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ABSTRACT

Disorders of the mitral valve are second most frequent, cumulating 14 percent of total number of deaths caused
by Valvular Heart Disease each year in the United States and require elaborate clinical management. Visual
and quantitative evaluation of the valve is an important step in the clinical workflow according to experts
as knowledge about mitral morphology and dynamics is crucial for interventional planning.1,2 Traditionally
this involves examination and metric analysis of 2D images comprising potential errors being intrinsic to the
method. Recent commercial solutions are limited to specific anatomic components, pathologies and a single
phase of cardiac 4D acquisitions only. This paper introduces a novel approach for morphological and functional
quantification of the mitral valve based on a 4D model estimated from ultrasound data. A physiological model of
the mitral valve, covering the complete anatomy and eventual shape variations, is generated utilizing parametric
spline surfaces constrained by topological and geometrical prior knowledge. The 4D model’s parameters are
estimated for each patient using the latest discriminative learning and incremental searching techniques. Precise
evaluation of the anatomy using model-based dynamic measurements and advanced visualization are enabled
through the proposed approach in a reliable, repeatable and reproducible manner.3 The efficiency and accuracy
of the method is demonstrated through experiments and an initial validation based on clinical research results.
To the best of our knowledge this is the first time such a patient specific 4D mitral valve model is proposed,
covering all of the relevant anatomies and enabling to model the common pathologies at once.

Keywords: physiological valve modeling, model based quantitative & visual assessment, discriminative learning

1. INTRODUCTION

Mitral valve disease represents the second most common valvular disease in developed countries.4 Minimally
invasive mitral valve repair procedures are mostly under development or in trial yielding the need for precise
knowledge and reliable display of the four-dimensional valve characteristics. Computed tomography and 4D
ultrasound are modalities well suited for non-invasive imaging of the heart enabling dynamic four-dimensional
evaluation of cardiac structures throughout the cardiac cycle. Still those data sets still have to be viewed as 2D
images used to perform measurements, which is an elaborate procedure and potentially error prone considering
the fact that for example the mitral valve’s annulus or the mitral valvular orifice is a non-planar curve. A four
dimensional model derived from ultrasound data sets offers the unique possibility to non-invasively visualize and
quantify the dynamics of the mitral annulus and leaflets in functional and diseased valves. Existent valve models
presented in the literature5–7 are used for hemodynamic studies or analysis of prostheses. Although some of them
are generated from volumetric data, these models are generic and obviously not applicable for the evaluation of
individual patients. Further related academic work and commercial solutions8–12 focus mainly on certain aspects,
such as isolated parts of the anatomy, certain pathologies and related measurements, but do not provide such
four-dimensional model, covering the full mitral valve anatomy, with precisely discriminated components and
their dynamics, and all pathologies at once.

Further author information: Ingmar Voigt: E-mail: ingmar.voigt.ext@siemens.com
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In this paper we introduce a new modeling framework for the mitral valve from 4D cardiac ultrasound data.
A dynamic model of the valve is constructed from anatomic structures together with physiology driven geomet-
rical and topological constraints. The patient specific parameters of the model are estimated from ultrasound
data by combining learning-based technologies into a multi-stage, coarse-to-fine parameter estimation algorithm.
The estimated model enables for the first time precise morphological and functional quantification as well as
enhanced visualization of the mitral valve. Extensive experiments on 30 patients with various valvular disor-
ders demonstrate the accuracy and speed of the proposed model estimation algorithm. Initial clinical validation
on various functional and pathological valves shows a strong correlation among a proposed set of model-based
measurements, manually performed measurements and previously reported mitral valve dimensions.

2. MITRAL VALVE MODELING

We propose a physiology driven parametric 4D model capable to express a large spectrum of morphological and
pathological variations of the mitral valve. The mitral valve’s central components are the anterior and posterior
leaflet, the annulus and the subvalvular apparatus. The latter two connect the valve to the left ventricular (LV)
endocardium. The annulus is a ring-like fibrous entity with a 3D shape resembling a saddle (fig. 1 and 2), with
the middle portions of the anterior annulus being elevated out of the annular plane towards the left atrium (LA)
and merging into the aortic mitral curtain. The aortic mitral curtain ends in the left and right fibrous trigone.
The posterior leaflet is divided through slits into several scallops (fig. 1). Multiple nomenclatures exist, most
commonly the scallops are named P1 to P3 with opposing segments A1 to A3.13 The mitral commissures are
the points where both leaflet’s free edges join. They do not coincide with the mitral annulus. The subvalvular
apparatus consists of the chordae tendinae and the papillary muscles. The function of the mitral valve is to

Figure 1: Morphological sketches depicting the view on the mitral valve from the left atrium (left & center image)
and cross section of the mitral valve, left atrium & ventricle depicting the papillary muscles and chordae (right
image).14 Reproduced with permission of the authors.

allow blood to flow only one way, from the LA to the LV, separating them hemodynamically. It is opened by
the contracting papillary muscles, which are pulling down the leaflets during diastole and remains closed by the
ventricular pressure during systole.

The proposed model includes the trigones, commissures, leaflet tips and a posteroannular midpoint modeled
as landmark points. Furthermore the leaflets are modeled by Non uniform rational B-spline (NURBS) surfaces,15

while the annulus is implicitly modeled by the upper leaflet margins which point to the LA. These components
together with topological and geometrical constraints define a physiologically compliant model of the mitral
valve. The two leaflets, expressed as NURBS paraboloids, are fixed to each other on the line from the respective
commissure to the annulus. This way they form a cylinder collapsible at it’s bottom, simulating the opened and
closed state of the mitral valve. They furthermore are constrained by the landmark points mentioned above.
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Figure 2: mitral valve (highlighted in red) during diastole, i.e. leaflets opened, with LV’s endocardial wall and
aortic valve. Note the saddle shape of the annulus visible in the right figure with an elevation towards the aortic
valve.

Figure 3: Valve model from different views opened and closed.
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the posteroannular midpoint &Lpam, which is expressed by the following equations:

Cj(utipl , 1) = &L
tip
j (2)

Cj(0, 1) = &Lcomm
j (3)

Cj(1, 1) = &Lcomm
(l+1) mod 2 (4)

C0(utrii , 0) = &Ltri
j (5)

C1(upam, 0) = &Lpam (6)

The two leaflets C0 and C1 are fixed to each other on the line from the respective commissure to the annulus,
i.e. their isolines at parametric values v = 0 and v = 1 coincide:

Cj(1, v) = C(j+1) mod 2(0, v) (7)

The annulus is the joint isocurve at parametric value u = 0 for both leaflet surfaces. Fig. 4 illustrates the above
discussed constraints and relations. A comprehensive description of NURBS is given by Piegl et al.15

Figure 4: Anterior (left image) and posterior (right image) leaflet with parametric directions, parameteric
values (u,v) at corner points and spatial relations with landmarks.

3. MODEL ESTIMATION

In order to estimate a patient-specific instance of the model the landmark points and NURBS control points have
to be determined in a four-dimensional Euclidean space (3D+time), cumulating into 3T (7 + 240) parameters∗.
Estimation of such high dimensional parameter vector is a difficult task, thus we propose to first detect a similarity
transformation, followed by landmark locations and then fully fit the model and estimate the dynamics applying
recent advances in discriminative learning and incremental searching techniques. Fig 5 gives an overview on the
overall segmentation procedure and the applied techniques.

3.1 Rigid Parameters

The similarity transformation Θ = (X,Y, Z, θ, φ, ψ, SX , SY , SZ) is detected using the marginal space learning
approach (MSL),16 which has proven to be a robust and reliable method. To find the bounding box describing
the valve’s location (X,Y, Z), orientation – described by the Euler angles (θ, φ, ψ) – and size (SX , SY , SZ) (fig.
6(a)) a probabilistic boosting tree (PBT)17 is used in conjunction with Haar and steerable features.

As within our framework the object localization task is formulated as a classification problem, discriminative
classifiers are used to exhaustively test all possible rigid parameter hypotheses Θ and find the hypotheses with
high probability for the given volume. The classifiers based on the PBT, which learns the target distribution by
exploiting a divide-and-conquer strategy, are trained from a manually annotated database.

∗with T discrete time steps (6 to 15 for a regular 4D ultrasound scan), 7 landmarks and 240 NURBS control points
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Figure 5: Block diagram of the segmentation pipeline alongside with the utilized machine learning techniques.

Exhaustive searching of course keeps us from getting stuck in local optima. As each hypothesis consists of
nine parameters however, we have to tackle the curse of dimensionality to cope with the large set of hypotheses.
Therefore we use the MSL approach and instead of using one single classifier directly to scan the complete space
of rigid parameters, we exploit the observation of a clustered parameter space. Thus the idea is to incrementally
learn and apply classifiers on projected sample distributions. With increasing dimensions, the search space is
pruned by previous marginal space classifiers. Therefore the estimation is split into three problems (fig. 5):

• translation estimation,

• translation-orientation estimation

• full similarity transformation estimation

After each step, the best candidates are kept and augmented with multiple hypotheses for the next stage, i.e.
after translation estimation the candidates are augmented with orientation hypotheses and after translation-
orientation estimation, the candidates are augmented with scale hypotheses.

Besides reducing the searching space, we can also use different features or learning methods in each step.
While in the translation estimation step, efficient 3D Haar features are used (since we treat rotation as an intra-
class variation), in the translation-orientation and similarity transformation estimation steps steerable features
are applied in order to avoid volume rotation, while still exploiting the advantages of global features.

The basic idea of steerable features is to sample some points from the volume under a special pattern and
local features are computed at each sampling point, such as voxel intensity and the gradient, its components,
its length, its projection onto a given vector and angles between gradient and a given vector. The sampling
pattern is steered - i.e. rotated and scaled - , instead of aligning the volume to a given orientation to extract
Haar wavelet features, which is why this type of features is called steerable features. As each feature is local, it is
easy to compute and therefore efficient, but the sampling pattern is global to capture the orientation and scale
information. Thus it combines the advantages of both global and local features.

3.2 Landmark Locations

Similarly to the estimation of the valve’s rigid parameters, a PBT-based discriminative classifier HLi
is trained

and applied for each landmark point &Li = (xi, yi, zi), which utilizes Haar features. As the valve’s rigid parameters
are known from the previous detection stage, it is not necessary to scan the complete volume I for the location of
Li. Instead each landmarks’ search space Di is defined by a search range given by a box relative to the detected
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(a) bounding box (b) landmark search ranges

Figure 6: Mitral valve model with (a) bounding box (yellow lines) and (b) landmark search ranges for the mitral
trigones. The red and blue line indicate the x- and z-direction respectively within the local coordinate system
given by the bounding box, the orientation is thereby derived from the landmark points. The landmark search
ranges are relative to the previously detected bounding box.

bounding box (fig. 6(b)). Thus the probability of the presence of landmark i computed at each location inside
the domain Di within the image I is given by:

p(&Li|xs, ys, zs, I) = HLi
(xs, ys, zs|I) , (xs, ys, zs) ∈ Di (8)

At training stage these search ranges are computed and normalized by the volume resolution and the valve’s
similarity transformation, obtained from the ground truth. The training set is completely drawn from the search
range as this is the only relevant domain for this detection task.

3.3 Non-rigid Deformation

For mapping the mean shape to the volume I the detected landmarks &Ld
i and their corresponding counterparts

&Lm
i on the mean shape &̄x have to be matched. As this is due to inter-patient variability usually not feasible
with a linear transform, a thin-plate-spline (TPS) transform18,19 is performed, to optimally capture all kinds of
anatomical variations.

The resulting model estimate provides a quite accurate global fitting of the model, however it requires further
local processing for precise object delineation. Therefore in the next step, we increase the degrees of freedom
of the model in order to capture the true anatomical morphology of the valve. The parameteric surfaces are
sampled to obtain a set of discrete boundary locations, each of which needs to be transformed individually.

An intuitive approach would be to move each point along its respective surface normal towards high gradients
in the vicinity of the point, as usually abrupt variations in the image’s intensity constitute an object’s boundary as
proposed for active shape models (ASM).20 However especially for the case of Ultrasound as we have noisy object
boundaries and signal dropout, this does not work quite satisfying. Learning based methods perform better as
shown in21–25 when applied not only with gradients at different image resolutions but also with intensities and
by incorporating local neighborhood. Therefore we train and use a learning based boundary detector and use
steerable features to guide the shape deformation.

The boundary detector is applied to a set of N discrete boundary locations &Qi each along their respective
surface normal &ni. These are obtained by uniformly sampling the parameter space of the K parametric surfaces
Cj(u, v) of the TPS transformed mean model. The boundary detectorHB is then used to test a set of hypotheses,

which are drawn along the normals &ni at each of the discrete boundary locations &Qi. The new boundary point
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&Q′i is set to the hypothesis with maximal probability as determined by the classifier HB :

s′ = argmax
s∈S

HB( &Qi + s&ni|I) (9)

&Q′i = &Qi + s
′ &ni (10)

where s and s′ are scalars determining the displacement of &Qi along the normal &ni and the search range S was
heuristically determined through the segmentation error after model transformation.

After boundary detection, segmentation results is constrained using a point distribution model (PDM).20 As
the rigid parameters are already known and the surfaces are fixed to the detected landmark points, only one
single projection is necessary in contrast to the iterative approach of Active Shape Models.20 In our case the
goal is to remove boundary point outliers and spatial noise only.

The final estimation is obtained by fitting the parametric model to the refined samples by solving a linear
least squares problem.26

3.4 Dynamics

To estimate the valve’s dynamics we follow a physiology-driven strategy assuming that the motion stays within
certain ranges which can be estimated from the training set. Therefore the above procedure is repeated for
each following time frame with the difference that the bounding boxes’ and landmark detectors are scanned
over a neighborhood – precomputed at training stage – starting from the initial result, leading to a significant
performance boost and minimizing error propagation at the same time. Fig. 7 shows a typical motion sequence
for the case of the mitral valve.

Figure 7: Mitral valve motion throughout the cardiac cycle. ED and ES frames are labeled in fram 10 and 3
respectively.

To increase the robustness of the estimation of rigid parameters and landmark locations, motion models are
applied after each step. Both are basically a PDMs extended to motion and constructed specifically for the
bounding boxes’ corner points and landmark points respectively. Therefore not only point coordinates from a
single time step but a fixed number of time steps T are concatenated into the high dimensional vectors &xi for
estimation of and processing by motion model:

&xi = (x1,1, . . . xN,T , y1,1, . . . yN,T , z1,1, . . . zN,T )
T ∈ R3N ·T (11)

with N = 8 for the bounding box corner points. It is important to note that the cyclic motion patterns are
registered onto the cardiac phases, which are the end-diastolic (ED) and end-systolic (ES) phases of the hearts
cycle. These have been manually labeled during manual segmentation of a particular 4D acquisition.

Furthermore as the bounding box already encodes the similarity transform we simply use this information
for registering motion patterns onto each other instead of applying GPA on estimation of the motion model.
Analogously steps are taken on projection.
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4. RESULTS

4.1 Results on valve model estimation

The estimation performance evaluation is done on 3D+time trans-esophageal echocardiogram data acquired from
30 patients affect by various valvular diseases. A total of 350 volumes were obtained using heterogeneous capture
ranges and each frame of the sequences were associated to a manually generated annotation considered to be
the ground truth. Rotational acquisitions have been converted to cartesian volumes with isotropic resolution
ranging between 0.6 to 1 mm. The volumes contain 136 × 128 × 112 to 160 × 160 × 120 voxels. The scans are
acquired from different patients affected by various cardiovascular diseases.

The results of the 3-fold cross-validation for full model fitting are shown in table 1. The model estimation
precision was evaluated with respect to the ground truth using the point-to-mesh measurement. This is computed
by averaging the distance between each sample point from the detected model and the closest sample point from
the ground-truth model. In order to guarantee symmetry, the measurement is also computed vice-versa, from the
ground-truth to the detected model. These two quantifications are averaged and provide the error measurement.

Fig. 8 show the results of each step of our mitral valve segmentation pipeline in an Ultrasound volume in
different views. It can easily be observed from both fig. 8 and table 1 how the precision of the segmentation
gradually increases with each step.

The overall mean accuracy is 2.82 mm at an average overall detection speed of 43 seconds (2.20 GHz CPU,
2.0 GB RAM).

Mean Median 90%

Rigid 4.29 4.33 6.23
Landmark 2.93 2.91 4.14
Boundary 2.82 2.39 3.31

Table 1: Mean, median and 90-percentile value of the test error in millimeters for fully fitted mitral model using
the point-to-mesh error measurement after each segmentation step – i.e. similarity transformed mean shape after
rigid parameter estimation, TPS transformed mean shape after landmark detection and fully fitted model after
boundary refinement.

4.2 Results on clinical valve evaluation

The quantitative capabilities of the model are demonstrated by comparing a set of morphological and dynamic
model-based measurements to literature reported valve dimensions. Any given measurement can easily be derived
and automatically computed from the proposed geometric model in a straightforward manner, as the relevant
anatomic parts and landmarks are explicitly modeled. Quantitative evaluation is performed on Ultrasound images
of regurgitant mitral valves with mild stenosis. Table 2 summarizes the evaluation results and demonstrates the
precision of the proposed model-based quantization method.

AA (cm2) APD (cm) AL-PM-D (cm) AC (cm) TV (mL) MVA (cm2)

Mean 10.5 3.2 3.6 11.7 6.2 3.2
Std dev 1.7 0.35 0.34 0.9 1.5 0.8

Mean in literature 11.28,9 2.827,28 3.127 12.88 4.098 1.5-5.01

Std dev in literature 0.6 0.2 0.1 1.4 1.2

Table 2: Mean and standard deviation of respective measurements provided by the model in comparison to mean
values for accordingly diseased subjects in literature.

Mitral annular dimensions - annular area (AA), anteroposterior (APD) and anterolateral-posteromedial di-
ameters (AL-PM-D) and annular circumference (AC) - as well as tenting volume (TV) are of interest for patients
with regurgitant mitral valves, while the mitral valvular orifice area (MVA) is also used to assess the severity
stenotic valves.1,2,29 Table 2 provides mean and standard deviation of the mentioned measurements derived
from our model as well as values from literature for accordingly diseased subjects. For MVA the mild stenosis is
evident as the value has to lie between 1.5 (severe stenosis) and 5.0 cm2 (healthy subject).
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Figure 8: Results of each segmentation step in short-axis (left column), long-axis (middle column) and 3D
view (right column). The box detection provides a rough estimate of the valve location, orientation and size
(first row with rigidly transformed mean model). It is refined by the detected landmark locations and the
mean model is warped onto the detected landmark points with TPS (second row). This quite accurate fitting
is refined by boundary detection (third row), however the result is quite noisy and needs to be smoothed by
constraining the shape with a PDM (fourth row). We recommend to view this figure in color in the electronic
version of the proceedings.
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5. CONCLUSION

In this paper we proposed a novel method for quantitative and visual evaluation mitral valve, based on a
dynamic model estimated from 4D ultrasound sequences. A robust and computationally efficient algorithm,
which combines learning-based technologies into a coarse-to-fine approach, was proposed for estimating a patient
specific valve model from imaging data. Automatic model-based measurements provide a significant advance in
morphological and functional clinical evaluation of the mitral valve. Our method overcomes the limitations of
mentioned related work, which concentrates on very specific phenomena and fails to deliver such integrated and
flexible approach.
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