rates for the
spectral features are very close to the classwise averaged ones such that only the
latter ones are reported here. Details are given in Table 7.3.

The next stage in the computation of the MFCCs are the logarithmic Mel fre-
quency coefficients (s. Chapter 6.2.2). By applying a Mel filterbank of 22 triangular
filters, the dimension of the feature space is reduced from 129 to 22. The first coef-
ficient is the short-term energy. To evaluate the improvement due to the short-term
energy, the feature vector is once classified with (41.4% CL) and once without (39.0%
CL) the short-term energy. The contribution of the short-term energy to the perfor-
mance of the log-Mel features is rather low. In both cases, the classwise averaged
recognition rates on the word level are below the rates obtained by the log-DFT fea-
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frame level word level
feature set CL RR CL RR

log-DFT
128 log-DFT coefficients (PCA: 128 → 10) 40.2 39.7 53.4 53.3

log-MEL
static features without energy (22) 39.0 39.2 50.5 51.3
static features (23) 41.4 41.5 51.7 52.1
static and dynamic features (46) 44.1 44.3 55.5 56.1

MFCC
static features without energy (11) 39.8 40.0 51.9 52.5
static features (12) 43.2 43.1 54.9 55.1
static and dynamic features (24) 45.2 45.5 57.5 57.9

formant based features
formants 1-4: center frequencies and bandwidths (8) 34.3 34.7 46.3 46.9

voice quality features
HNR (1) 29.9 30.7 31.9 33.6
TEO-CB-Auto-Env (16) 36.3 35.0 47.3 47.4

Table 7.3: Classification results of the frame based spectral and voice quality features
on the frame and the word level. Results are reported in terms of the classwise
averaged recognition rate (CL) and the absolute recognition rate (RR)

tures. If the first derivative is added to the feature vector, 55.5% CL are achieved
on the word level.

Surprisingly, the best results are achieved with the MFCC features (s. Chap-
ter 6.2.3), which are the most compact set of features: 54.9% CL on the word level.
Although they have been designed to discard as much of the information how some-
thing is uttered and to keep only the information needed to discriminate phonemes,
the compact form is obviously superior to the less compressed log-DFT and log-Mel
representations of the signal. The contribution of the short-term energy is higher
than for the log-Mel features. Without the short-term energy, only 51.9% CL are
achieved. Again, the performance can be improved by adding the first derivative to
the feature vector resulting in 57.5% CL. Astonishingly, this result is very close to
the one obtained with the 100 prosodic features (59.4% CL, S1). Yet, no information
about the actually spoken words is required to compute the MFCC features.

Instead of the prior classification of the MFCC features on the frame level, MFCC
features can be computed directly on the word level by averaging the 24 framewise
MFCC features for all frames within the respective word. On the one hand, valuable
information may get lost by averaging over all frames, on the other hand, linguistic
information about the appearing phonemes within the respective word and thereby
information about the word itself is gained to some degree. All in all, these long-term
MFCC features proved to be very successful as well. A classwise averaged recognition
rate of 55.2% on the word level is achieved (s. Table 7.4).

Just like the other spectral features, the formant based features (s. Chapter 6.2.4)
can be classified directly on the frame level. Compared to the other spectral features,
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feature set CL RR

spectral features
long-term MFCC (24) 55.2 55.0
long-term formant features (16) 46.2 46.3

voice quality features
long-term jitter and shimmer features (4) 39.8 38.8
long-term HNR features (2) 37.3 37.8
long-term HNR, long-term jitter and shimmer (6) 39.9 39.7
long-term TEO-CB-Auto-Env (64) 51.6 51.1

Table 7.4: Classification results of the word based spectral and voice quality features
on the word level. Results are reported in terms of the classwise averaged recognition
rate (CL) and the absolute recognition rate (RR)

the formant based features perform worse. On the word level, only a CL of 46.3% is
achieved (s. Table 7.3). Nearly identical results are obtained with the long-term for-
mant features, calculated by averaging the framewise features over all frames within
one word prior to the classification with SNNS on the word level. Additionally, the
standard deviation of the center frequencies and the bandwidths within one word is
added to the feature vector for each of the first four formants. This approach results
in a CL of 46.2% (s. Table 7.4).

Voice Quality Features

In this section, features based on jitter and shimmer, on the harmonics-to-noise ratio
(HNR), and on the TEO-CB-Auto-Env features are evaluated. Only the latter two are
classified directly on the frame level. The harmonics-to-noise ratio (s. Chapter 6.3.2)
is a single value calculated for each voiced frame. On the frame level, a classwise
averaged recognition rate of only 29.9% is achieved (s. Table 7.3). This result is
only little above the chance level and obviously too low to get acceptable results
on the word level (31.9%) by multiplying the a posteriori probabilities of the frame
level. The two long-term HNR features on the word level are superior to the prior
classification on the frame level. With them, a CL of at least 37.3% can be realized
(s. Table 7.4).

Regarding their performance, the TEO-CB-Auto-Env features (s. Chapter 6.3.3)
are comparable to the formant based features. If classified on the frame level first, a
CL of 47.3% on the word level (s. Table 7.3) is achieved compared to 46.3% CL for
the formant based features. The long-term TEO-CB-Auto-Env features yield even
51.6% on the word level (s. Table 7.4). This result is close to the one of the long-term
MFCC features (55.2% CL).

The four long-term jitter and shimmer features are only slightly better than the
two long-term HNR features and produce a CL of 39.8% on the word level. The result
cannot be improved significantly (39.9%) if the long-term HNR and the long-term
jitter and shimmer features are classified together.
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feature set CL RR
long-term MFCC, HNR, and jitter and shimmer features (30) 55.4 55.1
prosodic features (S1), MFCC (8) 62.4 62.0
prosodic features (S1), MFCC, formants, TEO-CB-Auto-Env (16) 61.9 61.4

Table 7.5: Classification results for the combination of the acoustic features on the
word level. Results are reported in terms of the classwise averaged recognition rate
(CL) and the absolute recognition rate (RR)

classifier 2classifier 1

feature set 1

a posteriori scores a posteriori scores
for A, E, N, M for A, E, N, M

feature set 2

a posteriori scores
for A, E, N, M

feature set N

classifier N

Ωκ

SNNS

. . .

Figure 7.4: Combination of various types of features by combining classifier outputs
(late fusion)

Combination of Acoustic Features

The last section has shown that the presented voice quality features are suited to
model to some extent the emotion-related states Anger, Emphatic, Neutral, and
Motherese. Nevertheless, they perform worse than other types of acoustic features,
namely prosodic features and spectral features, especially framewise MFCC features.
This seems to be especially true for weak emotion-related states such as those states
that can be observed in the FAU Aibo Emotion Corpus. In this section, prosodic,
spectral and voice quality features are combined.

In the first experiment, long-term MFCC, long-term HNR, and long-term jitter
and shimmer features are combined to one feature vector comprising 30 features. The
approach to combine different feature sets to one big set prior to the classification
is called early fusion and is best suited for smaller sets of features. Almost no im-
provement is achieved compared to the classification of the long-term MFCC features
alone: 55.4% CL (s. Table 7.5) vs. 55.2%. Obviously, the voice quality features
based on the HNR and the jitter and the shimmer do not contain more information
about the emotion-related states in the Aibo scenario than the MFCC features alone.

In a second experiment, the prosodic features on the word level are combined
with the framewise MFCC features by late fusion. As depicted in Figure 7.4, the
two different types of features are first classified separately. The prosodic features
are classified with SNNS on the word level and the MFCC features are classified with
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feature set CL RR
number of letters/syllables/phonemes,
fragment, repetitions (LFR, 5) 48.5 48.9
part-of-speech features (POS, 30) 52.1 52.2
unigram models (UM, 20) 61.5 60.8
LFR, UM (25) 61.3 60.7
LFR, UM, POS (55) 60.8 60.2

Table 7.6: Classification results of the linguistic features on the word level. Results
are reported in terms of the classwise averaged recognition rate (CL) and the absolute
recognition rate (RR)

GMMs on the frame level. Then, the a posteriori scores on the word level for the four
classes obtained by each classifier are classified in a second step with a third classifier.
Here, SNNS and the leave-one-speaker-out procedure is applied again. Through the
combination of prosodic and MFCC features, the classwise averaged recognition rate
can be further improved up to 62.4% (s. Table 7.5) compared to the 59.4% CL if the
prosodic features (S1) are used alone and compared to the 57.5% if the framewise
MFCC features are used alone.

No further improvement can be achieved by combining the prosodic features, the
MFCC features, the formant based features, and the TEO-CB-Auto-Env features by
late fusion. The results (61.9% CL, s. Table 7.5) are even slightly worse compared
to the combination of prosodic and MFCC features.

7.1.2 Linguistic Features

In this section, the linguistic features are classified on the word level. First, the
following five features are classified separately: the three features defining the length
of a word as the number of letters, the number of phonemes, and the number of
syllables, the feature characterizing whether the word is a fragment or not, and the
feature counting how often a word is repeated. With these rather simple features,
which are defined in Chapter 6.4.1, a classwise averaged recognition rate of 48.5%
can be achieved.

The 30 part-of-speech features (s. Chapter 6.4.2) modeling six coarse lexical and
morphological main word classes and a context of five words can be obtained by a
simple dictionary look-up, too. They perform slightly better (52.2% CL) than the
first group of linguistic features.

The unigram models (s. Chapter 6.4.4), based on the conditional probabilities
P(e|w) that the speaker is in one of the four cover classes Anger, Emphatic, Neutral,
and Motherese while he/she is producing the word w , are the best linguistic features
on the word level. The CL of 61.5% is almost 10%-points above the results obtained
by the part-of-speech features. Again, a context of five words is used for classification
resulting in 20 features. This result cannot be improved by adding the other linguistic
features as the results in Table 7.6 show.
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feature set CL RR

late fusion (SNNS, GMMs)
prosodic features (S1), MFCC, POS (12) 63.6 63.1
prosodic features (S1), MFCC, UM (12) 65.6 65.0
prosodic features (S1), MFCC, POS, UM (16) 65.0 64.3

early fusion (LDA)
all features (265) 67.2 66.9

Table 7.7: Combination of the acoustic and linguistic features on the word level.
Results are reported in terms of the classwise averaged recognition rate (CL) and the
absolute recognition rate (RR)

7.1.3 Combination

In the following, the best acoustic and linguistic features are combined in order to
use the knowledge of both information sources. The best results using only acoustic
features has been reached by combining word based prosodic and framewise MFCC
features by late fusion (62.4% CL). This combination is extended once by the part-
of-speech feature, once by the unigram models, and once by a combination of both.
The results are given in Table 7.7. The best result by late fusion on the word level
– 65.5% CL – is achieved if only the unigram models are added to the prosodic and
MFCC features. If all 265 word level features are merged to one feature vector (early
fusion), a CL of 67.2% are reached. In this case, the data is classified with linear
discriminant analysis (LDA, s. Chapter 4.1.3). For these high-dimensional feature
vectors, LDA outperforms the artificial neural networks used so far due to the lower
number of parameters that have to be estimated. Furthermore, no validation set is
required. By that, the data of 50 speakers can be used for the training.

The entropy based measure to evaluate decoders, which has been introduced in
Chapter 4.2.2, allows to compare the decisions of this machine classifier to the deci-
sions of the five human labelers. In doing so, the performance of the machine classifier
on this special type of data containing naturalistic emotion-related states can be bet-
ter judged. Figure 7.5 shows a histogram of the entropy values if the machine classifier
and if the average human labeler is compared to the group of reference labelers. In
both cases, the distributions of the entropy values are very similar. This is expressed
also in the average entropy values Hdec for the Aibo word set: the average entropy is
0.712 for the machine classifier and 0.721 for the average of the five human labelers. If
naïve classifiers are used, the histograms differ as Figure 4.8 in Chapter 4.2.2 shows.
Figure 4.8 also shows the histogram of a perfect classifier that always decides for the
majority vote of the human labelers. It marks the upper limit that can be reached
by a decoder. The histogram in Figure 7.5 suggests that the machine classifier based
on the acoustic and linguistic features makes about the same number of mistakes and
has very similar confusion patterns if compared to the average human labeler.

The machine classifier is trained with hard labels. If soft labels are used for
training, the machine classifier is able to learn the confusion patterns of the human
labelers. Its confusion patterns are then even more similar to those of the human
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Figure 7.5: Entropy histograms: comparison of the average human labeler with the
machine classifier that is based on the acoustic and linguistic features (265 features,
LDA)

agreement CL RR F # words
≥ 0.6 67.2 66.9 67.0 6,070
≥ 0.8 79.0 75.7 77.4 2,799
= 1.0 85.5 78.6 81.9 824

Table 7.8: Classification results on the word level in dependency of the agreement of
the five labelers. Results are reported in terms of the classwise averaged recognition
rate (CL), the absolute recognition rate (RR), and the harmonic mean of both (F)

labelers resulting in even lower entropy values [Stei 05]. However, the recognition
rate of the classifier slightly suffers if trained with soft labels.

Low entropy values prove that the machine classifier confuses not only the same
states as human labelers in general but confuses the states only for those words where
the agreement of the five labelers is low. This means, if the human labelers are sure in
which state the word is produced, the classifier is highly likely to decide for the correct
state as well. This fact is substantiated by evaluating the machine classifier only on
those cases of the Aibo word set where the agreement of the five labelers is at least
0.8, i. e. at least four of the five labelers vote for the same cover class. In this case, a
classwise averaged recognition rate of 79.0% is reached (s. Table 7.8). If only those
words are evaluated where all labelers agree on one common class (perfect agreement
of 1.0), a CL of up to 85.5% is reached. However, these cases are rather rare –
only 824 of those words exist in the Aibo word set – and Neutral is the dominating
state of these cases. As the recognition rate for Neutral is lower than for the other
three states, the absolute and the classwise averaged recognition rate diverge such
that the high CL value has to be taken with care. The truth will be somewhere
between the two numbers CL and RR. For this reason, the F measure defined as
the harmonic mean of CL and RR is given. As to be expected, the accuracy of
the machine classifier highly correlates with the agreement of the labelers. Similar
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results based on a re-training of the classifier on the reduced data sets are reported
in [Batl 05b].

7.2 Turn Level

It is rather exceptional that the emotional state of the speaker is annotated on the
word level. The recordings of the children are characterized by many long pauses
where the child is waiting for Aibo’s reaction. Pauses that are at least 1 s long
were used to automatically split the recordings into smaller units, the so-called turns
(s. Chapter 5.2). The algorithm defined in Chapter 5.3.8 is applied to define the
emotion-related state for the whole turn on the basis of the decisions of the labelers
on the word level. Again, the four cover classes Anger, Emphatic, Neutral, and
Motherese are classified. The selected subset of the German FAU Aibo Emotion
Corpus is the Aibo turn set, defined in Chapter 5.4. It consists of 3,996 turns in
total and is a superset of the Aibo word set. Each turn contains at least one word
of the Aibo word set. The ‘confidence’ of the turn labels, defined in Chapter 5.4 as
the proportion of raw labels of the five labelers on the word level matching the turn
label, reflects the agreement of the labelers on the whole turn and the homogeneity of
the child’s emotion-related state within one turn. The ‘confidence’ has already been
depicted in Figure 5.18. For the whole turn, the average agreement is clearly lower
than for single words – a fact that already indicates that the optimal unit of emotion
analysis might not be the turn but maybe some smaller unit. Acoustic and linguistic
features are classified separately before the best features of each type are combined.

7.2.1 Acoustic Features

In the group of the acoustic features, the prosodic features of the Erlangen Prosody
Module are evaluated. The prosodic features on the turn level are obtained by char-
acterizing the course of the prosodic features on the word level within one turn. As it
has been described in Chapter 6.1.5, the characteristics are the mean, the standard
deviation, the minimum, and the maximum of the word level features. The 16 fea-
tures based on pauses yield a classwise averaged recognition rate of 36.4%. This is in
the same range as the features based on pauses on the word level (36.1%). The per-
formance stays clearly behind the 29 F0 based features. With them, a CL of 45.1%
on the turn level can be reached. This result differs only slightly from the one on
the word level (46.3%). Both the group of temporal features modeling the position
of the F0 and energy extrema and the group of duration based features achieve a CL
of 46.5% on the turn level. The combination of both yields 48.7% CL. Hence, the
performance of features modeling temporal aspects of words on the turn level is lower
than on the word level (55.1%). Nevertheless, the duration based features are the
second most important type of prosodic features in this scenario. Only the energy
based features perform slightly better. Here, a CL of 51.2% can be reached on the
turn level. This result also stays behind the performance of the energy based features
on the word level (55.4% CL). The ranking of the different types of prosodic features
on the turn level is identical to the one on the word level. The experimental results
obtained with different types of prosodic features are summarized in Table 7.9. The



7.2. Turn Level 163

feature set CL RR

prosodic features
pause based features (16) 36.4 36.2
F0 based features (29) 45.1 44.7
energy/F0 position features (24) 46.5 47.7
duration based features (13) 46.5 49.1
duration and position features (37) 48.7 50.0
energy based features (25) 51.2 50.7

spectral features
long-term MFCC (24) 51.5 50.7
long-term formant based features (16) 45.8 43.7

voice quality features
long-term jitter and shimmer features (16) 39.9 37.3
long-term HNR features (2) 30.9 28.5
long-term TEO-CB-Auto-Env (64) 46.2 43.9

Table 7.9: Classification results of the turn based acoustic features on the turn level.
Results are reported in terms of the classwise averaged recognition rate (CL) and the
absolute recognition rate (RR)

table also includes the results obtained with the long-term spectral and voice quality
features. These results are described in the following sections.

On the word level, the MFCC features clearly outperformed the less compressed
spectral representations of the signal. Hence, only the MFCC features and the for-
mant based features are evaluated on the turn level in the group of the spectral
features. The performance of the long-term MFCC features (51.5% CL) is compara-
ble to the one of the energy based features. However, the performance stays behind
the one on the word level (55.2% CL). The long-term formant based features yield a
CL of 45.8%, which is very close to the performance on the word level where a CL
of 46.2% has been reached.

In the group of the voice quality features, the jitter and shimmer features, the
HNR features, and the TEO-CB-Auto-Env features are evaluated on the turn level.
The result of the long-term jitter and shimmer features (39.9%) is almost identical
to the one obtained on the word level (39.8% CL). The result of the long-term HNR
features is barely above chance level (30.9% CL) and does not reach the result on the
word level (37.3% CL). The TEO-CB-Auto-Env features also perform worse on the
turn level (46.2% CL) compared to the word level (51.6% CL). On the turn level,
their result is comparable to the one of the formant based features.

The results of the MFCC features can be improved if they are classified on the
frame level first. A posteriori scores on the turn level are then obtained by multiplying
the a posteriori scores of the GMM classifier on the frame level for all frames within
one turn. By that, a CL of 56.2% (s. Table 7.10) is reached compared to the 51.5%
CL of the turn based MFCC features. This result is close to the result of the framewise
MFCC features on the word level (57.5%). Also, the formant based features profit
slightly by the classification on the frame level (47.1% CL compared to 45.8% CL).
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frame level turn level
feature set CL RR CL RR

MFCC
static and dynamic features (24) 37.5 36.5 56.2 57.0

formant based features
formants 1-4: center frequencies and bandwidths (8) 31.3 30.7 47.1 48.0

voice quality features
HNR (1) 27.6 27.2 31.5 31.8
TEO-CB-Auto-Env features (16) 31.8 30.2 45.2 44.7

Table 7.10: Classification results of the frame based acoustic features on the frame
and the turn level. Results are reported in terms of the classwise averaged recognition
rate (CL) and the absolute recognition rate (RR)

feature set CL RR
Erlangen Prosody Module: acoustic features (PCA: 123 → 100) 52.9 52.9
prosodic features (S1), MFCC (8) 57.6 55.9
prosodic features (S1), MFCC, formants (12) 58.6 57.0
prosodic features (S1), MFCC, TEO-CB-Auto-Env (12) 56.8 55.0
prosodic features (S1), MFCC, formants, TEO-CB-Auto-Env (16) 57.8 56.3

Table 7.11: Combination of acoustic features on the turn level. Results are reported
in terms of the classwise averaged recognition rate (CL) and the absolute recognition
rate (RR)

The result of the HNR features remains bad if they are classified on the frame level
(31.5% CL). In this case, the improvement of the prior classification on the frame
level that can be observed for words cannot be observed for turns. The results w. r. t.
the classwise averaged recognition rate of the TEO-CB-Auto-Env features is slightly
worse if they are classified on the frame level first. In return, the absolute recognition
rate is slightly increased.

In the following, the most promising types of acoustic features are combined.
Table 7.11 shows the results on the Aibo turn set. The acoustic features of the
Erlangen Prosody Module (including the jitter and shimmer features) yield a classwise
averaged recognition rate of 52.9%. The number of features is reduced by PCA from
originally 123 to 100. If these features are combined by late fusion with the framewise
MFCC features, the CL increases up to 57.6%. The maximum of 58.6% CL is reached
if the classification results of the framewise formant based features are added. Other
combinations with the framewise TEO-CB-Auto-Env features do not lead to a higher
performance as the results in Table 7.11 show. In comparison, the best result obtained
with acoustic features on the word level is 62.4% CL.
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7.2.2 Linguistic Features

Four groups of linguistic features for turns are evaluated. The first one comprises six
features characterizing the length of the turn, the average length of the words defined
as the number of letters, the number of phonemes, and the number of syllables,
the proportion of fragments, and the average number of repetitions within one turn
(s. Chapter 6.4.1). On the turn level, these features perform worse than the features
for the word level: 44.6% CL compared to 48.5% CL.

With the second group of linguistic features, the six part-of-speech features for
turns (s. Chapter 6.4.2), a CL of 48.8% is achieved.

Better results are obtained with the unigram models for turns: 54.3% CL. As on
the word level, the unigram models are the best one of these three groups. Neverthe-
less, the unigram models performed clearly better on the word level: the CL is more
than 7%-points higher there (61.5%).

The classification of units that are longer than one word allow for the evaluation
of the bag-of-words approaches presented in Chapter 6.4.3. In general, bag-of-words
approaches are characterized by their high dimension of the feature vector. The
presented approaches differ in the way the dimension of the feature vector is reduced.
The approach with the highest reduction uses only five coarse semantic categories, one
category for fragments, one for auxiliaries, and one for the remaining words that are
not covered by the other seven categories. The classification result on the turn level
is 51.4% CL. Although the number of categories is approximately the same as for the
part-of-speech approach, the recognition rate is slightly higher compared to the POS
features for turns. In the second bag-of-words approach, words of the same lemma and
words with the same semantic meaning are clustered while keeping separate entries
for words that occur at least ten times in the corpus. The dimension is reduced
to 181 entries in the feature vector resulting in a higher classification performance
(53.8% CL). The third bag-of-words approach keeps separate entries for all words
that appear at least five times in the whole German FAU Aibo Emotion Corpus. The
resulting feature vector consists of 254 entries. In spite of this high dimension, this
approach slightly outperforms the other two bag-of-words approaches (54.2% CL)
and is comparable to the unigram models for turns.

The unigram models, the length, fragments, and repetitions (LFR) features, and
the part-of-speech features are combined by early fusion. The best result is obtained
if only the part-of-speech features are added to the unigram models (55.1% CL).
Almost no improvement results from the late fusion of the bag-of-words features
based on single words with the unigram and POS features: the CL increases slightly
to 55.4%.

7.2.3 Combination

The best result using only acoustic features – 58.6% CL – results from a late fusion of
the acoustic features of the Erlangen Prosody Module, the framewise MFCC features,
and the framewise formant based features. If only linguistic features are used, the best
result is 55.4% CL, obtained by combining unigram models, part-of-speech features,
and bag-of-words features.
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feature set CL RR
number of words, avg. number of letters/syllables/phonemes,
proportion of fragments and repetitions (LFR, 6) 44.6 44.2
part-of-speech features (POS, 6) 48.8 47.0
unigram models (UM, 16) 54.3 51.9
bag-of-words features
coarse semantic categories (BOW1, 8) 51.4 49.3
lemmatization (BOW2, PCA: 181 → 60) 53.8 52.5
single words (BOW3, PCA: 254 → 50) 54.2 52.6

UM, LFR (22) 53.5 51.5
UM, POS (22) 55.1 52.9
UM, LFR, POS (28) 54.6 52.6
UM+POS, BOW3 (8) 55.4 52.5

Table 7.12: Classification results of the linguistic features on the turn level. Results
are reported in terms of the classwise averaged recognition rate (CL) and the absolute
recognition rate (RR)

feature set CL RR

late fusion (SNNS, GMMs)
prosodic features, MFCC, formants, UM+POS (16) 59.7 58.7
prosodic features, MFCC, formants, UM+POS, BOW3 (20) 61.1 58.7

early fusion (LDA)
all features (700) 63.2 62.8

Table 7.13: Combination of the acoustic and linguistic features on the turn level.
Results are reported in terms of the classwise averaged recognition rate (CL) and the
absolute recognition rate (RR)

In order to combine both information sources, the acoustic features of the Erlan-
gen Prosody Module, the framewise MFCC features, the framewise formant based
features, and the unigram models and part-of-speech features are combined by late fu-
sion resulting in 59.7% CL. If also the bag-of-words features are added, the classwise
averaged recognition rate increases above 60% (61.1% CL). The best result (63.2%
CL) is achieved by early fusion of all 700 turn level features using LDA as classifier.
However, the best result on the turn level remains below the best result that could
be achieved on the word level (67.2%). As the ‘confidence’ values of the turn labels
are significantly lower than for the word labels, this situation was to be expected.
Along the same lines as for the evaluation on the word level, the machine classifier
is evaluated only on those turns where the ‘confidence’ of the turn labels is above a
certain threshold. The results are given in Table 7.14. The higher the agreement of
the labelers and the more homogeneous the emotion-related state within one turn is,
the higher the accuracy of the classifier gets. Again, the absolute and the classwise
averaged recognition rate diverge for higher ‘confidence’ values due to the more and
more dominating influence of the state Neutral and the lower recognition rate of the
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confidence CL RR F # words
≥ 0.1 63.2 62.8 63.0 3,996
≥ 0.2 63.4 63.0 63.2 3,971
≥ 0.3 65.6 64.8 65.2 3,702
≥ 0.4 67.6 66.4 67.0 3,286
≥ 0.5 71.5 69.0 70.2 2,690
≥ 0.6 74.1 69.8 71.9 2,312
≥ 0.7 77.7 68.5 72.8 1,728
≥ 0.8 80.4 73.1 76.5 1,263
≥ 0.9 85.8 75.7 80.4 527
= 1.0 87.9 75.9 81.5 316

Table 7.14: Classification results on the turn level in dependency of the ‘confidence’
of the turn label. Results are reported in terms of the classwise averaged recognition
rate (CL), the absolute recognition rate (RR), and the harmonic mean of both (F)

classifier for this state. Because of that, additionally, the performance is given in
terms of the F measure (harmonic mean of CL and RR).

7.3 Chunk Level

The combination of the acoustic and the linguistic features yielded the best results
on both the turn and the word level. Nevertheless, the results on the turn level
(61.1% CL, 58.7% RR) stayed behind the results obtained on the word level (65.6%
CL, 65.0% RR). Two opposing phenomena can be observed for longer units: On
the one hand, longer units provide a larger context helping to recognize the correct
emotion-related state. Some features such as the bag-of-words features even only
make sense for units that are longer than a single word. On the other hand, the
average ‘confidence’ of the turn labels (s. Chapter 5.4) is smaller than for the labels
on the word level. The reason is founded in the Aibo scenario where the children
change the emotion-related state, in which they produce an utterance or only a single
command, very quickly depending on Aibo’s behavior, which changes just as quickly.
Long utterances produced in one emotion, as they are typical for corpora of emotion
portrayals, are rare in the Aibo scenario. This also seems to hold for other scenarios
such as appointment scheduling dialogs [Batl 03a]. The optimal unit for emotion
analysis might be some intermediate chunk, which is longer than one word, but
shorter than the turns in the Aibo scenario, and has some syntactic and semantic
meaning. For this reason, chunks are defined for the German FAU Aibo Emotion
Corpus (s. Chapter 5.3.5). In Chapter 5.3.8, the algorithm is described how to obtain
emotion labels for these units from the decisions of the labelers on the word level.
Figure 5.18 shows that the average ‘confidence’ of the chunk labels is higher than
the one of the turn labels, but lower than for the word labels. In the following
experiments, the four cover classes Anger, Emphatic, Neutral, and Motherese are
classified on the Aibo chunk set, which is defined in Chapter 5.4. This subset of the
Aibo corpus consists of 4,543 chunks and is a superset of the Aibo word set. Each
chunk is part of one turn of the Aibo turn set and contains at least one word of the
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Aibo word set. The experiments are along the same lines as for the turn level. First,
acoustic and linguistic features are classified separately before they are combined.

7.3.1 Acoustic Features

Within the group of prosodic features of the Erlangen Prosody Module, different types
of features are distinguished. Throughout all types of prosodic features, significantly
higher recognition rates are achieved on the chunk level compared to the results
obtained on the turn level. The ranking of the different types is the same as for
the turn and the word level. The energy based features are again the best group of
features in this scenario yielding a CL of 58.5%. The results are very close to the
results obtained on the word level (59.4% CL) and about 8%-points better than the
results on the turn level (51.2% CL). The features modeling temporal aspects of words
are the second best group of prosodic features. With the duration based features,
a CL of 51.9% can be achieved. The features modeling the positions of the energy
and F0 extrema yield 53.3% CL. If both groups of temporal features are combined, a
CL of 54.4% is reached being very close to the result on the word level (55.1% CL)
and significantly better than the results on the turn level (48.7% CL). The F0 based
features can profit clearly by the definition of the chunks (50.6% CL). Their result
even exceeds the result on the word level (46.3%) reducing the gap between the F0

based features and the features modeling temporal aspects. The group of features
based on pauses profits as well clearly by the definition of the chunks. Compared to
the word level (36.1% CL), the classification rates are significantly higher (42.0% CL
and 48.2% RR). The results are summarized in Table 7.15 together with the results
of the long-term spectral and voice quality features.

In the group of the spectral features, the long-term MFCC features and the long-
term formant based features are evaluated on the Aibo chunk set. The performance
of both feature types corresponds to the one on the word level: 55.5% CL for the
MFCC features (55.2% CL on the word level) and 46.2% CL for the formant based
features (46.2% CL on the word level).

In the group of the voice quality features, the long-term jitter and shimmer fea-
tures, the long-term HNR features and the long-term TEO-CB-Auto-Env features
are evaluated. The result of the TEO-CB-Auto-Env features (52.3% CL) is compa-
rable to the one on the word level (51.6% CL). On the turn level, only 46.2% CL
are reached. The performance of the HNR features (33.4% CL) stays behind the
performance on the word level (37.8% CL), but is still above the chance level and
slightly better than on the turn level (30.9%). In contrast, the long-term jitter and
shimmer features perform very well on the chunk level (47.0% CL). On the turn and
even on the word level, only a CL of 39.9% and 39.8%, respectively, is reached. The
results are summarized in Table 7.15.

Instead of calculating long-term features by averaging the features on the frame
level for all frames within one chunk, the framewise features can be classified directly
on the chunk level. In Table 7.16, the results are given for the framewise spectral
and voice quality features on both the frame and the chunk level. As on the turn
level, MFCC and formant based features can profit by the prior classification on the
frame level. If the a posteriori scores are multiplied for all frames within one chunk,
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feature set CL RR

prosodic features
pause based features (16) 42.0 48.2
F0 based features (29) 50.6 52.2
energy/F0 position features (24) 51.9 54.0
duration based features (13) 53.3 56.4
duration and position features (37) 54.4 56.5
energy based features (25) 58.5 58.6

spectral features
long-term MFCC (24) 55.0 53.6
long-term formant based features (16) 46.4 45.8

voice quality features
long-term jitter and shimmer features (16) 47.0 49.4
long-term HNR features (2) 32.5 33.4
long-term TEO-CB-Auto-Env features (64) 52.3 52.0

Table 7.15: Classification results of the acoustic features on the chunk level. Results
are reported in terms of the classwise averaged recognition rate (CL) and the absolute
recognition rate (RR)

frame level chunk level
feature set CL RR CL RR

MFCC
static and dynamic features (24) 41.4 40.5 58.9 63.4

formant based features
formants 1-4: center frequencies and bandwidths (8) 31.6 31.6 48.2 52.7

voice quality features
HNR (1) 26.9 35.6 31.6 37.7
TEO-CB-Auto-Env features (16) 34.9 33.2 48.6 51.5

Table 7.16: Classification results of the frame based acoustic features on the frame and
the chunk level. Results are reported in terms of the classwise averaged recognition
rate (CL) and the absolute recognition rate (RR)

a CL of 58.9% is reached on the chunk level with MFCC features. The absolute
recognition rate is even higher: 63.4%. The corresponding long-term features yield
only 55.0% CL and 53.6% RR. The prior classification of the formant based features
on the frame level yields a recognition rate of 47.0% CL and 49.4% RR, respectively
compared to 46.4% CL and 45.8% RR for the long-term version of the features. In
contrast, the classification of the HNR feature and the TEO-CB-Auto-Env features
on the frame level is not beneficial.

Next, acoustic features of different types are combined. If the acoustic features
of the Erlangen Prosody Module (including the jitter and shimmer features) are
merged, a classwise averaged recognition rate of 59.0% is achieved. The number of
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feature set CL RR
Erlangen Prosody Module: acoustic features (PCA: 123 → 100) 59.0 60.7
prosodic features (S1), MFCC (8) 65.4 64.6
prosodic features (S1), MFCC, formants (12) 64.4 63.8
prosodic features (S1), MFCC, TEO-CB-Auto-Env (12) 64.9 64.2
prosodic features (S1), MFCC, formants, TEO-CB-Auto-Env (16) 63.9 63.6

Table 7.17: Combination of acoustic features on the chunk level. Results are reported
in terms of the classwise averaged recognition rate (CL) and the absolute recognition
rate (RR)

features is reduced by PCA to 100, which is the optimal dimension of the feature
vector evaluated on a 3-fold cross-validation of the Aibo chunk set. Hence, prosodic
and framewise MFCC features are the two most promising groups of features for
emotion recognition in the Aibo scenario. If both types are combined by late fusion,
a CL of 65.4% is reached. This result is above the performance of both groups on
the word level (62.4% CL) and significantly better than the corresponding result on
the turn level (57.6% CL). The performance can neither be improved by adding the
a posteriori scores of the framewise formant based classification nor by the scores
of the framewise TEO-CB-Auto-Env feature based classification. The results are
summarized in Table 7.17.

7.3.2 Linguistic Features

The linguistic features on the chunk level are evaluated along the same lines as on the
turn level. Throughout the different types of linguistic features that are evaluated,
the results on the chunk level are clearly better than on the turn level. The first
group of features consists of the number of words per chunk, the average length of
the words defined as the number of letters, phonemes, and syllables, the proportion
of fragments, and the average number of repetitions. With a CL of 54.3%, the result
is even better than on the word level where 48.5% CL is reached. On the turn level,
the CL is 44.6%.

The same holds for the part-of-speech features: The result on the chunk level
(56.1% CL) is even better than the one on the word level (52.1% CL) and clearly
better than the one on the turn level (48.8% CL).

On the chunk and the word level, the unigram models yield similar results: 61.9%
CL on chunks compared to 61.5% CL on words. On the turn level, they reach only
a CL of 54.3%.

Next, the three bag-of-words approaches are evaluated. Consistently with the
evaluation on the turn level, the approach using eight coarse semantic categories
(57.9% CL) performs better than the part-of-speech approach (56.1% CL), which
uses six coarse lexical and morphological main word classes. The bag-of-words ap-
proach where words of the same lemma and the same meaning are clustered yields
61.4% CL. The best result (61.9% CL) is achieved if separate entries in the feature
vector are kept for every word that occurs at least five times in the corpus.
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feature set CL RR
number of words, avg. number of letters/syllables/phonemes,
proportion of fragments and repetitions (LFR, 6) 54.3 54.9
part-of-speech features (POS, 6) 56.1 56.7
unigram models (UM, 16) 61.9 59.8
bag-of-words features
coarse semantic categories (BOW1, 8) 57.9 59.4
lemmatization (BOW2, PCA: 181 → 120) 61.4 60.5
single words (BOW3, PCA: 254 → 100) 61.9 60.8

UM, LFR (22) 61.1 60.1
UM, POS (22) 61.7 61.4
UM, LFR, POS (28) 61.6 60.7
UM+POS, BOW3 (8) 62.2 60.6

Table 7.18: Classification results of the linguistic features on the chunk level. Results
are reported in terms of the classwise averaged recognition rate (CL) and the absolute
recognition rate (RR)

The unigram models are merged with the length, fragments, and repetitions (LFR)
features, and the part-of-speech features prior to the classification (early fusion).
The differences in terms of the classwise averaged recognition rate are neglectable.
However, the highest RR value is obtained for the combination of the unigram models
and the POS features. The result of this classification is then combined by late fusion
with the result of the single words bag-of-words approach. The resulting CL is 62.2%,
which is the best result obtained with linguistic features on the chunk level.

7.3.3 Combination

Using only acoustic features, the best result – 65.4% – is obtained if the acoustic fea-
tures of the Erlangen Prosody Module are combined by late-fusion with the framewise
MFCC features. The best result using only linguistic features – 62.2% – is obtained
by combining unigram models, part-of-speech features, and bag-of-words features.
Now, both acoustic and linguistic features are fused. The late fusion of all four classi-
fier outputs results in a further little improvement: 67.1% CL on the chunk level. As
the figures in Table 7.19 show, the result is almost identical even if the bag-of-words
features are omitted. If all chunk level features are merged (early fusion) and classi-
fied with LDA, up to 68.9% CL is reached. If the three different levels of analysis –
the word, the turn, and the chunk level – are compared, the best results are obtained
on the chunk level (68.9% CL, 68.9% RR). Yet, they are very close to the best results
obtained on the word level (67.2% CL, 66.9% RR). Obviously, the disadvantages of
the lower ‘confidence’ values of the chunk labels are compensated to a large extent
by the increase in information about the emotion-related state that the longer units
imply. On the turn level, the even lower ‘confidence’ values of the turn labels prevail
over the advantages of the longer turns resulting in lower recognition rates: 63.2%
CL and 62.8% RR. Finally, these classification results prove that the emotion-related
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feature set CL RR

late fusion (SNNS, GMMs)
prosodic features, MFCC, UM+POS (12) 67.0 65.3
prosodic features, MFCC, UM+POS, BOW3 (16) 67.1 65.5

early fusion (LDA)
all features (700) 68.9 68.9

Table 7.19: Combination of the acoustic and linguistic features on the chunk level.
Results are reported in terms of the classwise averaged recognition rate (CL) and the
absolute recognition rate (RR)

confidence CL RR F # words
≥ 0.2 68.9 68.9 68.9 4,543
≥ 0.3 69.0 69.0 69.0 4,538
≥ 0.4 69.7 69.5 69.6 4,469
≥ 0.5 72.1 71.3 71.7 4,147
≥ 0.6 75.5 73.4 74.4 3,472
≥ 0.7 81.4 77.7 79.5 2,012
≥ 0.8 83.4 78.8 81.0 1,597
≥ 0.9 84.4 79.7 82.0 630
= 1.0 88.3 77.7 82.7 430

Table 7.20: Classification results on the chunk level in dependency of the ‘confidence’
of the chunk label. Results are reported in terms of the classwise averaged recognition
rate (CL), the absolute recognition rate (RR), and the harmonic mean of both (F)

state of the children actually changes rather quickly even within turns justifying the
rather exceptional approach to label the emotion-related state on the word level.

As for words and for turns, the best classifier combining acoustic and linguistic
features is now evaluated only on those chunks whose ‘confidence’ is above a certain
threshold. The results are given in Table 7.20. Due to the dominating influence
of the state Neutral and the lower recognition rate of the classifier for this state,
the absolute and the classwise averaged recognition rate diverge. Nevertheless, the
(harmonic) mean of both measures clearly increases for higher ‘confidence’ values.
Consequently, if the agreement of the labelers is high and the emotion-related state
is homogeneous within one chunk, the accuracy of the classifier is high on average
as well. Within Ceices, similar results are obtained based on the large feature set
of the Ceices partners and a re-training of the classifier on the reduced data sets
[Sepp 08a].

7.4 Comparison with Results within Ceices

The goal of the initiative Ceices is to bring together the heterogeneous expertise
of various sites in order to cover the diversity of state-of-the-art emotion recognition
feature. The participating sites all work in the area of emotion recognition from
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speech, but come from different backgrounds. The features of six Ceices partners
(s. Chapter A.3.1) have been gathered forming a set of 4,265 features. Three different
basic feature extraction approaches can be identified:

selective, two-layered: In this two-layered approach, features are calculated on the
word level first before functionals such as the mean, the standard deviation, the
extrema, etc. are applied in order to obtain features for the whole unit, i. e. the
turn or the chunk. The features that are computed are selected based on pho-
netic and linguistic knowledge. The acoustic features of the Erlangen Prosody
Module and the very similar features of the FBK are typical representatives of
this approach. FAU contributes 92 acoustic and 24 linguistic features, FBK 26
acoustic and 6 linguistic features.

selective, single-layered: In the single-layered approach, features for the whole
unit of analysis are calculated directly without the prior calculation of features
on the word level. Again, features are selected based on phonetic and linguistic
knowledge. LIMSI and TAU/AFEKA follow this approach. LIMSI contributes
90 acoustic and 12 linguistic features, TAU/AFEKA 222 acoustic features.

brute-force, single-layered: In this single-layered approach, features are calcu-
lated directly for the whole unit by systematically applying a fixed and large
set of functions to time series of various base functions such as the F0 or energy
contour. By that, a very large number of features, generally more than 1,000
features, is computed. Feature selection mechanisms to reduce the number of
features, which are partly highly correlated, are mandatory prior to the classifi-
cation. This approach is followed by UA and TUM. UA provides 1,586 acoustic
features, TUM 1,718 acoustic and 489 linguistic features.

A description of the features of each site is given in [Batl 09]. Along the same lines
as for this thesis, the prosodic features are categorized into duration based, energy
based, and F0 based features. The spectral features are divided into the sub-categories
cepstrum (MFCC features), wavelets, and spectrum (formants, band-energies, etc.).
There is one category of voice quality features (jitter, shimmer, HNR, etc.). For the
linguistic features, bag-of-words features, part-of-speech features, higher semantics
(bag-of-words approach with six coarse semantic categories as described in Chap-
ter 6.4.3), and one category subsuming disfluencies and non-verbals such as breath-
ing or laughter are distinguished. 21 features of the whole feature set could not be
attributed to one of these types resulting in 4,244 features.

The purpose of Ceices is to force co-operation in order to get insights which
feature types are most important for emotion recognition. The primary goal is not to
encourage competition which site has the best set of features. In [Batl 06b], each site
reports their classification results for turns. The same cases, the same labels, and the
same training and test sets are used, but the features and the classifiers that are used
differ. Yet, all the recent classification experiments, which are referred to here, are
conducted on chunks. In this thesis, the relevance of features types is evaluated by
classifying features of the same type separately. Within Ceices, the same approach
is followed in [Schu 07b]. The results of the evaluation using the features of all Ceices
partners match the results obtained in this thesis using only our features. In the group
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of the acoustic features, the least performance is achieved with voice quality features.
Most relevant are energy and duration based features. All other types of acoustic
features (F0 based features, spectral, cepstral, and wavelet based features) are of
medium relevance. In the group of the linguistic features, the bag-of-words features
are most relevant followed by features modeling higher semantics, and part-of-speech
features.

In [Batl 09], a different approach is chosen: all features are pooled and feature
selection is used to determine the set of features that are most relevant for the clas-
sification. The feature type is assigned to the ‘surviving’ features of this selection
and the more frequently a type appears, the more important this type is for the
classification of the emotion-related states in the Aibo scenario. The focus is set on
interpretation and not on optimizing the classification performance. For each split
of the 3-fold cross-validation (s. Appendix A.2.10), 50 features are selected using the
sequential forward floating search (SFFS) algorithm and support-vector machines
(linear kernel, one-against-one multi-class discrimination, sequential minimal opti-
mization) as classifier. The final set of selected features consists of the union of the
features selected for each split, i. e. 150 features allowing the appearance of the very
same feature more than once. Table 7.21 shows the results of this feature selection if
the features are selected from both acoustic and linguistic features (top) and if they
are selected either from the set of acoustic features only or from the set of linguistic
features only (bottom). Classification results are reported for single feature types in
terms of the F measure defined as the harmonic mean of the absolute recognition rate
and the classwise averaged recognition rate. If only acoustic features are used, the
F measure is 63.4%. With linguistic features only, 62.6% F are reached. If features
are selected from both feature sets, 65.5% F are reported.

These results are very close to those presented in Chapter 7.3 where 65.0% F for
acoustic features only and 61.4% F for linguistic features only are obtained. The early
fusion of both types yields 68.9% F. This demonstrates that our compact feature set is
a very competitive, state-of-the-art set of features for emotion recognition. However,
the following differences should be kept in mind if the results presented in this thesis
and those reported in [Batl 09] are compared: The Ceices approach to select features
requires to reduce the computational effort. The size of the reduced set of 150 features
is chosen for a better interpretation of the different feature types, not for optimizing
the classification performance. Only a 3-fold cross-validation is used in contrast to
the 51-fold cross-validation used in the experiments of this work. Only features on the
chunk level are evaluated discarding features on the frame level; a posteriori scores
based on the prior classification on the frame level are not included. For some of
the features presented in this thesis, the context of a word, which may be outside
the chunk the word belongs to, is used. For the normalization of the energy and the
duration of words, information of the whole turn is used. Furthermore, our word based
prosodic features rely on the actually spoken word chain. Results on the turn and the
chunk level based on automatic speech recognition (ASR) are given in [Schu 07c] for
different ASR degrees of difficulty: audio data of the close-talk microphone (78.9%
word accuracy, WA), artificially reverberated audio data (68.2% WA), and noisy and
reverberated audio data of the video camera (47.5% WA). Compared to a system
based on the manual transcription and the manually corrected word segmentation,
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the accuracy of the prosodic features based on ASR is reduced only slightly by less
than 4%-points on the chunk level.

In Table 7.21, the F measure, the number of selected features (#), and the Share
and the Portion values are given for each feature type. The Share value denotes
the proportion of the 150 selected features that belong to the respective feature
type. The Portion value is the proportion of all features of the respective type
that have been selected. As one and the same feature can be selected more than
once in the three splits of the 3-fold cross-validation, the Portion values can be
higher than 100%. If acoustic and linguistic features are pooled, two-thirds (67.3%
Share) of the 150 selected features are acoustic features and the remaining one third
(32.7% Share) are linguistic features. Although the approach to determine the most
relevant feature types is different, comparable results are obtained: If the features
are selected from the set of acoustic features only (bottom of Table 7.21), the Share
values state that the energy based features (22.0% Share) are the most relevant
feature type, followed by the duration based features (18.7% Share). The Share
of the F0 based features and the cepstral features (MFCC) is 15.3% each. Wavelets
and voice quality features make up only 10.0% and 7.3%, respectively, of the selected
features. If the feature selection is based on the linguistic features only, the bag-of-
words features have the highest Share value (62.7%), followed by features modeling
higher semantics (18.0%) and part-of-speech features (18.0%). If the features are
selected from both feature sets (top of Table 7.21), two-thirds of the selected features
are acoustic features. Hence, the Share values of the acoustic feature types should
be roughly two-thirds of the respective Share values if the features are selected using
only acoustic features. The Share values of the linguistic feature types are expected
to be one-third. A strong deviation from the expected Share value can be observed
for the duration based features which loose some of their impact. The gap is mainly
filled with energy based and spectral features. The bag-of-words features loose some
of their relevance as well. This is compensated by a higher contribution of the features
modeling higher semantics. The reason for these deviations is that duration based
features implicitly encode linguistic information: longer words are content words that
are more likely to carry information about the emotion-related state, shorter words
are function words. Shorter chunks in terms of the number of words are more likely
to be produced in a non-neutral state than longer chunks.

Summary In this chapter, experimental results for the 4-class problem Anger,
Emphatic, Neutral, and Motherese are presented. The experiments are conducted
on three different levels of analysis: the word, the turn, and the chunk level. These
levels differ w. r. t. the length of the unit and the homogeneity of the emotion-related
state within this unit. The turn is the longest unit characterized by the highest
inhomogeneity of the emotion-related state. The shortest unit is the word for which
the emotion-related state is assumed to be constant. The chunk is an intermediate
unit w. r. t. both the length and the homogeneity. For each level, the different types
of features are evaluated separately in order to find those types that are most relevant
for emotion recognition. Then, promising feature types are combined by late fusion.
However, the best results are obtained if all features are merged and classified with
LDA. The highest recognition rates (68.9% CL) are obtained for the chunk level,
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which obviously is a good compromise between the length of the unit of analysis and
the homogeneity of the emotion-related state within this unit. Comparable results
(67.2% CL) are obtained on the word level. Significantly lower results are obtained
on the turn level where only 63.2% CL are reached. These results are summarized
once again in Table 7.22.

The four emotion-related states in the Aibo scenario can be classified both with
acoustic features and with linguistic features only. The performance of the linguistic
features is slightly worse than the one of the acoustic features. The largest difference
(3.2%-points CL, 4.5%-points RR) can be observed on the turn level. On all three
levels, the classification performance can be improved by combining acoustic and
linguistic features. The highest performance gain is observed on the word level: 3.2%-
points CL and 3.0%-points RR. The most relevant acoustic features are prosodic
features – especially energy and duration based features – and MFCC features. The
latter are classified on the frame level first before their a posteriori scores on the word,
turn, or chunk level are combined with the prosodic features by late fusion. On the
turn level, framewise formant based features help to improve the classification result
additionally. The most relevant linguistic features are unigram models. On the turn
and the chunk level, their performance can be improved slightly if they are fused with
part-of-speech and bag-of-words features (single words approach).

The confusion patterns show that the machine classifiers confuse the non-neutral
states often with the state Neutral. Furthermore, Emphatic and Anger are often
confused. Yet, Motherese is mixed up only seldom with Emphatic and Anger. These
confusion patterns match the behavior of the human labelers. The higher the ho-
mogeneity of the emotion-related state and the higher the agreement of the human
labelers is, the higher is the performance of the machine classifier. This holds for
all three levels of analysis. These observations are substantiated by the evaluation
of the entropy based measure on the word level showing that the machine classifier
performs even slightly better than the average of the five human labelers employed
for labeling the Aibo corpus.

The comparison with the results obtained within Ceices shows that the relatively
small feature set presented in this work is highly competitive. Concerning the rele-
vance of feature types, similar results are obtained although a different approach to
determine the most relevant feature types and a much larger feature set comprising
more than 4,000 features of six Ceices partners is used.
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feature set CL RR Table

word level
acoustic features: prosodic features, framewise MFCC (8)1 62.4 62.0 7.5
linguistic features: unigram models (20) 61.5 60.8 7.6
acoustic and linguistic features: prosodic features, 65.6 65.0 7.7framewise MFCC, unigram models (12)1

all features2 (265) 67.2 66.9 7.7

turn level
acoustic features: prosodic features, framewise MFCC, 58.6 57.0 7.11framewise formants (12)1

linguistic features: unigram models, POS, BOW3 (8)1 55.4 52.5 7.12
acoustic and linguistic features: prosodic features, frame- 61.1 58.7 7.13wise MFCC, formants, unigram models, POS, BOW3 (20)1

all features2 (700) 63.2 62.8 7.13

chunk level
acoustic features: prosodic features, framewise MFCC (8)1 65.4 64.6 7.17
linguistic features: unigram models, POS, BOW3 (8)1 62.2 60.6 7.18
acoustic and linguistic features: prosodic features, 67.1 65.5 7.19framewise MFCC, unigram models, POS, BOW3 (16)1

all features2 (700) 68.9 68.9 7.19

1 a posteriori scores, features combined by late fusion
2 classified with linear discriminant analysis (LDA)

Table 7.22: Summary of the best results using a selection of the best acoustic features
only, a selection of the best linguistic features only, a combination of both types, and
the full feature set on the word, the turn, and the chunk level



Chapter 8

Outlook

The focus in the area of emotion recognition has to shift from emotion portrayals
to naturally occurring emotions and states that are related to emotions in a broader
sense. However, corpora of naturally occurring emotions that are freely available
for scientific research are rare. The FAU Aibo Emotion Corpus is a major contri-
bution in this area. It is a corpus of various emotion-related states that occur in
a speech based, application-oriented scenario where children interact with the Sony
robot Aibo. The goal of this work is to be as application-oriented as possible regard-
ing the emotional states that are investigated. Nevertheless, the experiments differ
from a real application in some aspects.

The sparse data problem leads to a very high proportion of neutral utterances.
To train statistical models, similar but different states are mapped onto cover classes.
In the classification experiments, the four cover classes Anger, Emphatic, Neutral,
and Motherese are to be discriminated. To reduce the computational effort, subsets
of the Aibo corpus are defined with a more balanced distribution of these cover
classes. Cases where no majority vote of the labelers exists are discarded as well as
cases that are not subsumed under one of these cover classes. Yet, it has not been
investigated what happens to these rare states such as joyful for which no statistical
models can be trained. On which classes are they mapped if they are classified with
the existing classifiers for the 4-class problem? Which confusion patterns appear?
For the experiments in this thesis, all four classes should be recognized equally well.
In a real application, the high frequency of the state Neutral has to be taken care of
by defining an appropriate cost function for the various types of misclassifications.

Another aspect is the assumption of a perfect speech recognition system providing
the actually spoken word sequence. Experiments in [Schu 07c] have shown that the
performance of the prosodic features on the chunk level decreases only slightly (≤ 4%-
points). Other feature types such as MFCC features are not affected since they are
not based on the word information. The impact on the linguistic features has not
been investigated so far. It is expected that the performance of the more fine grained
bag-of-words approaches decreases to a larger extent than the part-of-speech features
based on only six coarse lexical and morphological word main classes and the features
based on higher semantics, which also use only eight coarse classes.

In the Aibo scenario, the experimental results suggest that the chunk level is the
best of the three levels of analysis that have been investigated. The chunks are not
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defined by concatenating words of the same emotion-related state although this ap-
proach would result in long units with a high homogeneity of the emotion-related
state. Yet, this approach would require that the emotion-related state is labeled
manually on the word level before the chunks can be defined rendering an automatic
chunking impossible. Instead, the chunks are defined by syntactic and prosodic cri-
teria. The syntactic boundaries are also labeled manually but experiments within
the German Verbmobil project showed that these boundaries can be detected au-
tomatically with prosodic features [Batl 98]. Initial experiments on emotion recog-
nition using different chunking procedures are reported in [Schu 07c]. The research
on emotion could be continued in this direction by searching for the optimal unit of
analysis taking into account the requirements of an application that eventually has
to work on these units.

This work only comprises the part of an application that recognizes the emotional
state of the user. The part how to use this information is not addressed. Nevertheless,
it is an important aspect of a real application. In a call-center scenario, the emotional
state can be used to find those dialogs where something went ‘wrong’ to monitor the
behavior of the human agents in these situations [Gupt 07]. In an automatic dialog
system, the information can be used to direct those users to a human agent who
got angry because their needs could not be satisfied by the machine. In the Aibo
scenario, the behavior of the toy can be adapted to the behavior of the child. Aibo
could move its paws, for example, if the child addresses Aibo in the state Motherese.
By that, the impression can be evoked that Aibo really reacts to the child letting the
toy appear more like a real dog. In a human-machine conversation, the long-term
goal has certainly to be that the machine produces emotionally colored speech output
that is adapted to the behavior of the human user to generate a more natural dialog.

The experiments are conducted in an offline procedure. The emotion recognition
module is not integrated in an online demonstrator. In an online scenario, the problem
of automatic speech recognition is aggravated by the out-of-vocabulary problem. So
far, every online demonstrator is very specific w. r. t. the problem which emotion-
related states can be discriminated. These states highly depend on the actually
chosen scenario. Some of the states present in the FAU Aibo Emotion Corpus such
as Neutral and Emphatic are likely to be found in other scenarios as well. In contrast,
Motherese is a typical state in our scenario but unlikely to occur in an automatic
dialog system used by adults to retrieve information. Anger can be found in many
other scenarios but the type of anger that appears is different. In the Aibo scenario,
Anger is a cover class for angry, reprimanding, and touchy. These states are different
from hot and cold anger. The classification experiments are rather discrimination
experiments where the classifier decides for the most likely state given a set of pre-
defined possible states. Even if new states appear, the classifier decides for one of
the pre-defined states. Experiments where the classifier is allowed to reject a class
have not been conducted so far. One major research topic is the problem of how
the results can be transferred to other scenarios with different states. So far, the
problem is bypassed by collecting new data and retraining the classifier. Fortunately,
the existing set of emotion features seem to work for a large variety of emotional
states albeit the relevance of the different feature types may change. The collection
of emotional data is not only time-consuming and expensive but it is a major problem
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how to obtain naturally occurring emotional data at all. Hence, it would be favorable
if the collection of new data could be avoided. One solution might be the prediction
of the degree of arousal and the the degree of valence by regression techniques instead
of the classification of emotion categories. As the emotional intensity of the observed
states is rather low, it might be interesting to predict also the degree of emotional
intensity. However, the FAU Aibo Emotion Corpus has to be re-labeled for this
purpose.

Within the Ceices initiative, a large set of state-of-the-art features could be
collected from various sites. Nevertheless, the research on new and better features
is still going on. Based on studies on emotion portrayals and on human perception
experiments with synthesized speech, voice quality features are often regarded as
potential candidates (cf. [Gobl 03]). Unfortunately, these features have fallen short
of the high expectations put upon them so far in emotion recognition. The reasons
might be that they are multi-functional and more susceptible to speaker-idiosyncrasies
[Batl 09, Batl 07a]. Another reason is certainly the difficulty in the separation of
the vocal source, especially for non-modal voice qualities. Further research on the
relevance of voice quality features in spontaneous speech is suggested.

The experimental results show that the performance of the machine classifier is
comparable to the average of the five human labelers who labeled the FAU Aibo Emo-
tion Corpus. The human abilities to interpret the emotional state of another person
are clearly higher if the human labeler is familiar with the other person. In the Aibo
scenario, this is neither the case for the human labelers nor are the automatically ex-
tracted features normalized w. r. t. the current speaker. In many application-oriented
scenarios, the data available for speaker normalization is very limited or not available
at all. Nevertheless, the research on emotion could be continued in this direction.

The FAU Aibo Emotion Corpus exists in a German and an English version. So
far, mainly the German version has been investigated. Classification experiments on
the English corpus have not been conducted so far due to the smaller size of the
English version and the very low number of non-neutral words. Nevertheless, the
same set of emotion-related states are annotated. An interesting research topic is
the question whether these states can be classified with a system based on acoustic
features that is trained on the German data. If this is possible, the different states
are expressed in the same way in both the German and the British culture.
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Chapter 9

Summary

This work is motivated by the long-term goal to make human-machine communication
more natural. The focus is set on mono-modal systems where speech is the only input
channel being available. Current research in this area focuses mainly on emotion
portrayals for which high recognition rates are reported. A large number of features
has been proposed so far. They can be categorized into prosodic features modeling
suprasegmental speech phenomena such as pitch, loudness, speaking rate, duration,
pauses, and rhythm, spectral features modeling spectral characteristics of the signal
such as formants and the standard MFCC features in speech recognition, voice quality
features modeling characteristics of the vocal source, and linguistic features modeling
the linguistic content of the utterances. The FAU Aibo Emotion Corpus providing
spontaneous children’s speech of naturally occurring emotion-related states is a major
contribution in this area of research. Features covering all four groups are evaluated
w. r. t. their relevance for emotion recognition on this type of data.

Most of the states in the FAU Aibo Emotion Corpus such asmotherese, reprimand-
ing, etc. are not emotions proper but emotion-related. This term is delimited from
Scherer’s definition of emotion and other affective states such as mood, interpersonal
stance, attitudes, and personal traits. Different modern emotion theories exist trying
to explain at least parts of the complex phenomenon emotion: What are emotions?
How many different emotions exist? Why and when do emotions occur? Modern
emotion theories are rooted in the theories of Plato, Descartes, Darwin, and James.
Dimensional theories claim that emotions can be distinguished according to a small
number of dimensions. The most popular ones are arousal and valence. Discrete
emotion models suggest that only a few discrete emotions exist determined by evolu-
tionarily developed neural circuits or by their specific elicitation conditions and their
physiological, expressive, and behavioral reaction patterns. Many corpora of emotion
portrayals are based on Ekman’s basic six emotions. Componential models assume
that emotions are elicited by the cognitive appraisal of antecedent events. Five types
of studies can be derived from Scherer’s modified version of Brunswik’s functional lens
model of perception: encoding studies searching for acoustic patterns that are char-
acteristic for certain emotions, decoding studies examining to what extent human lay
judges are able to infer emotions from speech samples, inference studies investigating
the underlying voice–emotion inference mechanism, transmission studies examining
the role of the transmission channel, and representation studies focusing on mental
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algorithms. The research on relevant features in computer science, the comparison
of the performance of a machine classifier with the one of human labelers, and the
classification of emotions under noisy and reverberated conditions nicely fit into this
framework. The most common way to collect emotional data is to simulate vocal
expressions of emotion (emotion portrayals). Various ways to induce emotions and
their drawbacks (weak emotions, mixtures of multiple affective states) are reviewed.
The highest ecological validity is obtained for natural vocal expressions. Neverthe-
less, many problems (weak emotional states, mixtures of states, sparse data problem,
ethical and legal issues, Observer’s Paradox) arise if such data is collected.

If the person’s emotional state is unknown, human judges are employed to label
the utterances. In some situations, another possibility is to ask the subjects about
their emotions (self report). The use of category labels is the most common way.
Different lists of key emotions have been proposed. Yet, the emotional states that ac-
tually appear in a given application-oriented scenario are very specific for the chosen
scenario. States that are related to emotion such as emphatic, helpless, or tired are
more likely to appear than emotions proper. The sparse data problem necessitates
the mapping of similar but different states onto broader cover classes. An alternative
based on dimensional emotion theories is dimensional labeling. Two existing tools,
FeelTrace and the Geneva Emotion Wheel, are reviewed allowing to label the emo-
tional state in the activation-evaluation and the control-valence space, respectively.
Category labels can be assigned to positions in these spaces and vice versa. Time
dependent labeling tools do not require pre-defined segments of constant emotion.
Cohen’s kappa and its variants (weighted kappa, multi-rater kappa) are introduced
as measures to evaluate the agreement amongst the human labelers on category data.

In order to classify emotion-related states automatically, the structure of a clas-
sification system and the principle of the optimal classifier minimizing the expected
costs is revisited. The optimal classifier requires that the probability density func-
tions p(c|Ωλ) are known. In the case of Gaussian mixture models (GMMs), these
density functions are modeled with a mixture of M multivariate Gaussians whose
parameters can be estimated with the expectation maximization (EM) algorithm.
This classifier is suited for the classification of the spectral features on the frame
level. On higher levels, linear discriminant analysis (LDA) and artificial neural net-
works (ANN) are used. The Fisher linear discriminant maximizes the ratio between
the between-class and the within-class scatter resulting in a linear decision bound-
ary. Complex decision boundaries are realized with ANNs. Multilayer perceptrons
and the backpropagation algorithm to estimate the parameters are introduced. The
performance of a machine classifier is often evaluated in terms of the absolute recog-
nition rate which is not suited for unbalanced data. Hence, the classwise averaged
recognition rate in introduced as a single performance figure in contrast to recall and
precision for each class. Our entropy based measure allows to compare the decision
of a machine classifier with the decision of the average human labeler. Confusions
similar to those of the human labelers are weighted less in cases where the labelers
are unsure themselves. The Sammon transformation and the NMDS are presented
to visualize emotion clusters of MFCC features and to derive data-driven dimensions
of emotion from the confusion matrices of the human labelers, respectively.
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Speech corpora of naturally occurring emotions are rare and in general not freely
available for scientific research. The FAU Aibo Emotion Corpus is a major contribu-
tion in this area of research. It consists of emotionally colored, spontaneous speech of
children at the age of 10 to 13 years interacting with the Sony robot Aibo. The data
(8.9 h of speech) is transliterated and automatically segmented into smaller turns at
pauses ≥ 1 s. The outstanding qualities of the corpus are its various annotations. For
the parcours experiment, the turns of the children are aligned to Aibo’s pre-defined
plot of actions. Aibo’s non-cooperative behavior correlates clearly with Anger (0.47
for A vs. N). Word based features in general and duration based prosodic features
in particular rely on a correct word segmentation. According to a manual correc-
tion of the forced alignment, the segmentation of 39% of all words is wrong even
if deviations of up to three frames are tolerated at both word boundaries. 1% of
words are totally misplaced. F0 based features rely on the correct F0 extraction.
The ESPS contour has been manually corrected in terms of ‘smoothed and adjusted
to human perception’. 4.5% of all frames within words are octave errors or other
gross errors. However, no significant impact on the performance of the prosodic fea-
tures could be found. Syntactic boundaries are annotated in order to split the turns
into shorter, syntactically and semantically meaningful chunks. 11 emotion-related
states are labeled on the word level. Besides neutral, the most frequent states are em-
phatic, motherese, reprimanding, touchy, angry, and joyful. To reduce the sparse data
problem, the classes are mapped onto the cover classes Anger, Emphatic, Neutral,
Motherese, Joyful, and Other. Algorithms are proposed to obtain emotion labels for
chunks and turns from the word level labels. As only six coarse POS classes are used,
the corpus is annotated with part-of-speech tags by annotating only the lexicon en-
tries. The relative frequency of the POS classes changes for different emotion-related
states. Furthermore, prosodic peculiarities such as clear articulation, laughter, etc.
are annotated. The distribution of the prosodic labels is also characteristic for certain
emotion-related states. Based on a two-dimensional NMDS solution of the confusion
matrices of the human labelers, two dimensions of emotion are derived. The first one
can be clearly interpreted as the well-known dimension valence. The second one is
not arousal but describes the degree of interaction between the child and the Aibo.
Three more balanced subsets of the German FAU Aibo Emotion Corpus are defined
for the classification on the word, the chunk, and the turn level. The corpus is the
common data basis of the initiative Ceices.

Classification experiments are conducted for the the 4-class problem Anger, Em-
phatic, Neutral, and Motherese on three different levels of analysis: the word, the
turn, and the chunk level. The presented features cover all four main types of features:
prosodic, spectral, voice quality, and linguistic features. The evaluation of different
feature types w. r. t. their relevance for emotion recognition yields a similar ranking
on all three levels of analysis. The features of the existing Erlangen Prosody Module
are a compact set of selected features which model energy, F0, and temporal aspects
for single words instead of whole utterances. This approach is especially suited for
the classification on the word level, but can be used for larger segments as well by
computing statistics of the word level features. The most important prosodic features
in the Aibo scenario are energy and duration based features. F0 based features per-
form clearly worse. Pause based features are of minor relevance since the pauses are
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mainly due to Aibo’s long reaction times. MFCC features are highly relevant as well.
This compact set of spectral features outperforms the less compressed DFT and log-
Mel frequency features. Features based on the first four formants are clearly inferior
compared to the MFCC features. The best classification results are obtained by di-
rectly classifying the spectral features on the frame level. Long-term spectral features
perform slightly worse. Jitter and shimmer features, the HNR, and the TEO-CB-
Auto-Env features represent the group of voice quality features. The performance of
the latter is in the same range as the one of the formant based features. Jitter, shim-
mer, and HNR features are clearly inferior. The best combination of acoustic features
is the late fusion of prosodic features and the framewise MFCC features. On the turn
level, the formant based features are added, too. As the children’s speech in the FAU
Aibo Emotion Corpus is spontaneous, the utterances can be analyzed linguistically.
A good performance can already be achieved with simple features such as the word
length, the number how often a word is repeated, and the information whether a
word is a fragment or not. Better results are obtained with POS features using six
coarse lexical and morphological main word classes. Bag-of-words approaches yield
even better results. Three approaches to reduce the high dimensionality of the BOW
vector are evaluated. The one with the lowest reduction (one entry for each word)
outperforms the other two. The best results in the group of linguistic features are
obtained with unigram models based on the conditional probabilities P(e|w). Only
slight improvements can be achieved by combining the different types of linguistic
features. In total, the performance of the linguistic features is slightly worse than
the one of the acoustic features. Yet, the differences are small (3.2%-points CL,
4.5%-points RR on the turn level). On all three levels of analysis, the combination of
both acoustic and linguistic features helps to improve the classification performance.
The highest performance gain is achieved on the word level (3.2%-points CL and
3.0%-points RR). MFCC features and duration based features model to some ex-
tent linguistic information. Classification results up to 68.9% CL are obtained by
early fusion of all features and classification with LDA. Regarding the type of data
– weak, naturally occurring emotion-related states – this is an excellent result. The
comparison with the results obtained within Ceices shows that the relatively small
feature set presented in this work is highly competitive. Concerning the relevance of
feature types, similar results are obtained although a different approach to determine
the most relevant feature types and a much larger feature set comprising more than
4,000 features of six Ceices partners is used. The confusion patterns of the machine
classifiers are similar to those of the human labelers. The recognition rates highly
correlate with the ‘confidence’ of the labels, which is a measure for the homogeneity
of the emotion-related states and the agreement of the labelers. The evaluation of the
entropy based measure on the word level shows that the machine classifier performs
even slightly better than the average of the five human labelers employed for labeling
the Aibo corpus. Chunks are the best compromise between the length of the unit of
analysis and the homogeneity of the emotion-related state within this unit (68.9%
CL). The best results on the word level (67.2% CL) are comparable, those on the
turn level (63.2% CL) are significantly lower.
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FAU Aibo Emotion Corpus Addenda

A.1 Design of the Experiments

A.1.1 Parcours Experiment
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Figure A.1: Design of the Aibo parcours
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POS: START
NV: gesture ‘Hi’
CH: tells Aibo what to do
+C: gets up
+C: goes forward

POS: A
-C: stops
-C: goes backwards
+C: goes forward
-C: stops
-C: begs (gesture ‘please’)
+C: goes forward

POS: 1st crossing
NV: turns head towards child
+C: goes forward

POS: 1st cup
+C: sits down
+C: gets up
+C: turns round
+C: goes forward

POS: 1st crossing
+C: goes left

POS: 2nd crossing
-C: goes straight on

POS: cul-de-sac
+C: stops
+C: turns round
+C: goes forward

POS: 2nd crossing
+C: turns right

POS: 2nd cup
+C: sits down
+C: gets up
+C: turns round
+C: goes forward

POS: 2nd crossing
-C: stops
NV: turns head towards child
+C: goes forward

POS: B, 3rd crossing
-C: lays down
+C: gets up
NV: turns head towards child
+C: turns left
+C: goes forward



A.1. Design of the Experiments 189

POS: DANCE
+C: stops
CH: Aibo, dance!
-C: stands still
+C: dances
+C: goes forward
-C: stops
-C: lays down
+C: stands up

POS: C, 4th crossing
-C: lays down
+C: stands up
-C: lays down
+C: stands up
+C: turns left
NV: turns head towards child
+C: goes forward

POS: SIT
+C: stops
CH: Aibo, sit down!
-C: goes backwards
+C: stops
+C: goes forward

POS: SIT
+C: sits down
+C: gets up
+C: goes forward

POS: 5th crossing
-C: goes straight on
+C: stops
+C: turns round
+C: goes forward

POS: 5th crossing
-C: goes straight on

POS: SIT
+C: stops
+C: turns round
+C: goes forward

POS: 5th crossing
+C: turns left

POS: 3rd cup
+C: sits down
NV: looks to child
+C: gets up
+C: turns round
+C: goes forward
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POS: 5th crossing
+C: turns left
+C: goes forward

POS: 6th crossing
-C: stops
NV: turns head towards child
+C: turns left
+C: goes forward

POS: D
-C: sits down
-C: ‘blows a kiss’
+C: gets up
+C: goes forward

POS: roundabout (now: follows arrow)
+C: goes right
+C: turns left
+C: goes forward
-C: stops
-C: waits
+C: turns left
+C: goes forward
+C: turns right
+C: goes forward

POS: GOAL
+C: stops
+C: sits down
NV: gesture ‘bye’

Table A.1: Plot of the parcours experiment; POS: Aibo’s position within
the parcours, +C: cooperative action of Aibo, -C: non-cooperative action
of Aibo, NV: non-verbal action of Aibo, CH: communicative action of the
child
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A.1.2 Object Localisation Tasks
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cups: A1 (goal), A2 (poison), A3; box: –
description: Aibo obeys

POS: Aibo lying on PILLOW, looking eastwards
NV: gesture ‘Hello’
CH: tells Aibo what to do
+C: gets up
-C: goes E
+C: stops
+C: goes SE
-C: stops
-C: sits down
NV: turns head towards child
+C: gets up
+C: goes to cup A1
+C: stops at cup A1
+C: sits down

Table A.2: Plot of the object localization task OL A; POS: Aibo’s posi-
tion within the object localization task, +C: cooperative action of Aibo,
-C: non-cooperative action of Aibo, NV: non-verbal action of Aibo, CH:
communicative action of the child
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cups: B1 (poison), B2 (goal); box: BK
description: Aibo goes first to the poisoned cup

POS: Aibo lying on PILLOW, looking eastwards
NV: gesture ‘Hello’
CH: tells Aibo what to do
+C: gets up
-C: goes SE
+C: stops
-C: sits down
+C: gets up
-C: goes SE to cup B1
+C: stops
NV: turns head towards child
+C: goes backwards NW

POS: PILLOW
+C: turns around NE
+C: goes towards cup B2
-C: stops
-C: lays down
+C: gets up
NV: gesture ‘Hello’
+C: goes towards cup B2
+C: stops at cup B2
+C: sits down

Table A.3: Plot of the object localization task OL B; POS: Aibo’s position
within the object localization task, +C: cooperative action of Aibo, -C:
non-cooperative action of Aibo, NV: non-verbal action of Aibo, CH: com-
municative action of the child
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cups: C1 (poison), C2 (goal); box: –
description: Aibo goes back to pillow, then in
opposite direction, then in a curve to cup C2.

POS: Aibo lying on PILLOW, looking eastwards
NV: gesture ‘Hello’
CH: tells Aibo what to do
+C: gets up
+C: goes E
-C: stops
-C: lays down
+C: gets up
NV: turns head towards child
-C: goes backwards to pillow

POS: PILLOW
-C: turns towards S
-C: sits down
NV: looks towards child
+C: gets up
-C: goes S towards child
+C: turns around E
+C: turns around N
+C: goes N
-C: stops, waits
+C: goes towards cup C2
+C: stops at cup C2
+C: sits down

Table A.4: Plot of the object localization task OL C; POS: Aibo’s posi-
tion within the object localization task, +C: cooperative action of Aibo,
-C: non-cooperative action of Aibo, NV: non-verbal action of Aibo, CH:
communicative action of the child



A.1. Design of the Experiments 195

cups: D1, D2 (poison), D3 (goal); box: DK
description: Aibo goes backwards, passes pillow and goes into
the wrong, opposite direction, passes poisoned cup D2, i. e., the
other, longer way to the goal, sits down, hidden behind box; the
same ‘sitting down and getting up’ - sequence as in the parcours

POS: Aibo lying on PILLOW
NV: gesture ‘Hello’
CH: tells Aibo what to do
+C: gets up
-C: goes E
+C: stops
NV: turns head towards child
-C: turns around 180°
-C: goes W, straight on, passes pillow
+C: stops at border of carpet
-C: lays down
+C: gets up
-C: lays down
+C: gets up
-C: lays down
+C: gets up
+C: turns right
NV: turns head towards child
-C: goes north
+C: passes cup D2 westside
+C: turns right 90°
+C: goes E, towards cup D3
-C: stops behind box
-C: sits down
+C: gets up
+C: goes towards cup D3
+C: stops at cup D3
+C: sits down

Table A.5: Plot of the object localization task OL D; POS: Aibo’s posi-
tion within the object localization task, +C: cooperative action of Aibo,
-C: non-cooperative action of Aibo, NV: non-verbal action of Aibo, CH:
communicative action of the child
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cups: E1 (goal), E2 (poison); box: EK
description: parallel to OLB: Aibo goes to poisoned cup first

POS: Aibo lying on PILLOW, looking southwards
NV: gesture ‘Hello’
CH: tells Aibo what to do
+C: gets up
-C: goes SE
+C: stops
-C: sits down
-C: goes SE towards cup E2
+C: stops
NV: turns head towards child
+C: goes backward to pillow

POS: PILLOW
+C: turns SW
+C: goes S
+C: passes box westside
-C: stops
-C: lays down
+C: gets up
NV: gesture ‘Hello’
+C: goes towards cup 1
+C: stops at cup E1
+C: sits down

Table A.6: Plot of the object localization task OL E; POS: Aibo’s position
within the object localization task, +C: cooperative action of Aibo, -C:
non-cooperative action of Aibo, NV: non-verbal action of Aibo, CH: com-
municative action of the child
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A.2 Statistics of the FAU Aibo Emotion Corpus

A.2.1 Information about the Speakers

speaker ID gender age
Mont_01 f 11
Mont_02 f 10
Mont_03 f 11
Mont_04 m 10
Mont_05 f 11
Mont_06 f 11
Mont_07 f 11
Mont_08 f 11
Mont_09 f 11
Mont_10 m 12
Mont_11 m 12
Mont_12 f 12
Mont_13 f 12
Mont_14 f 12
Mont_15 f 11
Mont_16 f 12
Mont_17 m 11
Mont_18 m 11
Mont_19 m 11
Mont_20 m 12
Mont_21 m 12
Mont_22 f 12
Mont_23 f 13
Mont_24 f 12
Mont_25 f 12

speaker ID gender age
Ohm_01 f 10
Ohm_02 m 10
Ohm_03 f 10
Ohm_04 f 11
Ohm_05 m 11
Ohm_06 f 11
Ohm_07 m 11
Ohm_08 m 10
Ohm_10 f 11
Ohm_11 m 11
Ohm_13 m 10
Ohm_14 f 11
Ohm_16 f 11
Ohm_18 f 11
Ohm_19 m 10
Ohm_20 f 10
Ohm_21 m 11
Ohm_22 f 11
Ohm_23 m 10
Ohm_24 f 10
Ohm_25 m 10
Ohm_27 m 10
Ohm_28 f 10
Ohm_29 m 11
Ohm_31 m 11
Ohm_32 f 10

Table A.7: Information about gender and age of the German speakers
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A.2.2 General Characteristics of the FAU Aibo Emotion Cor-
pus

FAU Aibo Emotion Corpus
German English

number of speakers 51 30
female 30
male 21

size (hours of speech) 8.9 1.3
number of words 48,401 8,474
number of chunks 18,216 –
number of turns 13,642 5,302
average chunk length [words]
- Aibo corpus 2.66 –
- Aibo turn set 2.75 –
- Aibo chunk set 2.91 –
average turn length [words]
- Aibo corpus 3.5 1.6
- Aibo turn set 4.4 –
lexicon entries 1,147 236

Table A.8: Statistics of the German and the British FAU Aibo Emotion Corpus
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A.2.3 Distribution of the Turn Length
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Figure A.3: Distribution of the turn length (number of words) on the German FAU
Aibo Emotion Corpus
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A.2.4 Distribution of the Word Duration
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Figure A.4: Distribution of the word duration on the German FAU Aibo Emotion
Corpus; every 10ms overlapping frames à 16ms
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A.2.5 Distribution of F0 Values
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Figure A.5: Distribution of the manually corrected F0 values on the Aibo turn set



202 Appendix A. FAU Aibo Emotion Corpus Addenda

A.2.6 Cross-tabulation of POS Labels and Emotion Categories

emotion label (cover classes)
POS label A E N M J O –

∑
NOUN 788 272 6,071 146 11 5 982 8,275
AUX 10 1 427 18 2 0 16 474
VERB 401 1,066 10,608 204 28 14 876 13,197
PAJ 475 1,238 20,969 544 54 25 1,212 24,517
APN 14 16 1,106 324 9 1 114 1,584
API 30 12 227 64 3 0 18 354
total 1,718 2,605 39,408 1,300 107 45 3,218 48,401

Table A.9: Cross-tabulation of emotion categories (cover classes) and part-of-speech
tags
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Figure A.6: Distribution of the emotion categories for different part-of-speech tags
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A.2.7 Cross-tabulation of Prosodic Peculiarities and Emotion
Categories

emotion label (cover classes)
prosodic label A E N M J O –

∑
no prosodic peculiarities 456 742 34,233 792 56 29 1,752 38,060
CLEAR_ART 128 167 1,589 34 2 0 148 2,068
EMPHASIS 310 1,042 1,614 24 5 4 474 3,473
SHOUTING 50 21 22 0 0 0 37 130
ACC_SHIFT 1 2 2 0 0 0 3 8
LENGTH_SYLL 347 223 1,317 413 9 12 495 2,816
INS_SYLL 23 28 0 0 0 0 18 69
PAUSE_LONG 2 2 96 12 0 0 7 119
PAUSE_WORD 2 3 165 0 0 0 15 185
PAUSE_SYLL 1 2 2 0 0 0 0 5
LAUGHTER 0 2 26 0 29 0 6 63
VOCATIVE 89 3 41 12 0 0 70 215
EMPHASIS + LENGTH_SYLL 141 186 112 6 2 0 89 536
CLEAR_ART + EMPHASIS 42 88 62 0 0 0 28 220
CLEAR_ART + LENGTH_SYLL 22 17 44 6 0 0 21 110
LENGTH_SYLL + VOCATIVE 29 1 2 0 0 0 7 39
EMPHASIS + PAUSE_WORD 1 8 19 0 0 0 3 31
LENGTH_SYLL + SHOUTING 10 12 1 0 0 0 7 30
CLEAR_ART + PAUSE_WORD 5 3 16 0 0 0 4 28
CLEAR_ART + EMPHASIS + 12 7 5 0 0 0 3 27
LENGTH_SYLL
LENGTH_SYLL + PAUSE_LONG 2 6 13 0 0 0 4 25
other combinations 45 40 27 1 4 0 27 144
total 1,718 2,605 39,408 1,300 107 45 3,218 48,401

Table A.10: Cross-tabulation of emotion categories (cover classes) and prosodic pe-
culiarities
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A.2.8 Most Frequently Used Words

no. word translation frequency
1 Aibo Aibo 7,469 15.43%
2 nach (go) to 2,960 6.11%
3 links left 2,560 5.28%
4 stopp stop 1,807 3.73%
5 geh go 1,756 3.62%
6 lauf walk 1,586 3.27%
7 rechts to the right 1,441 2.97%
8 und and 1,333 2.75%
9 jetzt now 1,231 2.54%
10 dich yourself 1,139 2.35%
11 steh get (up) 1,111 2.29%
12 auf (get) up 1,088 2.24%
13 komm come 1,011 2.08%
14 g’radeaus straight forward 899 1.85%
15 dreh turn 883 1.82%
16 weiter (go) on 874 1.80%
17 mal1 – 839 1.73%
18 sitz sit 722 1.49%
19 ja yes 721 1.48%
20 aufstehen get up 702 1.45%
21 so that way 618 1.27%
22 stehen stand 594 1.22%
23 geradeaus straight forward 526 1.08%
24 bleib stay 489 1.01%
25 laufen go, walk 453 0.93%
26 wieder again 388 0.80%
27 um around 388 0.80%
28 gut well done 335 0.69%
29 nein no 330 0.68%
30 du you 319 0.65%
31 okay okay 291 0.60%
32 hin towards, there 286 0.59%
33 brav good 286 0.59%
34 ein a 269 0.55%
35 *is is 261 0.53%
36 bisschen a little 253 0.52%
37 da there 245 0.50%
38 vorne ahead 222 0.45%
39 gehen go 218 0.45%
40 setz sit 200 0.41%
41 nicht not 176 0.36%

1modal particle, typical for German, the equivalent in English is the use of specific intonation
contours
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42 umdrehen turn around 172 0.35%
43 noch still (further), (not) yet 159 0.32%
44 zu to 155 0.32%
45 schön nice 149 0.30%
46 bitte please 149 0.30%
47 genau exactly 137 0.28%
48 dem the (feeding dish), this one 133 0.27%
49 mach do 132 0.27%
50 tanz dance 130 0.26%
51 ganz very (nice) 129 0.26%
52 *n ’n 127 0.26%
53 hinsetzen sit down 120 0.24%
54 fein nice 120 0.24%
55 weiterlaufen go on 116 0.23%
56 vorwärts forwards 113 0.23%
57 rückwärts backwards 110 0.22%
58 hopp chop 107 0.22%
59 drehen turn 106 0.21%
60 zurück back 105 0.21%
61 Futternapf feeding dish 102 0.21%
62 na well 100 0.20%
63 her here 100 0.20%
64 braver good 100 0.20%

Table A.11: Most frequently used words in the German FAU Aibo Emotion
Corpus which appeared at least 100 times
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no. word frequency
1 stop 1,456 17.18%
2 forward 816 9.63%
3 turn 732 8.64%
4 left 686 8.10%
5 walk 393 4.64%
6 right 330 3.89%
7 forwards 301 3.55%
8 up 265 3.13%
9 stand 206 2.43%
10 go 157 1.85%
11 sit 147 1.73%
12 around 146 1.72%
13 the 140 1.65%
14 a 136 1.60%
15 dance 133 1.57%
16 backwards 118 1.39%
17 Aibo 110 1.30%
18 round 108 1.27%
19 ok 108 1.27%
20 and 101 1.19%
21 bit 76 0.90%
22 move 72 0.85%
23 back 68 0.80%
24 to 66 0.78%
25 degrees 62 0.73%
26 no 55 0.65%
27 get 55 0.65%
28 do 49 0.56%
29 yellow 45 0.53%
30 on 45 0.53%
31 chief 42 0.50%
32 way 41 0.48%
33 ninety 38 0.45%
34 little 34 0.40%
35 cup 34 0.40%
36 um 33 0.39%
37 line 33 0.39%
38 that 32 0.38%
39 follow 32 0.38%
40 look 31 0.37%
41 at 28 0.33%
42 your 27 0.32%
43 now 27 0.32%
44 steps 26 0.31%
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45 keep 24 0.28%
46 paw 23 0.27%
47 oh 23 0.27%
48 good 22 0.26%
49 boy 21 0.25%
50 you 20 0.24%

Table A.12: Most frequently used words in the British FAU Aibo Emotion
Corpus which appeared at least 20 times
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A.2.9 Conditional Probabilities P(e|w)

no. word P(A|w) P(E|w) P(N|w) P(M|w) P(J|w) P(O|w) P(–|w) #
1 Aibo 10.1 3.5 72.2 1.4 0.0 0.0 12.7 7469
2 nach 0.6 2.2 93.5 0.4 0.1 0.0 3.2 2960
3 links 3.0 20.5 65.9 0.7 0.1 0.2 9.5 2560
4 stopp 3.7 30.5 57.4 0.1 0.4 0.0 8.0 1807
5 geh 0.6 0.8 94.0 1.2 0.0 0.0 3.4 1756
6 lauf 0.9 1.7 91.5 1.0 0.1 0.4 4.4 1586
7 rechts 2.5 18.9 69.3 1.0 0.2 0.1 7.9 1441
8 und 0.1 0.2 98.5 0.6 0.0 0.0 0.7 1333
9 jetzt 2.2 0.7 94.3 0.2 0.0 0.0 2.6 1231
10 dich 1.4 0.9 93.5 0.2 0.0 0.0 4.0 1139
11 steh 2.8 3.2 86.2 0.7 0.2 0.0 6.9 1111
12 auf 4.4 1.9 82.7 1.7 0.1 0.3 8.9 1088
13 komm 1.5 1.2 84.1 8.0 0.1 0.3 4.8 1011
14 g’radeaus 3.3 5.3 83.4 0.7 0.4 0.1 6.7 899
15 dreh 1.5 0.9 93.0 0.6 0.0 0.0 4.1 883
16 weiter 1.0 2.2 88.9 3.1 0.1 0.9 3.8 874
17 mal 1.1 0.6 94.5 1.7 0.1 0.0 2.0 839
18 sitz 2.6 16.9 75.6 0.7 0.0 0.0 4.2 722
19 ja 0.3 0.4 78.5 14.7 1.2 0.0 4.9 721
20 aufstehen 12.3 3.1 65.7 2.4 0.3 0.0 16.2 702
21 so 0.2 0.5 81.9 11.8 0.6 0.0 5.0 618
22 stehen 5.6 15.2 68.0 0.0 0.2 0.0 11.1 594
23 geradeaus 2.9 5.3 83.3 1.3 0.2 0.0 7.0 526
24 bleib 3.3 6.7 83.0 0.0 0.0 0.0 7.0 489
25 laufen 3.3 6.0 78.8 0.4 0.2 0.4 10.8 453
26 wieder 1.0 0.5 95.4 0.8 0.0 0.0 2.3 388
27 um 2.6 1.5 90.7 0.0 0.0 0.0 5.2 388
28 gut 0.0 1.2 74.9 17.3 0.0 0.0 6.6 335
29 nein 17.0 17.6 45.8 1.8 0.0 0.6 17.3 330
30 du 3.1 0.3 85.6 8.5 0.0 0.0 2.5 319
31 okay 0.3 0.0 98.6 0.7 0.0 0.0 0.3 291
32 hin 1.7 3.5 88.8 0.7 0.7 0.0 4.5 286
33 brav 0.0 0.0 62.2 21.7 0.3 0.0 15.7 286
34 ein 0.0 0.4 94.8 2.6 0.0 0.0 2.2 269
35 *is 0.0 0.0 87.0 8.4 0.4 0.0 4.2 261
36 bisschen 0.0 2.0 93.7 1.2 0.4 0.0 2.8 253
37 da 2.0 3.3 85.3 5.3 0.4 0.0 3.7 245
38 vorne 1.8 6.8 85.1 1.4 0.0 0.0 5.0 222
39 gehen 1.8 2.3 82.6 0.0 0.9 0.0 12.4 218
40 setz 0.0 2.5 92.5 0.5 0.0 0.0 4.5 200

Table A.13: Conditional probabilities P(e|w) that the speaker is in the emotion-
related state e while he/she is producing the word w for the 40 most frequently
occurring words in the German FAU Aibo Emotion Corpus
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A.2.10 Splits for a 3-fold Cross-validation

speaker gender Aibo chunk set
m f A E N M

∑
Mont_03 2 2� 0 0 3 0 3
Mont_05 2 2� 32 52 49 16 149
Mont_06 2 2� 12 5 29 2 48
Mont_08 2 2� 27 24 50 10 111
Mont_10 2� 2 16 6 65 15 102
Mont_11 2� 2 1 4 27 0 32
Mont_23 2 2� 2 14 58 12 86
Mont_24 2 2� 30 23 67 30 150
Ohm_02 2� 2 8 24 58 1 91
Ohm_03 2 2� 34 24 40 36 134
Ohm_04 2 2� 44 9 43 14 110
Ohm_05 2� 2 18 30 53 13 114
Ohm_14 2 2� 5 25 16 0 46
Ohm_16 2 2� 4 5 29 2 40
Ohm_21 2� 2 19 39 41 27 126
Ohm_25 2� 2 44 3 26 1 74
Ohm_28 2 2� 16 42 24 24 106∑

6 11 312 329 678 203 1,522

Table A.14: Splits for a 3-fold cross-validation: first subset
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speaker gender Aibo chunk set
m f A E N M

∑
Mont_04 2� 2 17 16 31 1 65
Mont_07 2 2� 25 6 83 7 121
Mont_09 2 2� 37 25 33 0 95
Mont_12 2 2� 3 29 35 0 67
Mont_13 2 2� 3 16 16 0 35
Mont_14 2 2� 12 10 21 0 43
Mont_18 2� 2 2 6 22 0 30
Mont_21 2� 2 13 25 17 13 68
Mont_25 2 2� 9 12 39 3 63
Ohm_01 2 2� 16 29 49 55 149
Ohm_08 2� 2 32 14 26 10 82
Ohm_10 2 2� 23 36 43 30 132
Ohm_19 2� 2 16 51 39 3 109
Ohm_20 2 2� 4 13 17 0 34
Ohm_22 2 2� 7 24 7 5 43
Ohm_23 2� 2 22 21 46 0 89
Ohm_29 2� 2 51 5 42 17 115
Ohm_31 2� 2 19 15 70 46 150∑

8 10 311 353 636 190 1,490

Table A.15: Splits for a 3-fold cross-validation: second subset

speaker gender Aibo chunk set
m f A E N M

∑
Mont_01 2 2� 10 40 42 0 92
Mont_02 2 2� 11 3 68 4 86
Mont_15 2 2� 15 0 48 7 70
Mont_16 2 2� 3 11 32 1 47
Mont_17 2� 2 36 27 49 0 112
Mont_19 2� 2 26 31 22 0 79
Mont_20 2� 2 20 25 53 3 101
Mont_22 2 2� 0 2 14 0 16
Ohm_06 2 2� 17 42 49 7 115
Ohm_07 2� 2 5 20 48 3 76
Ohm_11 2� 2 1 20 37 0 58
Ohm_13 2� 2 24 53 46 0 123
Ohm_18 2 2� 79 20 41 157 297
Ohm_24 2 2� 20 18 49 9 96
Ohm_27 2� 2 8 26 60 0 94
Ohm_32 2 2� 16 25 26 2 69∑

7 9 291 363 684 193 1,531

Table A.16: Splits for a 3-fold cross-validation: third subset
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A.3.2 Contract

Agreement of use

between

Lehrstuhl für Informatik 5 (Mustererkennung)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Martensstr. 3, 91058 Erlangen, Germany

and

................................................................................

................................................................................

................................................................................

Agreement of Use within CEICES: Combining Efforts for Improving auto-
matic Classification of Emotional user States, a "forced co-operation" ini-
tiative under the guidance of HUMAINE (Network of Excellence "Human-
Machine Interaction Network on Emotion, IST FP6, Contract Nr. 507422)

The classification performance of emotional user states found in realistic, spontaneous
speech is not very high, compared to the performance reported for acted speech in
the literature. This might be partly due to the difficulty of providing reliable anno-
tations, partly due to suboptimal feature vectors used for classification, and partly
simply to the difficulty of the task. CEICES aims at improving this state of affairs
by combining the competence found a different sites that deal with this topic within
a “forced co-operation” initiative under the guidance of HUMAINE. The initiative is
open for partners outside of HUMAINE.

The database to be used – at least in the beginning of the initiative – is the so-called
AIBO-database, recorded, processed, and annotated by the Friedrich-Alexander-
Universität Erlangen-Nürnberg (henceforth FAU), Martensstr. 3, 91058 Erlangen,
Germany. At least for the time span of 2005-2006, this database will only be released
under the conditions specified in the following for the sole scientific, non-commercial
use:

The licensee pays a nominal fee of 100 Euros (excl. VAT) for handling etc. The
corpus is handed over without guarantee. No legal claims of any kind can be derived
from accepting and using the corpus. FAU is not liable for any damage resulting
from receiving, installing or using the corpus or any other files provided by FAU in
this context. Handing over the corpus or any other files which have been provided
by FAU containing information derived from it (labelling files, etc.) by the licensee
to any third party may not be done without the expressed written consent of FAU.
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The licensee agrees to join the CEICES initiative as a partner whose conditions
are described in the following; note that as for CEICES, FAU complies to the same
conditions as any other partner in CEICES but will moreover take care of defining
subsamples, definition of training, validation and test files, providing manually cor-
rected label files, etc.; by that, FAU tries to make the processing at different sites as
comparable as possible.

If a partner concentrates on additional labelling, he agrees to share with all the
other partners additional analyses, esp. additional annotations. Basically, this will
be done on a bilateral basis.

If a partner concentrates on features with subsequent automatic classification, using
the label files provided by FAU, he commits himself to share with all the other part-
ners extracted feature values together with the necessary information (which feature
models which acoustic or linguistic phenomenon, format of feature values, classifier
used, etc.). The files containing the feature values will be exchanged via email, via
the HUMAINE portal, or via ftp up- and download accessible with a password. The
format of these files will be ASCII and some agreed-upon standard, e. g., arff (each
case = each word in one line, values delimited by comma, etc.).

By sharing features computed at different sites, CEICES aims at improving classifi-
cation performance and gaining insight into the impact of different types of features.
Even if a partner is not actively involved in writing a paper and might thus not appear
as an author, he agrees that results obtained with his feature values can be published
giving credit to each site for their specific contributions; however, common publica-
tions are the most preferred way. Of course, the partners are free to co-operate on a
bilateral basis with other partners more closely by, e. g., sharing source code etc.
Apart from these conditions specific for CEICES, the following general conditions
apply:

Any models, derived from data containing the corpus may – just as the speech data
themselves – only be used for scientific, non-commercial applications. As special
condition for the reduced fee for the corpus in combination with the appropriate an-
notation files, the licensee lets FAU know results obtained in due time. Common
publications on the results obtained should be aimed at.

For publications and talks concerning directly or indirectly the use of the corpus
the licensee has to cite FAU with a citation provided by FAU. Currently this is:

A. Batliner, C. Hacker, S. Steidl, E. Nöth, S. D’Arcy, M. Russell, and M. Wong.
“You stupid tin box” - children interacting with the AIBO robot: A cross-linguistic
emotional speech corpus. In Proc. LREC 2004, Lisbon, pages 171-174.
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Contact person at FAU:
Dr.-Ing. E. Nöth

Contact person at licensee:
..........................................
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Software EDE

Figure B.1: EDE: Data of the five human labelers, the machine classifier, and five
naïve classifiers
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Figure B.2: EDE: Average entropy values reported for the average human labeler,
the machine classifier, and the five naïve classifiers

Figure B.3: EDE: Entropy histograms for the chosen two decoders: the average
human labeler vs. a naïve classifier picking randomly one of the four classes with
equal a priori probabilities
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Software eLabel

Figure C.1: eLabel is suited to easily correct the transliteration and the word seg-
mentation

219
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Figure C.2: eLabel: Manual correction of the fundamental frequency by selecting the
maximum of the autocorrelation function

Figure C.3: eLabel: Correction of the fundamental frequency by manually defining
periods
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Figure C.4: eLabel: Labeling emotion-related states with category labels. eLabel
allows the labeler to make soft decisions (s. Chapter 3.4). As it is used in this figure,
eLabel can also be used to visualize the agreement of the labelers for each word. For
the current word ‘steh’, four labelers decided for Anger and one for Neutral
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