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Abstract

During the past decade, image registration has become anteddool for medical treat-
ment in clinics, by finding the spatial mapping between twageas, observing the changes of
anatomical structure and merging the information fromeddht modalities. On the other hand,
the matching of appropriately selected features is becgpmiore and more important for the
further improvement of registration methods, as well aglierqualitative validation of registra-
tion. The purpose of this thesis is to solve the following pvoblems: How to integrate feature
detection into a non-rigid registration framework, so tadtigh quality spatial mapping can be
achieved? How to systematically measure the quality of imnutdtdal registration by automati-
cally segmenting the corresponding features?

For the first problem, we develop a general approach basedeoMumford-Shah model
for simultaneously detecting the edge features of two irmagel jointly estimating a consistent
set of transformations to match them. The entire variatiomadel is realized in a multi-scale
framework of the finite element approximation. The optinticma process is guided by an EM
type algorithm and an adaptive generalized gradient flonurantee a fast and smooth relax-
ation. This one-to-one edge matching is a general regmtratethod, which has been success-
fully adapted to solve image registration problems in saveredical applications, for example
mapping inter-subject MR data, or alignment of retina insaigem different cameras.

For the second problem, we propose a new method validateigytbrid functional and mor-
phological image fusion, especially for the SPECT/CT mibgalt focuses on measuring the
deviation between the corresponding anatomical strustuin@o kinds of anatomical structures
are investigated as validation markers: (1) the hot spofunetional image and its counterpartin
the morphological image (2) the kidneys in both modalit®&eseries of special methods are de-
veloped to segment these structures in both modalitiesmitimum user interaction. Accuracy
of the validation methods have been confirmed by experimeititsreal clinical data-sets. The
inaccuracies of hot spot based validation for neck regiomseported to b6.7189 + 0.6298 mm
in X-direction, 0.9250 + 0.4535 mm in Y -direction and0.9544 + 0.6981 mm in Z-direction.
While the inaccuracies of kidneys based validation for abeloregions aré.3979 +£0.8401 mm
in X-direction,1.9992 4+ 1.3920 mm inY -direction and2.7823 + 2.0672 mm in Z-direction. In
the end, we also discuss a new interpolation based methdigtbieely improve the SPECT/CT
fusion and present preliminary results.






Deutscher Titel:
Eins-zu-eins kantenbasierte Bildregistrierung und
bildsegmentierungsbasierte Validierung des hybridemSees

Kurzfassung

Bildregistrierung wurde in den letzten Jahrzehnten fudiziaische Anwendungen immer
wichtiger, um Transformationen zwischen Bildern zu bestgn, Veranderungen anatomischer
Strukturen zu verfolgen oder verschiedene Bildmoda&itatu vereinen. Weiterhin wird die
Zuordnung von entsprechend ausgewahlten Merkmalen innobtiger fur die Verbesserung
von Registrierungsverfahren sowie fur eine qualitativaliierung. Ziel dieser Arbeit ist es
Losungsansatze zu folgenden Fragestellungen zu findea:k&vin die Merkmalsdetektion in
eine nicht-starre Registrierung eingebunden werden, s® elae qualitativ gute ortliche Zuord-
nung erreicht werden kann? Wie kann die Qualitat einer inmuitdalen Registrierung durch
automatische Segmentierung korrespondierender Merkenalaiert werden?

Fur das erste Problem entwickelten wir einen allgemeinesa#ez, der auf dem Mumford-
Shah Modell aufbaut. Hierbei werden gleichzeitig Kanterkmale von zwei Bildern extrahiert
und eine Menge von Transformationen geschatzt, die dies&vhle aufeinander abbilden. Der
Variationelle Ansatz ist durch ein Multi-Skalen-Rahmenkveon Finite Elemente Schatzun-
gen realisiert worden. Die Optimierung wurde durch einen-Elgorithmus und einem adap-
tiven generalisierten Gradientenabstieg umgesetzt, me ®hnelle und glatte Relaxation zu
garantieren. Die Eins-zu-Eins Zuordnung der Kanten isiaiizemeiner Registrierungsansatz,
der erfolgreich angewendet wird um Registrierungsprobldmi vielen verschiedenen medi-
zinischen Anwendungen zu losen. Beispiele hierfur siledWiR Datensatze verschiedener Pa-
tienten oder die Ausrichtung von Retinaaufnahmen aufgumerschiedlicher Aufnahmegerate.

Fur die zweite Fragestellung stellen wir einen neuen Ansat, um hybride funktionelle
und morphologische Bildfusion, im speziellen SPECT/CTexaluieren. Im Mittelpunkt steht
hierbei die Vermessung der Abweichungen zwischen korreipeenden anatomischen Struk-
turen. Zwei Kategorien von anatomischen Strukturen wungigersucht: (1) der Hotspot in
der funktionellen Bildgebung und sein Gegenstiick in derphologischen Aufnahme, (2) die
Nieren in beiden Modalitaten. Eine Reihe von Methoden warentwickelt um diese Strukturen
in beiden Modalitaten mit minimaler Benutzerinteraktiom segmentieren. Die Experimente



mit echten medizinischen Daten bestatigen die Genauidgkeialidierungsmethoden. Bei dem
Hotspot-basierenden Verfahren betragt die Ungenauigk&ig9o + 0.6298 mm in X -Richtung,
0.9250 £+ 0.4535 mm in Y-Richtung undd.9544 4+ 0.6981 mm in Z-Richtung in Halsregionen.
Die Ungenauigkeit bei der Nieren-basierten Evaluieruegtlibeil.3979 4+ 0.8401 mm in X-
Richtung, 1.9992 + 1.3920 mm in Y-Richtung und2.7823 + 2.0672 mm in Z-Richtung im
Abdomenbereich. Wir stellen zusatzlich ein neues inttmm-basierendes Verfahren vor, um
die SPECT/CT Fusion zu verbessern und zeigen erste vgiakfgebnisse.
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Chapter 1

Motivation

1.1 Medical Image Registration

The presented thesis deals with a specific problem of metiwye analysis, namely image
registration, also known as image fusion or image matcHmgge registration is the process of
finding an optimal geometric transformation, so that twcegivmages are correctly aligned to
each other. The concrete form of “optimal geometric tramsfdion” varies a lot in different sit-
uations, but all these transformations define a point-iotgmrrespondence between the image
pair.

Image registration has plenty of applications in the fieldn&fdical image processing. For
instance, the typical requirements from physicians aretopgare images acquired at different
times, from different perspectives, of different patieotdy different imaging modalities. Im-
age registration is the fundamental and crucial processtgygto determine the correspondence
between the given images. In the following the effect of segtion is illustrated on two ex-
amples. However, one should note that image registratisralhmauch broader range of clinical
applications.

Figures 1.1(a) and 1.1(b) show the motion compensationgit&diSubtraction Angiography
(DSA). DSA is a standard way to visualize human vasculatyradguiring a pair of 2-D X-ray
projection images and subtracting contrast-enhancedam@mpntrast images) from a contrast-
free image (mask image). A fast and fully automatic imagesteggion is usually required to
remove the motion artifact between the contrast and masggg@meor to subtraction.

Figures 1.2(a)-1.2(c) show the fusion of X-ray Computed dgraphy (CT) and Photon
Emission Tomography (PET) images of the same patient. Ttrasenodalities visualize dif-
ferent information: CT provides high-resolution imagedehsity distribution of different tis-
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(a) (b)

Figure 1.1: Image registration for digital subtraction imggaphy. (a) Original substraction im-
age without a registration process. (b) Substraction im@gecessed by registration with sub-
pixel precision. The images are courtesy of Mrs. Y. Deugtliimieng. Details on the applied
registration method are described [DZLGHO6].

sues, which can effectively show the anatomy of the patiwhtle PET modality records the
alive functional and physiological activities of organs, €xample, the glucose metabolism dur-
ing the acquisition. The merge between these two modalgigs CT as background and PET
as foreground, is very useful for the diagnose, surgery pamwell as the observation of the
follow-up. Nevertheless, if CT and PET scans are performetifierent times or at different
hospitals, rigid registration is obligated to transfornotvolumes into a common coordinate sys-
tem. Then non-rigid registration is optionally used to cemgate the non-rigid patient motion
in the acquisitions.

The research on image registration has developed rapidieilast twenty years. A substan-
tial part of research on medical image processing dealsimitige registration. This trend was
proven in a recent review study of image registration [PFO8hge registration turned out to be
more difficult than people expected. There are still severats in the field of registration, for
which many researchers are actively investigating motisfaatory solutions. In the following,
we focus on these three challenges: multi-modal registration-rigid registration and valida-
tion of registration. Then we summarize the major contidng of this thesis, namely some new
approaches proposed to solve these problems.

4
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Figure 1.2: Fusion of PET/CT volume data. The correct opgileg of two modalities noticeably
shows physiological activities with the anatomical backgrd. The images are courtesy of Dr.
W. Romer (Nuclear Medicine Department of University ofdergen).

Multi-modal Registration

In the past three decades, progress in medical imagingitgesand image processing methods
has led to the fact that different imaging modalities withtresolution are available for medical
treatment today. Currently, the most imaging modalities lwa roughly classified into morpho-
logical and functional imaging modalities. For examplera¢-imaging, CT and Magnetic Reso-
nance (MR) are considered morphological imaging modalithereas functional MR imaging
(fMRI) and molecule imaging techniques, like Positron Estaa Tomography (PET) and Single
Photon Emission Computed Tomography (SPECT), are furattiomaging modalities. These
imaging modalities provide complementary information émelregistration of these data brings
significant clinical benefits for diagnosis and surgicahpiag. Even though a large number of
methods have been invented in the past, the registratioiffefaht imaging modalities is still far
away from being perfect. The fundamental reason is thantthigidual imaging modality cannot
provide enough correlated information and sufficient casttfor a reliable registration. Sim-
ple intensity based similarity measures, typically conmpubf statistical dependencies, cannot
reflect the correspondence of the same underlying anatbsticatures in different modalities.
The lack of knowledge of image contents is now more and maedylito be a bottleneck for
further improvement of registration algorithms.

5



Non-rigid Registration

In contrast to rigid registration estimating the translat@nd rotation, non-rigid registration com-
putes an elastic deformation field to align two images. Ngmmregistration is also known by
many different names, such as “non-linear”, “elastic”, fiqarametric” or “deformable” reg-
istration. Non-rigid registration is a critical issue in nyaclinical applications. For instance,
in computer assisted neurosurgery, the deformation of tam bbetween pre- and intraopera-
tive MR data, referred to as the brain shift, needs to be ctedeby non-rigid registration. A
drawback of most current non-rigid registration algorithisithat they model all tissue as having
the same degree of rigidity. However, physicians expedtttie different tissues or different
organs have different degree of rigidity, e.g. bone stmastwor instruments should be trans-
formed rigidly. However, most algorithms uniformly compuhe deformation, regardless of the
underlining tissue classes. The second drawback is thesmstency of the deformation field.
Consistency of transformation means that if one compuesréimsformation fromt to B and
then switches the roles of and B to compute the second transformatignfrom A, the two
transformations should be inverse to each other. Consisggistration is not only more sound
in the mathematical sense, but also very important for apptins, where one is interested in
determining the one-to-one correspondence of the sameraitall structures in different im-
ages, e.g. non-rigid registration for atlas constructi®R$03, MTTO3] or historical biological
images [STUO05, CSMO6].

Validation

Besides of automatic fusion of different imaging modaditighysicians demand additional quan-
titative information on the reliability of the result. Faxample, they need information like, “The
fusion of our new PET/CT machine has an average accuracynoh in the region of the head.”
or “The registration error of the software is less tisamm in the region of the abdomen.” Val-
idation is an essential part of the registration processvaddly considered to be unsolved. It
checks whether the anatomical structures in the first imageajpped to the corresponding ones
in the second image. Although plenty of registration aldns have been invented in the last
three decades, very few researchers paid attention tcati@idmethods for image registration.
The most commonly used validation method is to compare thistration system against a gold
standard, in which an optimal mapping has been pre-defirmexample, “Retrospective Image
Registration Evaluation Projéét(RIRE) is a recently new possibility to compare various CT-

Ihttp://www.insight-journal.org/rire/



MR and PET-MR registration techniques. People can dowrdogmup of datasets and perform
registrations on them. Then the computed transforms aadpt to compare with the “true”
transforms, which are defined by a prospective, markerebsghnique. The registration gold
standard may be based on a computer simulation or a clinictpiva However, the quantita-
tive validation using a gold standard cannot always inéi¢he accuracy of the registration in

a real clinical scenario, because real medical image datase much more complicated than
simple simulations or phantom objects. In practice, vissHessment has often been used as
a standard for validation. However, the reliability androgfucibility of human inspection are
always questioned. In addition, most validation effortgehlaeen concentrated primarily on rigid
registration, but the systematic evaluation of non-rigigistration is still a great challenge.

1.2 Contributions of this Thesis

The author believes that image segmentation is the key tdoiiter solutions for the registra-
tion and validation challenges outlined in the precedingtises. Generally speaking, image
segmentation and image registration are two closely mlpteblems. The goal of image seg-
mentation is to simplify or to change the representatiomah@age into something that is more
meaningful and easier to analyze [SS01], usually we cathttieatures”. Image segmentation is
typically used to locate objects or to find boundaries, ireed, curves, among images. Whereas
the task of image registration is to determine the corredpoce between images. Ideally the
same underlying anatomies are mapped to each other. Mgtohfeatures intuitively could be
a natural criterion that drives as well as evaluates the @mwagistration algorithms. Many re-
searchers, including the author, believe that the integratf knowledge of image segmentation
is a promising way to improve the registration method. Fromn point of methodology, this
thesis has the following two contributions.

One-to-one Edge Based Registration

Since in practice neither the location of desired featunes,the mapping between images are
known, it is intuitively a good idea to solve these two highiyerdependent problems - image
segmentation and image registration - in an iterative tasim an uniform framework. In each
iteration, the detected features guide the registratigorahm to find spatial correspondence, at
the same time the estimated transformations constrairetirels range of the feature detection.
Many methods of joint segmentation and registration haweadly been proposed in the past
ten years. Compared to most methods in literature [ZYK01,08lGCCW98, YLO5, PFL05],

7



one-to-one edge based registration method has three nstisgdishing points:

e The method uses edge features as an input for registratiothid method, each image
is approximated by two functions: a piecewise constanttfancthat represents a re-
constructed noise-free image and a phase field functioninmgalicitly represents edge
features. The experiments we carried out also proved tret@one edge based regis-
tration is more accurate than intensity based registrdbothe alignment of fine struc-
tures [HBR"06, HBD"07].

e The transformations are modeled as dense deformation.fididst methods of joint seg-
mentation and registration in literature are typicallyitied to rigid transformations [ZYKO1,
MCO03, CW98]. This method uses non-rigid deformation fietiddfine transformation be-
tween images. This more flexible transformation model isllgwequired to compensate
the non-rigid deformation, e.g. cardiac motion correcfar3-D reconstruction.

e The registration method is consistent. The method intreduie this thesis estimates for-
ward and inverse transformation at the same time and ettpleonstrains two transfor-
mations to be inverse to each other. Consistent registratimates not only a smooth
deformable transformation but also a one-to-one mappitigeimages.

Automatic Accuracy Validation of SPECT/CT Fusion

Simple visual inspections with aid of a computer was a widelgepted way to measure the ac-
curacy of multi-modal registration. It is essential for fhfeysician to have a systematic method
to measure the accuracy of multi-modal registration as agetb compare different registration
methods in a clinical setting. This thesis presents acgwalidation methods for SPECT/CT
registration using automatic segmentation of correspandbjects in two modalities. The de-
gree of matching of segmented objects indicates the agcofaegistration. The validation can
be roughly divided into two steps:

1. Segmentation of corresponding structures

Two kinds of highly active objects in the SPECT modality aetested as the “validation

markers”: Mal-functional hot spots are used in the regionexfk and kidneys are used in
the region abdomen. The major challenge of this work was tbtfie best segmentation
algorithms for different objects in different modaliti€Several criteria are considered for
the selection of algorithm: Whether the algorithm is rolwish respect to noise, whether

8



it can maximize the degree of automation and reprodugylalitd whether the parameteri-
zations need to adapt to different image data.

2. Measurement of distance

The anatomic accuracy of SPECT/CT fusion is evaluated bysoreay the distance be-
tween the centers of gravity of corresponding markersinY - andZ-directions. A small
distance between two centers of gravity indicates a higbtyieate fusion of SPECT/CT
data-sets [HKCO08].

The experiments in this work use patient data generated 88ECT/CT hybrid scanners. Nev-
ertheless, the validation method can also applied to otherbnations of modalities, such as
PET/CT.

1.3 Overview

This thesis is divided into three parts. Part | (Chapter 12rid devoted to the fundamental mo-
tivation of this work and a general introduction of imageiségtion. In Part Il (Chapter 3 and 4),
the one-to-one edge based registration method and itsssfatapplications are presented. Part
lIl (Chapter 5 to 7) is devoted to introduce two validationtheels of SPECT/CT hybrid imaging
and the test results on the real clinic patient datasetshé\end, a brief summary of proposed
methods is given.

PART I: Introduction

Chapter 1

This chapter gives the motivation as well as challenges afjmregistration in the field of med-

ical image analysis. Two typical examples are selected tavghe fact that image registration

is an obligated process operation for clinic routines. Twagancontributions of the thesis are

described: (1) one-to-one edge based registration, a rggstnaion method, and (2) a segmen-
tation based validation method for SPECT/CT hybrid imaging

Chapter 2

This chapter gives a general introduction of state of thefaregistration methods. It is required
for the presentation of our original contributions. SevV@&radamental topics of registration are

9



discussed: Examples are transformation models, interpolasimilarity measurement, varia-
tional framework, feature matching and so on.

PART II: One-to-one Edge based Registration

Chapter 3

This chapter presents the one-to-one edge based registragthod. A clear relationship be-
tween the proposed and existing method is also defined. iIBaatdefinitions, computation of
its first variations, finite element discretization, itératalgorithm as well as parameter study of
the proposed method are described in detalil.

Chapter 4

This chapter demonstrates the performance of the develop#ubd. Four applications of one-
to-one edge based registration are presented: (1) inbgectuegistrations (2) alignment of reti-
nal images from different sensors, (3) matching photoggagfhneurosurgery to MR Volume
and (4) motion compensation for frame interpolation. Thgeexnents prove that the proposed
approach achieves a better match of fine structures regpéaide existing techniques.

PART lll: Segmentation based Validation for SPECT/CT Hybri d Imaging

Chapter 5

This chapter gives an introduction of hybrid SPECT/CT imaggiWe focus on the benefit and
the potential misalignment artifact as two modalities ammbined into a hybrid imaging.

Chapter 6

This chapter is devoted to introduce the validation metHo8RECT/CT hybrid imaging using
markers of mal-functional hot spots. Hot spots in SPECT esage automatically segmented by
a new “localized maximally stable extremal regions” methdlde segmentation of correspond-
ing structure in CT images is solved by a semi-automaticeanmdvalk method with minimal
user interactions.

10



Chapter 7

This chapter describes the validation of SPECT/CT hybri@gmg using marker of kidneys. The
target kidneys in CT image are detected automatically byassat active shape model method
and corresponding location in SPECT is computed by a shapedhaacking method. Then,
we also discuss the possibility to remove such misalignraeifact, which detected by this

validation method.
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Chapter 2
Image Registration

Image registration is the process of determining corredpnces between points in two or more
images. These images show completely or partially the sdjetoor the same scenario, but
the positions of image contents are different for the imagése images are not aligned or
registered, that is, the direct spatial correspondenaedset them is not determined. Throughout
this work, we consider only gray value images, typically mled by spatial functions. This
function assigns a gray valugx) to every spatial pointe € R?, whered = 2 or 3 is the
dimensionality of the images. Typically, two images areoied in the registration problem: a
reference imag®& and a template imagdg. In this thesis, the reference and template images are
in the same dimension, i.e. the 2D-3D registration is notudised here. ldeally, we look for
a transformatiorp : R? — R¢ such that the reference imageand the transformed template
imageTy are as close as possible. The intensity function of referemcl template images are
denoted as” andu”, respectively. The intensity function @}, is often denoted as

ug(x) = u' o p(x) = u' (P(x)). (2.1)

This transformatiorp(x) essentially determines the spatial correspondence bettheerefer-
ence and template image. Let us assume both images shasntbesordinate system and the
transformationg is invertible. The pointec in the template imagé&’ corresponds to the point
¢(x) in the reference imagg, or reversely, the point in R corresponds to the poigt— () in

T.

In the rest of this chapter we review the existing approaemesdiscuss several important
issues related with registration. For example, “how to @eéirsuitable transformation?” “How
to measure the similarity between the reference and temflased on image intensity or based
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on image contents?” and “How to find the optimal transfororaparameters?”

2.1 Transformation Models

In most clinical applications of image registration, thenary transformation model is rigid or
non-rigid. Both of them are well-defined mappings of one imago another.

Rigid transformation is used for registration if the corresponding objects havdistortion.
A simple rotation and translation are computed for the atignt:

¢(z) = Rz +1, (2.2)

where R € R%9 is rotation matrix andt € R? is the translation vector. However, spatial
rotations in 3-D are more frequently represented by uniteqa#ons in practice. Quaternions
are an extension of complex numbers with four componentstépuions have many attractive
properties: Compared to Euler angles they are simpler toposeand avoid the problem of
gimbal lock. Compared to rotation matrices they are moreiefit and more numerically stable.
A concise definition of quaternions is given in [Alt86].

Non-rigid transformation is used for the registration problems where a deformati@xis
pected to compensate the irregular distortions encouhiareedical image analysis. Mathe-
matically it is denoted by a continuous function

o(x) = — u(x), (2.3)

whereu(z) : RY — R? is the so-called displacement field. Figure 2.1 gives a 2-8nwple
of a non-rigid transformation. Compared to the rigid transfation model, non-rigid transfor-
mations based on deformation are more flexible. On the othred the estimation of non-rigid
transformation encounters more problems of parametemggation and numerical implemen-
tation in practice. These topics will be further discusge8ection 2.5.

Besides of rigid and non-rigid transformation, there ealsb other ways to model the trans-
formation, for example, affine transformation, B-splineddtransformation and so on. Because
these transformations are not used in our work, we do naidote them further. For the defini-
tions and applications of these transformation, we ref¢Ci®1, ZF03].
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Figure 2.1: An example of 2-D non-rigid transformation.

2.2 Image Interpolation

Both reference and template images are digitalized imaggsh are basically the collections of
samples on mesh points. The transformation between themgatiy is defined by a continuous
function, has to handle the problem that a mesh sample poiti@one image could be trans-
formed to a non-mesh point on the other image. Image intatjool is exactly the solution of this
problem: it computes the image function value at a non-mesft jpising the estimation based
on the values of the neighboring mesh points. Figure 2.&@ys how to compute a transformed
image. First we assume the transformation from the inputéooutput image to be invertible.
For every voxel in the output image, we use the inverse toamsftiong—! to compute the cor-
responding position in the input image. Quite often, cqroesling points are not located on the
mesh and their intensity values need to be computed by witgipns.

Linear interpolation is often used in image registratioecduse of the trade-off between the
effort of computation and the smoothness of estimation. Palacase like Figure 2.2(b), the
bilinear interpolation is computed by

(z2 — ) (y2 — y) (z2 —2)(y —y1)

u(z,y) = u(xy, + u(xq,
1 yl) dxdy ( 1 y2) dxdy
(& — 20) (32 — v) (& — 200 — ) @4
T —x — — —
+ U(Jj‘27 yl) dlxdzz Y + U‘('IQ? y2) ;xdgy/ h )
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Figure 2.2: Image transformation and interpolation in 2D

whered, andd, are the width of voxel irc- andy-direction. A trilinear interpolation scheme for
3-D image data can be deduced in a similar way.

2.3 Voxel Similarity Measures

Generally speaking, voxel similarity measures are fumstiof transformationp, that measure
the agreement of matching. They typically compute the sttatdependency between images
based directly on the voxel intensity. Registrations usixgl similarity measures have become
more and more popular in the field of medical image analysihénlast decade. The major
advantage is the fact that they are fully automatic and redass pre-processing of the images.
This seems to be in high demand in a typical “just make it walkiical environment. In the
following, three groups of similarity measures that arerttiest commonly used in medical image
registration will be introduced. For an extensive surveymfel similarity measures, we refer
to [ZF03, PMVO03, Bro92].

Minimizing intensity difference between reference and template images is widely used for
mono-modal registration. The most well-known intensitffedtence similarity measure is Sum
of Squared Difference (SSD)

Dsso(9) = [ (u"(@) - ub(@)? de 25)

]

and the Sum of the Absolute Difference (SAD)

Desol) = / () — ()| da (2.6)
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Here(? denotes the overlapping space of reference and transfaemgaate images. Compared
to the other similarity measures, they have really simpfendons and are easy to implement.
The minimization of intensity difference is not suitable faulti-modal registration, but even
for some mono-modal registrations, they do not always warkvall. The reason is the fact
that these similarity measures are more sensitive to therregth a large intensity difference
(for instance due to bright artifacts) than to the rest withaall intensity difference, where the
important structures or image contents may be present.

Correlation (COR) of signals has been widely used for feature detectlarthe field of
image registration, it is defined as

Peo) = | u'(@)uf(z) dz. (2.7)

In practice, the variant cross correlation (CC) is more camiynused as a similarity measure for
image registration.

Jo (@) = uF) (uf(x) — uf) da

(@) = ‘
\/f9<“R("L’) —uf)? dx - \/fn(U$(w) — ug)* d

Compared to simple correlation (see Equation 2.7), crassletion is invariant to global changes
in intensity amplitude, because it accounts for the meagnsitiesu”? and @. Another im-
portant correlation measure is the correlation ratio (GR)ich was first introduced by Roche
et.al [RPA98] for image registration.

Dcc (2.8)

Jo uf(x)ul(z) dz

\/fg ulfl(x)? dx - \/fQ uly(x)? de

An advantage of the correlation ratio is that it is normalibetweert) and1.

Dcr(@) = (2.9)

Mutual Information is one of the most successful voxel similarity measures fdtirnodal
registration [PMV03]. Its definition is based on entropy gmdbability. Actually, all similarity
measures can also be interpreted from the view point of fibtyaof random variables. To
differentiate random variables from the other variabldsaadom variables have a hat over the
letter in the thesis, e.g..

When one random variable is a function of another, i.ey = f(Z), the measurement
of z can fully predicty. But in most cases, two variables are related, but not fuigdictable
from each other. Measuring tells something abouj, but not everything. Predictability can
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be examined by the joint probability density function (pgf),y), which tells us about the
co-occurrence of events from two random variables [VW97].

In the context of registration, the two random variables?érandfg, denoting respectively
the intensities of reference and template image (trangdrby ¢) at the same spatial position.
Let us define a 2-dimensional random variable (?Rﬁg). Figures 2.3(a)-2.3(d) illustrates the
possible states of probability density functionipfdenoted by, (¢), when the similarity mea-
sures are maximized or minimized. Minimizing intensityfeliEnce measures results in that an
identical mappin@R = ?ﬁ more likely occurs. The cross correlation seeks to measiuas o
affine dependency of two variables. The correlation ratpresses the level of functional depen-
dency. Ifi? and?ﬁ are independent from each other, the correlation ratioexfitts zero. If they
are functional dependent i.€% = f@g), the correlation ratio is maximized o Maximization
of mutual information is the most “unconstrained” compaiethe other approaches. It tends to
shift the random variab@ by registration to build up a number of clustergag@).

Mutual information is defined as

> p¢(§) n >~ _RTT
Dwi (o) :/ Pe(?) log ———"<— di where i = (i, 1iy). (2.10)
R p(i)py(i5) i
Functionsp(i™) andpg(i%) denote the marginal probability density functions®fandi. The
definition of mutual information can be also interpreted kmd of Kullback-Leibler divergence,
which has the form of p(i) log(p() /q(i)) di for two density functiong andg. Equation 2.10

is the Kullback-Leibler divergence between the joint ptuibity density functionp,(z) and the
one in the case of full independerm@R)p(ﬁ(?g).

2.4 Estimation of Transformation Parameters

Arigid transformation for image registration can be uniguiefined by a number of parameters,
as in Equation 2.2, the transformation Haparameters4 dual quaternion parameters add
translation parameters. The non-rigid transformationeinéd by thel-dimensional function
u. For this reason, in some literatures of registration, ngi transformation is also called
non-parametric transformation. In this section, we disdhe estimation of parameters for rigid
registration. The estimation of non-rigid transformatwiti be investigated in the next section.
Gradient descent is the general method to solve the prolfieptimization. It seeks to find a
local extremum of a function in the parameter space by tagiegs along the gradient direction
of the function at the current position. Negative gradiemtrhinimization and positive gradient
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for maximization. Let us constrain the discussion to miazimg a given similarity measurP
with respect to the unknown transformation parameteq seectorq could be a concatenation of
translations with rotation angles or with unit quaterniohise simple gradient descent is defined
as in Algorithm 1, in whichV,D denotes the gradient of the similarity measure respecteto th
parameter vectag. For a rigid transformatiop,, the SSD similarity measure is

Algorithm 1 General Gradient Decent
while t has not yet convergeib
tk+1 = tk - T- VqD(tk)
end while.

Desolbg) = / (u (@) — ) ())? da (2.11)

N

and the discretized formulation is
—R =T —R =T
Dsso(¢q) = [|U —U odg|*=|U — U,

where the image function is represented by a vectar by stacking all the pixels in a given
order. The gradient with respect to a single paramgtes computed by

—T —R —T

Vo Dsso= (U, — U ,0,U,). (2.12)

The computation of the gradient of various similarity measus discussed in [Her02]. The pos-
itive real numberr in the gradient decent algorithm is the so-called step sibéch determines
the distance approaching along the descent directionitirly, it is a good idea to adapt in
each optimization iteration. Various strategies are psegdor the automatic adaption of the step
size. An algorithm proposed in [Ven02] finds the optimalith respect to the current parameters
qr, i.et, = argmin_D(q, — 7V ,D). The step size can also be computed to make subsequent
gradients orthogonal to each other, i®D(qx), VD(qr—1)) = 0. But the most reliable way to
estimater is the so-called Armijo rule [Kos91]: Given an initial largeep sizes > 0, the factor

of reduction € (0,1) and the fixed parameter of toleranges (0, 1), the step size;, = s3*

is optimized in the sense of the Armijo rule whene {0, 1,2, ...} is the maximal integer such
that

D(qi) — D(qi — s8°°VDy) < 058 || VD, (2.13)
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2.5 Non-rigid Registration

Regarding non-rigid registration, the optimization of engarity measure is sufficient, because
the flexibility of non-rigid transformation can still lead undesired matchings, for example
cracks and overlaps of the transformation field. In conttaghe rigid registrations, a new
regularization measur& must be added to the object function as the remedy for thérampi
irregularity of non-rigid transformatiopp = RY — R<. A non-rigid transformation is usually
represented by a displacement field= = — ¢(x). The problem is formulated as finding a
functionu, such that

D(u)+ aS(u) — min. (2.14)

The parametet: weights the regular property of transformation versus thlarity of the im-
ages. Different from the similarity measufe which is also a function of images’, u"), the
regularization measuk® is only dependent on the geometric properties of the tramsfbong.

In the rest of this section, we will review various regulariz (Section 2.5.1) and briefly introduce
the variational framework for the estimation of transfotima (Section 2.5.2).

2.5.1 Regularization

Diffusion regularization is often used to solve the optical flow problem in computerovis
In the context of image registration, the regularizer caiss the gradient magnitude of the
transformation by minimizing

d
1
Sdiff(u) = § E /Q ||Vul||§ dw, (2.15)
=1

whereu; : R? — R is thel-th component of: and | - ||, denotes d.,-norm. A fast numerical

implementation based on the additive operator splittingho is proposed in [FM99, MF02].
This numerical solution makes diffusion regularizatiomyattractive for fast three dimensional
non-rigid registrations.

Curvature regularization was firstly proposed in [FM04] to as an approach for non-rigid
registration. Different from diffusion regularizatiomg curvature regularizer constrains the mag-
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nitude of second order derivative of transformation by mizing

curv Z / AUl dx, (2-16)

0,

Tm,Tm

where A is the Laplace operator, i.eAu;, = Zi:l ;. The integral approximates the
curvature in thé-th dimension of the displacement field and therefore peesaloscillations of
transformation. In theory, curvature regularization igirant with respect to an affine transfor-

mation becaus&q,(Bx + ¢) = 0.

Elastic regularization for image registration was first investigated in [Bro81]a&lc regis-
tration seeks to deform the image as an elastic object untiemal forces. The regularization
forces the deformation subject to elasticity constraiwtsje the similarity measure works like
the force resulting strain of the object. Elastic regulaitn based on the linearized elastic model
is defined as

SelaU) = / Z (Ot + O, ) + A ( divu)? dz, (2.17)
9

I,m=1

where) andyp are the so-called Lamé-constants reflecting materialgstigs of an elastic body.

Fluid regularization is another physically motivated regularization method rion-rigid
registration introduced in [Chr94]. We can imagine that deéormation fieldu is not only a
function of space but also of time, sinaeevolves from the current to the next iteration during
the optimization, i.as(x, t), wheret is a time variable. In this way, a velocity field is defined by

v(x,t) = du(x,t) + Vu(x, t)v(x, t). (2.18)

The essential difference between elastic and fluid reqalion is that a fluid regularizer does
not directly constrain the displacement fieldut the velocity fieldv.

St (1) = Selad V) (2.19)

Compared with elastic registration, fluid registration isrendeformable and allows large image
deformations while preserving the topology of the object.
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2.5.2 Variational Framework

One of the most popular numerical solutions for the minimaraproblem as in Equation 2.14
is to solve the correspondent Euler equation

flu)(xz) + aAlu](z) =0 for = € (2, (2.20)

where f and.A are respectively the first variations of the similarity meaa<D and the regular-
ization termS. Assuming the objective functidh(w) is sufficiently regularized in the function
spaceF, the first variation ofZ (u) with respect tau € F in the directionk € F is defined by

ST(u, k) = lim 2R = T(w)

e—0 €

(2.21)

If w minimizesZ, thendZ(u,k) = 0 for everyk € F. Let us take thégs as an example to
compute the variation:

5Sa(w, k) = lim~(S(u + ck) — S(w))
_ hm—/z I (it + eh) 3 = [V 3) da

— hm—/ Z (IVw|* + €| Vk||* + 2eVu,VE — || V||?) dee

= /Z Vu, Vi) d

29

If Neumann boundary conditions are imposed, i.e.,

(Vu,m) = (Vk,n)=0 for x € 9,
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wheren denotes the outer normal unit vectoras®,

d d
/Z(Vul,Vk:l) de = /ZAulk‘l dx
(0] 2

h = /Q<Zlu,k> dx
_ /Q (Aat [u], k) da.

HereA is a Laplace operator. In the similar way, the variation giularization terms are com-
puted as

Agir[u] = Au (2.22)
Aanfu] = Au (2.23)
Acadtt] = pAu+ (A + p)V dive (2.24)
Anilu] = pAv+ (A + p)V dive. (2.25)

All operatorsA in equations 2.22-2.25 are linear operators applying oruttkmown displace-
ment fieldu, which can be formulated as matrix multiplications if theléfuiequation is repre-
sented into a linear equation system.

The variation of similarity measures, the so-called forrents are computed by

Fssolu] = (ufi(z) — vl (z — u))Vul (z — u) (2.26)
foclul = (Go L) @)V (z — u) (2.27)
forlul = (G, = L)) Vu' (z — u) (2.28)
fulu] = (G, L@V (z — u). (2.29)

o~ o~ o~

In above equationd,©©(i), L°R(2) and LM (7) are the functions of the probability density func-
tions of the 2-dimensional random variable of image intigesj see the discussion on page 17.
They are convoluted with a Gaussian filtéy, because the joint probability density functipp
must be estimated by Parzen kernel with width

pu(@®) = = /Q G, (Lu(x) - 7) da, (2.30)

wherel,(x) = (u"(z), u}(x)) is a 2-dimensional intensity function. The exact mathecadti
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formulations of L°C(3), LR() and LM (4) are out of range of this work. We refer to [Her02] for
the further reading.

Regardless of the chosen similarity, the associated fanece f is always non-linear with
respect to the unknowa because of the gradient field of the deformed templaté (z — u).
Consequently we cannot analytically solve Equation 2.2Bavit an iterative method. Assuming
the vector functioru is sampled and the sample values are ordered into a disasrelter@), the
linear operator can be formulated as a matrix multiplioatice A[u] — Aﬁ, typically a finite
difference approximation is used. A simple fix-point itéwatscheme like

(k+1) 1 (k
U

= LA TFY with TV 2T (2.31)
«
can be used to solve Equation 2.20. In each iteration, tloe fierm f based on thes in the last

step is the right-hand vector. More often, a time-steppieigtion scheme is employed
ru(z,t) = Flu)((e, 1) + aAlul(@,t). (2.32)

Now the unknowru becomes a not only spatial but also time dependent funaiibith evolves
during the iteration. The basic idea is that the solutionagii&ion 2.20 is found, as the solution
converges, i.ed;u(x,t) = 0. Equation 2.32 is often solved in a semi-implicit iteratbeheme

At (z, 1) — adu®D)(z, t) = Fl(u®)(x, 1)) (2.33)

A time-stepr > 0 is introduced for the time discretization afgh**V(x, ¢) is approximated
by (u*+1) — 4 ®) /7. In the end, we obtain the iteration scheme like

k+1 k k 0
T — (1= raa)y (T 4 F ) with TV = 0. (2.34)

No matter if the fix-point or the time-stepping iteration sofe is used, the most expensive
computation is always the inversion of the matrix. Many éffi¢ numerical solvers, e.g the
multigrid method, have been developed or adapted to thislgma The parameter does not
have to be pre-fixed, it can be dynamically determined basethe principles discussed in
Section 2.4.
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2.6 Feature based Registration

Feature based registration methods rely on the limitedfdettures generated from image con-
tent, such as identified points, segmented binary strusturebject surfaces to register images.
Compared to intensity based registration, feature basedate more likely emphasize match-

ing of image contents, not of intensity patterns. Automatitteractive selection of the desired

features is a pre-condition of the registration, thus, theref feature location may influence the

quality of registration. In this section we will briefly digss various methods of feature based
registration.

2.6.1 Point based Match

Point based registration seeks to find a transformationagpatoximately aligns two groups of
given points in two spaces. The points can be anatomicahiarkk interactively selected by the
user e.g. fiducial landmarks, or automatically identifiedalyorithms e.g. salient points. They
can also be feature points with some given geometrical ptiegee.g, corners or local curvature
extrema.

If the correspondences between two groups of points aregikie transformations usually
can be determined analytically. For rigid transformatjohsan be formulated as a least squares
fitting problem: given two groups of points= (t,,t, ..., t,,)" andr = (r, 7, ..., m,.)" with
one-to-one correspondence, search for the transformatimmimizing the squared Procrustes
distance described by

> ltsod —r*. (2.35)
s=1

The translation vector can be computed from the differerate/éen the centroidsands, sub-
sequently the rotation matrix can be determined by singtdare decomposition (SVD) of the
correlation matrix

T
K = PTQ= |t —fty—1%,. t, —1 } [ L= TPy — T,y T, — F ] . (2.36)
i.e. K = UDVT and the rotation matriR = VU?.
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Landmark based interpolation

The transformations can also be deformable. The problerhetmreated as a point based interpo-
lation where landmark correspondences are given spara@damulti-dimensional scalar field.
We know the deformatiog(t;) = r; and wish to estimate the value of the deformation field at
the other spatial locations. There are the kriging [MKGL 36in-plate spline [Boo89] and radial
basis function approaches [Mic86]. Each method uses differonstraints and assumptions to
estimate the deformation outside the landmarks. Here veflypsummarize the general solution
of the thin-plate spline method. An extensive discussionlmafound in [Roh01].

For thin-plate spline method, the deformation is defined setof landmarks. Usually,
the landmarks are pairs of points that are selected frometieeance and template image. The
deformation needs to exactly match these landmarks andsmepth elsewhere. Because we
handle SPECT and CT volume data here, let us constrain tbassi®n in a 3-D case, where
the coordinate of a three-dimensional pointeis= (1, x5, 23)7. Assume that, pointst, =
(t3,t5,t5)T need to be transformed to new positions= (5,35, 75)7, respectively, the desired
transformation with the manne(x) = (¢, (x), p2(x), #3(x))” is constrained by

¢1(ts) = Tfa ¢2<ts> = TS? ¢3<ts> = Tg' (237)

According to the theory of landmark based interpolationj&4), pointx that is transformed by
such functionp that

M N
oi(x) = Z alg;(x) + Z bjo(x,ts),l =1,20r3. (2.38)
j=1 r=1
Iine;; part radius‘t;ase part

In the linear partg;’s are the linear basis function given pyz) € R, whereM = 4 and

g1(x) =1, g2(x) = 71, g3(x) = 22, ga(T) = 3. (2.39)

In the radius base pa#t(x, t,) is usually a function of the radius, = x — t,. The coefficients
in Equation 2.38 are the solution of the equation system

(&) (2)-(3)
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where

iy =o(ti, b)),

i=9;t),i=1.. ngj=1., MM=4

A = (ay,as,a3),a; = (all, ...,aiM)T,l =1,2 or 3,
B = (b, by, b3),b, = (by,....,b)*) 1 =1,2 or 3,

= (uy, ug, uz), u; = (uf,...,u)*)", 1 =1,2 or 3.

Q

G

In order to ensure tha¥ is invertible, we choose the basis function of a thin-plalee interpo-
lation, o (x, t,) = ||h||%log ||hs]|2 in two dimensions and (x, t,) = | k|| in three dimensions.
There are many functions which also ensure a nonsingulainaedible X' [Buh03].

Iterative closest point (ICP) algorithm

For matching the point sets without one-to-one correspocelefor example, matching the sets
of salient points detected from two images, the most widalgdumethods are based on the
iterative closest point (ICP) algorithm. In the followirthe basic concept of the ICP algorithm
is introduced. We refer to the survey [RLO1] for its variants

Let say that we have a fixed point cload= (t,,t,,...,t,,)” and a floating point cloud
r = (ry,re, ..., frnfs)T, where numbers of two point groups are normally differest, i, # n..
We want to estimate a rigid transformatigrto match them. In each iteration, the ICP algorithm
actually selects the closest points as correspondencasingtance, in the:-th iteration, the
floating point cloud is moved by current transformation amdénoted as*). The searching
operation can be denoted as

t® = c(r® ¢). (2.41)

Among the fixed points cloud, the operatiorC looks for the closest point, with respect to

-----

Then, the ICP algorithm calculates the transformatiofor minimizing the distance between
point sett®) andr®):

46,7 0) = T34~ 10 7|2
N
s=1

The transformation can be calculated based on any of theselethods: A SVD based method
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by Arun et al. [AHB87], a quaternion method by Horn [Hor87h algorithm using orthogo-
nal matrices by Horn et al. [HHN88] and a calculation basedloal quaternions by Walker
et al. [WSV91]. These algorithms show similar performannod atability concerning noisy
data [LEF]. Similar to Equation 2.41, the least squaresstegfion can be denoted as:

(¢,d) = Q(t™), r)) (2.42)

The ICP algorithm can now be stated as follows:

Algorithm 2 Iterative Closest Point (ICP)
giventwo meshest, r) and maximal iteration numbeé¥, ..
setg(z) = x andt® =t
for k=0, ..., Nyay dO

Compute the correspondenaé&?) = C(r*), t)
Registration(¢™®, d) = Q(tP, r")
Transform the floating pointg:*+1) = ¢®*) ()
if convergencéhen
break
end if
end for

2.6.2 Structure based Registration

Structure based methods register images by aligning thenamstructures found in both im-
ages. In [MV97, MCOS02, ZF03] the most important structure based registratiethods in
the last decade have been summarized. The most commorustsjctuch as surfaces, edges or
contours, are represented by a set of feature points, whitkeasily be handled with point based
matching methods, for instances, the ICP based methodrpegsabove.

A kind of “Head and Hat” algorithm is a simple but also widelged method in clinical
practice to register 3-D CT, MR and PET images. First the skirfaces in both images are
segmented with less computational complexity. Then therdlgn models the contours from
the higher resolution image as a surface (“header”) and dm¢oars of the lower resolution
image a series of points (*hat”). The optimized rigid tramsfation is determined such that the
mean squared deviation between “hat points” and “head aghi®minimized.

The matching of distance mapping is another popular wayheralignment of segmented
binary structures. The basic idea is that the surface orocorfeature is represented by a
distance function. An comparative survey of Euclideanadise transform algorithms can be
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found in [FBTCO7]. Then the distance functions of two images rigidly [Bor88] or non-
rigidly [Par03] registered to each other. The drawback ghsentation based registration is that
the accuracy of registration is influenced by the error ingbagmentation step. Although the
registration part is commonly automatic, the segmentatafrcommon structures in reference
and template images quite often requires user interaction.

2.6.3 Simultaneous Segmentation and Registration

Several attempts have been published in literature to dpualethods for detecting the fea-
tures and aligning images simultaneously. In 2001, theHiybtid segmentation and registration
framework was proposed in [ZYKO1]. The method utilizes maltannel Chan-Vese active con-
tour to segment the desired edge features and find the ofEmctitiean transformation between
images. In 2002, Moelich improved this framework by sulstiig the Chan-Vese active contour
with logic models that allow better control of the segmentatind a richer context information
about dissimilarity of images [MCO03]. In 2004, Chen preséna joint framework of classifi-
cation and registration for MR data [CW98]. This was achikleg a maximizing a posteriori
(MAP) model. In 2005, Young introduced a method that combertial differential equations
based on morphing active contours with Yezzi and Zolleiggoathms for joint segmentation
and registration [YLO5]. In the same year, a statisticainfesvork using an Expectation Maxi-
mization based algorithm appeared in [PfI5]. The approach simultaneously estimates image
inhomogeneities, anatomical label-map and a mapping frematlas to the image space.

Due to our knowledge, most the existing approaches areatestto lower dimensional rigid
transformations for image registration. Recently, in [BRDRRO09] a novel approach for non—
rigid registration by edge alignment was presented. Theidey of this work is to modify the
Ambrosio—Tortorelli approximation of the Mumford—Shahaed which is traditionally used for
image segmentation, so that the new functional can alsmatithe spatial transformation be-
tween images. This method is actually the theoretical foretd of the one-to-one edge matching
method introduced in the next chapter.
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Figure 2.3: Sketch of possible states of the joint probibilinction by minimizing intensity
difference, cross correlation, correlation ratio and ratitaformation. Axes™ and?i denote the
random variables of the gray levels (0-255) of referencetantplate images, respectively. The
gray levels shown in sketches tell us the degrees of coratenmtrof joint probability functions.
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Chapter 3
One-to-one Edge based Registration

Edge features, usually determined by intensity discornites) reflect the underlying structure
information among the images. Detecting and matching edgtufes are two important and
challenging image processing problems in the fields of cdaerpusion and medical image anal-
ysis. Typically, solutions are developed for each of thege problems mutually independent.
However, in various applications, the solutions of thesdfams depend on each other. Tackling
each task would benefit from prior knowledge of the solutibthe other task. This advantage
has already been pointed out in [KYZ01]. In this work, edgedifferent images are segmented
by an active edge model, similar to the one proposed in [CV&id images are simultaneously
matched to each other with an affine transformation.

In 2007, Mumford—Shah model [MS89] was expanded in [DRO6RDE with the capability
of matching the edge features of two images. The edge featmeerepresented by two different
cartoon approximations of the images. A smooth dense wapinction defines the mapping
between the edge features. The modified Mumford—Shah medktgo simultaneously tackle
two highly interdependent tasks: edge segmentation andigmhregistration. However, the
non-symmetrical functional definition and the transforim@imodel constrain the applicability
of this model. This drawback will be further discussed intier3.2.

In this work we introduce a new symmetric model for edge matghased on the Mumford—
Shah model as well. We use two relatively separated disuaitisets to explicitly represent the
edge sets of the associated images. For the ambiguity pnadifiehe correspondence, we apply
the idea of consistent registration [CJ01, JC02] to sinmaltaisly estimate the forward and re-
verse transformations and to constrain one transformadidre the inverse of the other one. In
this way, the edge sets of the images have equal influencee@utie registration. Thus, the pro-
posed method is one-to-one in the sense, that it allows &rméte one-to-one correspondences
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between the edge features of two images. Symmetric oned@dge matching is not only more
sound in mathematical sense, but also very important in adorange of applications, where
one is interested in determining the correspondence ofdhee structure in different images.
For example, non-rigid registration for atlas construt{lRFS03, MTTO03], historical biological
images [STUO5, CSMO06] or motion estimation.

This chapter is organized as follows: In Section 3.1, weothice some basic knowledge
about the classic Mumford—Shah model, the approximati@pgsed by Ambrosio and Tor-
torelli and the Finite Element approximation as a prepangtdr the discussion of the proposed
method. In Section 3.2, we present the non-symmetrical MuirShah model for edge match-
ing and discuss the potential drawbacks of this model. TheBgection 3.3, the symmetrical
model is introduced, including functional definitions, r@dional formulations, numerical im-
plementations and algorithm. In Section 3.4, we study tlrampater setting of the algorithm
and show experimental results. Finally, we summarize ththogeof one-to-one edge based
registration in Section 3.5.

3.1 Fundamentals

3.1.1 Mumford-Shah Model

In their pioneering work [MS89], Mumford and Shah proposednodel an image as follows:
For an image function : 2 — R on animage domaif® ¢ R with d = 2 or 3 and non-negative
constantsy, 5 andv, the Mumford—Shah (MS) functional is given by

Eys(w, K) :%/(w—u)de
0
+é |Vw|2dac+sz_1(K).
2 Joux 2

(3.1)

By minimizing this functional, the noisy image functien) has been represented by a cartoon
set(w, K), wherew : {2 — R is a reconstructed noise-free piecewise constant funotibiie

K is a set of discontinuity if2. The first term measures the degree of fidelity of the approxi-
mationw with respect to the input data The second term acts as a kind of “edge-preserving
smoother”, which penalizes large gradients.oin regions except of<, i.e. 2\ K, while not
smoothing the image in the edge set. The last thfin' denotes thd — 1 dimensional Hausdorff
measure, which is used to regularize the reconstructian afd control the length of the edge
set. Existence theory for Mumford-Shah model establishelCDR02] proposed to consider
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the minimization of an equivalent energy dependingoanly. The Mumford-Shah model has
turned out to be versatile and has been applied widely in és@gmentation, denosing, shape
modeling, image inpaint and data-reconstruction. See PBA&5V00, CV01, Fri09] and the
references therein.

3.1.2 Ambrosio—Tortorelli Approximation

It is difficult to minimize the original Mumford—Shah funotial in Equation 3.1 because of
its implicit definition of the discontinuity sek’. Various approximations have been proposed
during the last two decades. In this work we focus on the AmibreTortorelli approximation
with elliptic functionals [AT90].

In the Ambrosio—Tortorelli (AT) approximation the discondity set K is expressed by a
phase field functionv. This scalar functiony approximates the characteristic function of the
complement ofK, i.e.,v(xz) =~ 0if ¢ € K andv(x) ~ 1 otherwise. The approximation
functional is defined as follows:

Eirfw, v] :% /Q(w—u)zdm+§/gu2||w||2dm

N 1 (3.2)
- 2 s . 2
+ 2/Q(€||VU|| +4€(U 1)%) de,
The second term, still working as an “edge-preserving sh@dt couples zero-regions of
v with regions where the gradient aof is large. The following “coupling” betweew andwv is
energetically preferable:

(3.3)

~ 0 where||Vw| > 0,
v(x)
~ 1 where||Vuw| =~ 0.

The last term approximates the edge length, i. e.dthel dimensional measurg?~*(K) of
the edge sek’. The parameter controls the “width” of the diffusive edge set. Mathemallica
speaking, the sequence of functionalg I"—converges to the Mumford—Shah functional, i.e.

I —lim Es = Eys.

e—0

For a rigorous proof and further explanation we refer to [823r
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Figure 3.1: A 2-D example of Ambrosio—Tortorelli approxitioa. (a) The original image. (b)
The piecewise constant functian (c) The phase field function

3.1.3 Finite Element Discretization

Finite Element (FE) methods are used in this work to dispeetiquations. The whole image
domainy? is covered by a uniform rectangular me&ston which a standard multi-linear Lagrange
finite element space is defined. We consider all images asoéetsxels, where each voxel
corresponds to a grid node 6f Let NV = {x, ..., x,} denote the nodes @. The FE basis
function of noder; is defined as the piecewise multi-linear function that figlfil

1 i=j
pi(x;) = o
0 i#j.

Figures 3.2(a) and 3.2(b) show the basis functions in 1-DZaBdspace. The FE-spaggis the
linear hull ofy;, i.e.
V = span(pq, ..., Pn)-

The FE-space of vector valued functiongX§ the canonical basis of this space, is

P1€1y o5 Pn€ly ..oy P1€4, ooy PnCd,
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wheree; is thei-th canonical basis vector &“. In FE-space scalar and vector valued functions,
e.g.u and¢, are approximated by

u ~ U:= Z u(x;)pi(x) and

¢1 Zz 1@(%)%( )

0¥ Do ¢d($z’)%(m)

The FE approximation of a function can also be representedvegtor that collects the function
values on the nodes, e.g/ := (u(zy), - u(x,))” and  := (51), - ,@)T where ®, =
(¢i(x1), -+, ()T, In this work we denote continuous functions by lowercasets (e.g.
u or ¢), their FE representation by “over-lined” uppercase tstte.g.U or @) and their vector
representation by “over-arrowed” uppercase letters (Ef).g).r 5).

/] L\

Xi-1 Xi Xi +1 X

(a) 1-D basis functions. (b) 2-D basis function in the rectangular mesh.

Figure 3.2: Basis functions of the finite element method.

3.2 Mumford-Shah Model for Edge Matching

A promising way to extend the Mumford-Shah model for defdstaaedge matching is intro-
duced in [DR0O6, DRRO09]. Given the referenct and the template imagé’, the functional is
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Figure 3.3: Non-symmetric Mumford—Shah model for edge tiat: «? and” are the given
reference and template images? andw” are the restored, piecewise smooth functions of image
R and imag€l’. K is the combined discontinuity set of both images. Functiorpresents the
spatial transformation from imageto imageR.

defined as

EMSreg(wR, wl K, o) = i / (wR - uR)2 dz + @ / (wT — uT)2 dz
Q Q

2 2
+ b Vw??dz + b |Vw? |?da (3.4)
2 K 2 N\Ky

n ng‘l(K) + Cred[@].

Herew®™ andw are the reconstructed piecewise constant functions otfieeance and template
images. ¢ is the non-rigid transformation thd@t denotes the edge-set of reference image
while K, denotes the deformed edge-getunder the transformatiop. Cregl¢p] is the regu-
larization functional of the transformatiap, which we will further discuss in the next section.
Matching the edge between two image data-sets is reflectaebfourth functional term in
Equation 3.4. That is, in this model the edge-Eeenergetically not only prefers to couple the
gradient of reference imagéw’ but also to be transformed to couple the gradient of template
imageVuw?.

A major drawback of the above Mumford-Shah based matchiitg @&symmetry with respect
to edge features and spatial mapping between them. The scbkthe model is shown in
Figure 3.3. The definition of the similarity measure is nahsayetrical: a joint discontinuity set
K is used to estimate the edges of the restored template iffiaayel the deformed edges of
the restored reference image The model of the spatial mapping between the two images is
not symmetrical: the transformatiaf in Figure 3.3 is only defined in one direction, from the

38



R T

w w
o &
BPre
& & v

KR Kt

Figure 3.4: Symmetric Mumford—Shah model for one-to-ongeamatching andu” are the
given imagesw” andw? are the restored, piecewise smooth functions of imfaged imagel'.
Kpr and Kt are the discontinuity sets of the imagesndT’, respectively. Function represents
the transformation from imagdg to imageR and functiony represents the transformation from
imageR to imageT'.

imageT to the imageR. The asymmetry of the similarity measure and the singlectoral
transformation, as pointed out in [RK06], cannot ensur¢ tiia method is consistent. That is,
if one computes the transformati@hfrom 7" to R and then switches the roles dfand R to
compute the transformatiog# from R to 7', it is uncertain whether these transformations are
inverse to each other.

3.3 One-to-one Deformable Edge Matching

In this section we propose a new symmetric model for edge mmaydased on the Mumford—
Shah model. Figure 3.4 shows the scheme of this symmetriematfe use two separated
discontinuity sets z and K+ in Figure 3.4) to explicitly represent the edge sets of tl®eis
ated images. For the ambiguity problem of the corresporejeme apply the idea of consistent
registration [CJO1, JCO2] to simultaneously estimate travdrd and reverse transformations
and to constrain one transformation to be the inverse of thermne. In this way, the edge
setsKr and K of the imagesk andT’, respectively, have equal influence on the edge registra-
tion. Thus, the proposed method is one-to-one in the sensé Hilows to determine one-to-one
correspondences between the edge features of two images.

The major task of one-to-one edge based registration iscstett follows: Find an appropri-
ate transformatiop such that the transformed template imagdeo ¢ becomes similar to the
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reference image [Mod04]. The degree of similarity (or dissimilarity) is duated using the
gray values:* andu” or certain features such as edges. We consider an edge basetng
method that seeks to register two images based on joint edgegon and registration. Thus,
the algorithm simultaneously has to fulfill the two followjitasks:

e Detection of the edge features from two noisy images.
e Registration of two images using these detected edge &=atur

The first task is more related to image denoising and edgetitaiefor which we simply em-
ploy the Mumford—Shah model as the feature representaliopractice, the discontinuity sets
are approximated by phase field functions as in Equationf3A2nrosio—Tortorelli approxima-
tion. In this algorithm, the four unknowr{sv®, w”, v, v*} are estimated, wherev?, v?) and
(wT, vT) are the feature representationsiofindT’, respectively.

The second task is more related to image registration. Therigal transformation from
imageR to imagé€l is mostly different from the inverse function of the transhation from7" to
R. In order to overcome such correspondence ambiguitiespiievfthe method of consistent
registration [CJ01] to jointly estimate the transformatan both forward and reverse directions.
We denote the transformation froii to R as ¢ and the transformation fronk to 7" as .
Functionsp and+) are estimated to match the two feature representatiofisv?) and(w?, v7)
to each other. Additionallyp ande) are required to be smooth and approximately inverse to each
other. For the desired spatial properties a regularizdtiontional and a consistency functional
are proposed to constrain the transformations to satisfgethequirements.

3.3.1 Functional Definitions

The six unknowns - the restored reference imade the restored template imag€’, the edge
describing phase-fields® andv” of the reference and the template image, respectively,fend t
deformationsp andt> from the template to the reference domain and vice versaesimmated
by minimizing a joint functional with the following structe:

Esym = Eac + ptlcc + AERec + KEcon, (3.5)

whereu, A andx are nonnegative constants which control the contributadrthie associated
functionals. The detailed definitions of these functioratsgiven in the following.
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Auto-coupling Functional

Epc =Cac[w™,v™] + Cac[w”, v"]

=Epr[w", o] + Egr[w”, 0],

(3.6)

Here E5; denotes the functional of the Ambrosio—Tortorelli approation whose definition
has been given in Equation 3.2, wherds replaced byu” or u” respectively. The single
auto-coupling cost function, e.g’ac[w?, v%], essentially makes use of the mechanisms of the
Mumford—-Shah model and its Ambrosio—Tortorelli approxiima to estimate the feature rep-
resentation %, v?) of the imageR, such that the piecewise smooth functie®f optimally
couples with the phase field functieff in a manner similar to Equation 3.3. Roughly speaking,
this auto-coupling functional is responsible for detegtihe edge features of each image and
for defining the internal relation between the phase fieldtion v+* (andv” respectively) and
the piecewise smooth functian® (andw” respectively). In this functional the segmented edge
features of the two images, i.ew®, v¥) and(w?, vT), are totally independent of each other.

Cross-coupling Functional

Ecc =Ccc[w®, v7, ¢] + Ceclw™, o7, 9]

[ o v b @7

1
+ —/@Row Vo™ |? de.
2 Ja

This functional is responsible for matching the edge feztwf the two images. It favors spa-
tial transformationsp and+) which optimally couple the feature representationg, v*) and
(w?', vT) in the following way:

- 0 where||Vwf| > 0,
v o=

1 where||Vuf| ~ 0.

.} 0 where[|[Vuw"|| >0,
vitor) x

1 where||Vuw?]|| ~ 0.

By definition, this functional jointly treats segmentatimd registration: Regarding registration,
the functional acts the similarity measure based on thenmgdiately segmented edge features.
Instead of directly matching the phase-fields function (- v”) and the smooth functions
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(wf « wT), the functional seeks to match the gradient field of the gmfumction of one image
to the phase field function of the other imagé’ — V', vT «+ Vw!). Regarding segmenta-
tion, this functional also imposes the influence of the edgéures segmented in the other image.
In the following subsection we will see that both spatiahgf@rmations are controlled by regu-
larization. The regularized spatial transformations legldcal edge feature correspondence.

Regularization Functional

Erec =Creg|®] + Crec|?]
1
- / 1J(¢— )| da (3.8)
1 2
5 [ 9w =) o

where J(-) denotes Jacobian of vector-value function. Hére = — x denotes the identity
mapping andp — 1, ¢ — 1 the displacement fields correspondinggoand ). Generally
speaking, the regularization functional is used to rulesigular transformations which may
lead to cracks, foldings, or other undesired propertieshigiwork the regularization constraint
is the sum of the norm of the Jacobian of both displacememsfieBee [AAF99] for further
explanations of regularization based on the Jacobianswtormations.

Other candidates for regularization constraints are fieksstic [Bro81, CJIM97] and viscous
fluid [BNG96, CIM97] regularizations. These two constraimtake use of a continuous me-
chanical model to regularize the transformations [Gur84hother alternative, which already
ensures a homeomorphism property, is the nonlinear elasjidarization. It separately deals
with length, area and volume deformation and in particuéargbizes volume shrinkage [DR04].

Consistency Functional

Econ =Ccon|@, ¥ + Ceon|®, @)
1
=3 | 180 (@) ~al* da (3.9)
1
3 [ 1o o)~ ol o

The forward and reverse transformatiahgnd are purely independent of each otherfig:
and Ereg and are implicitly correlated ivcc via the matching of the two image / phase-fields

42



pairs, i.e. (w?,v7 o @) « (w?,v? o 4p). The consistency functiondlcoy in Equation 3.9
explicitly specifies the relationship between forward aawrse transformationgicc is minimal

if and only if p o () = ¢ = ¥ o (), i.e., ~ ¥~ andyp ~ ¢~'. The transformation
in one direction has to be the inverse function of the traimsédion in the other direction. For
registration, this consistency constraint favors an itibker and bijective correspondence of the
segmented edge features.

3.3.2 Variational Formulation

We assume that the minimum of the entire eneffigyy, is the zero crossing of its variation with
respect to all the unknowrds?, w?, v®, vT ¢, 4 }. The definition of the entire function@lsyy,
as well as of each individual function&lhc, Ecc, Erec and Econ, IS Symmetric with respect to
the two groups of unknowns{w?, v, ¢} and {w”, v, 4}. Thus, we restrict ourselves to
the description of the computation of variations with regge {w’, v, ¢}. The variational
formulas of the other group can be deduced in a complemewiayy

Given an arbitrary scalar test functione Cg°(£2), we obtain the variations with respect to
w? andv®:

<awRESYM7 19) = <awREAC7 19) + 1% <awRECC7 19>

:/ a(w? — ) + ﬁ(vR)2VwR - Vi de (3.10)
o :
+/ pv! o @)Vl - Vi de,
2

(Opr Esym, V¥) = (Oyr Enc, ¥) + p (Oyr Ecc, 9)
:/ 15} HVwRHQURﬁ + K(UR — 1) de
0 46
(3.11)
+/ veVol - Vo dzx
(%
+ / u||VwT o ¢_1||21JR19| det J(v,b_l)| dex.
2
Here we have used the transformation rule
[ BIveT P o de
2
B / BIvw” o g2 (02| det J ()|~ da
w(2) 2
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and+(£2) = 2. Given an arbitrary vector-valued test functiore C5°(£2, R?), we obtain the
variation with respect te:

(05 Bovm: €) = (99 Eec, )+ M0 Erec, C) + k(g Beon, ¢
= [ ulV o s)vr 0 ¢)-cd
+ /Q N () : J(C) da (3.12)
+ [ Ko owl(@) — o) [Copl(a)da
+ [ K o Bll@) - 2) I ((@(a) -C(z) do.

Due to the high complexity of the minimization problem (fosgalar functions and two
vector-valued functions) the unknowns are estimated in stmtation-Minimization type pro-
cedure:

Algorithm 3 Estimation-Minimization type Procedure
= denote the unknown functions aid:= E|[fy, ..., f,,] denote the functional.
_____ = has not yet convergedb
for i = 1tom do
fi = argmin; E[f1, ..., fii1, f, fiyr, s fn]-
end for
end while

.....

3.3.3 Solution of the Linear Part

First we introduce generalized mass and stiffness matnwaeich play the key roles in the dis-
cretization of Equations 3.10 and 3.11 using FE approxionati

Given a functionf(x) : 2 — R, the generalized mag¥l | f| and stiffness matriceE|f] are
defined as follows:

Myl = ([ r@a@e dw)m (3.13)

Z7j

o] = ([ f@ve): V@) (3.14)

Both matrices arex x n-dimensional, where: is the number of nodes in the FE space. Both
matrices are sparse, i.e. most entries are zero. An entrgriszero, if and only ifi = j
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or nodei andj are adjacent in the mesh. To compute the integrals in thesee entries
we use a numerical Gaussian quadrature scheme of order(tfirelSW92]). Obviously, the
common mass matridZ and stiffness matripd. are just special cases of the generalized ones,
i.e. M := MJl]andL := L[1].

The variations in Equation 3.10 and 3.11 are linear with @espo the unknownsy* and
v! respectively. In each iteration of the Estimation-Miniatipn procedure, the zero-crossings
are simply calculated by solving the corresponding lingatesns. Replacing the continuous
functionsu* andw” with their FE approximationg’?(x) = >7 (]7?'%(:1:) andWE(z) =
Yoy I/I?%i(m) and considering basis functiops andy; of the FE space as test functions, the
equation for zero crossings (see Equation 3.10) is equittde

oS WE [ pi@)ei@)da

(3.15)

:azz ur / pil@)p)(@) do

i=1 j=1

Using the notations of generalized mass (3.13) and stsfnestrices (3.14), Equation 3.15 can
be rewritten as
—

(aM + BL [(v™)?] + pL [(v" 0 ¢)*]) WH = aMUF. (3.16)

Similarly Equation 3.11 leads to

(uM [V o | det J(35)] ]

(3.17)
+8M [ |7’ } + M+ ueL) Vi— —MT.
€
Here T denotes the one-vector, i@, - -- ,1)T. Analogously, we get the linear systemsfﬁ“
—
andV'7:
— —
(aM + BL [(v")?] + pL [(v™ o 9p)?]) W = aMU”. (3.18)
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(3.19)

+6M [HWTH ] + M+V€L)VT M.
4e

The linear equation systems 3.16 - 3.19 are solved with aoptbttoned Conjugate-Gradient
(CG) method. For the theory of CG method, we refer to [HS52].

3.3.4 Solution of the Nonlinear part

Equation 3.12 shows that the variation of energy is nonfingth respect to one of the trans-
formations. Thus, the unknown transformation cannot bienes¢d by solving a linear system.
Instead we employ a regularized gradient descent methaeradively find the zero-crossing:

k+1) k)

3 =g " gracgf’E[@(k)], (3.20)

where grag E[® )

] is the regularized gradient with respect to the unkn@vand a metrieo,,
and7® is the step size. In the following, we introduce the compataof grad’ E gb( )] and

the estimation of*.

Regularized Gradient flow - grad>” ¥ [E(k)]
Optimization of the functional is usually updated in theediton of the gradient descent. How-
ever, due to the highly complex functional, the common gratiilescent could be easily trapped
by the large amount of local minima in practice. For this cgashe gradient flow is regularized
in the sense that the target minimum can be reached by a smpatittfrom the initial guess,
while irrelevant local minima are ruled out by a regularineetric.

Various regularized metric used for image registrationehlagen summarized in [CHRO02,
Dro05]. In this work we choose the Helmholtz type operator= 1 —"—;A forc € RT. The
metric representingl is

2

wa(alang) (¢17¢2)L2+ (J¢1,J¢2)

Here(-, -);- denotes the intrinsic scalar productiof. This regularized gradient combined with
the time discretization is closely related to the iteraflWehonov regularization, which leads
to smooth paths from the initial deformations towards theodeminimizers of the matching
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energy. For theoretical details we refer to [SWO00, CHRO2ROP). In our implementation, the
regularized gradiergradch@(k)] is computed in two steps:

1. Compute the variation
%E@(k)] = <54—>ESYM @Uf)]? C>

according to Equation 3.12, where the integrals are condpwith a Gaussian quadrature
scheme of order three and the test functions are the candsisis functions of?, see
Section 3.1.3.

2. The representation of the metric in FE-terms is
—_ = 0_2 e e
@o(@1,85) = (M + 5 L) 1 - &,
which leads to

aradze BE"] = (Myy + fg—QLb.,)_1 (05 2™)) .

7

Here My, andL,, denoted x d block matrices with the standard mass and stiffness matri-
ces respectively on the diagonal positions, and zero neatoo the off diagonal positions.
We uses = +/10h, whereh is the mesh resolution. The solution of the linear system is
computed by a singl&’-cycle of a multigrid solver.

At this point, we see that the principle difference to “claak gradient descent methods is that
the regularized method does not use the primitive varidiittra regularized (smoothed) one as
descent direction.

Armijo-rule - 7®*)

The step size of the gradient flow is determined by the Armije-[Kos91], choosing the largest
7() such that energy is minimized in a successive reduction rule

The natural way in the Estimation-Minimization procedusda estimate the step size for
each transformation individually, i.e. estimatgfor the transformatio® then estimate for
U. However, ifr andr are estimated sequentially in each iteration, the comsigtRinctional
in Equation 3.7 prevents; and r; from being large, because large individual step sizes will
largely increase the consistency functional. Consequethig regularized gradient descent re-
quires a large number of iterations to approach the mininmuararder to solve this problem, we
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simultaneously estimate both transformations and compneestep size for both of them:

5(164-1)

@(k’-‘rl)

5(/6)
@(k)

(k) —(k)
radl° E[@" W
_w [ gradie B¢ ¥ ] (3.21)

o k) (k)
grad’ B[, ]

Since® and¥ are updated at the same time, the consistency energy dopemalize a large
step sizer® any more.

Let © := [0,¥]", gradk[0)] := [grad’” E, grad” E]” and E'[6] = [E'[®], E'[V]]". We
define the condition for the Successive Reduction Rule (SRR)

ERE(;[@(k) — T(k) . gradE[@(k’)]] — EREg[@(k)]

(E'[6W], gradi[0]) g

1
1

The step size®) is estimated as in Algorithm 4. The regularization of thedigat and the

Algorithm 4 Adaptive Step Size Estimation

Initialize 7(*) from previous iteration:
if kt=0thenr® =1.0
else 7k = 7(k-1)
Find the largest® fulfilling SSR:
if SSR succeedben
do 7*) = 27%) until SSR fails
else
do 7® = 0.57®) until SSR succeeds
end if

adaptive estimation of the step size allow the regularizedlignt descent method to perform
more efficiently than the classical ones. In most cases wdiusgradient descent steps to
estimate the transformations in each iteration of the Eaton-Minimization procedure.

3.3.5 Multi-scale Algorithm

In order to avoid being trapped in local minima, the algaritemploys a spatial multi-scale
scheme, in which global structures are segmented and nublbetiere local ones.

The image domairi? := [0, 1]¢ is discretized by a rectangular megh, which ha2™ + 1
equidistant nodes in each axis, thus= (2™ + 1)? nodes totalm is called the level of the mesh.
A discrete function on the megh), can also be called a function on lewel Figures 3.5(a)
and 3.5(b) show a 2-D example of two nested meshemd(s,, in which the feature represen-
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Figure 3.5: A simple 2-D example of nested mesh hierarchye fddes of the coarse meSh
are a subset of the nodes of the fine méshThe prolongation of a function from the mesh
to the meslt, only requires the interpolation of the function values oalew nodes.

tations{w?, v, w’ vT} and the transformationsp, 1} are first computed on the coarse mesh
C:. Then the results are prolongated to the next higher levét@finer meslids,.

Although such a nested mesh hierarchy is not natural forfiditference methods, where
commonly discrete images wittf* voxels in each axis are used, it is common for the canonical
hierarchy in the Finite Element context. This way the prglation from one level to the next
higher level is very convenient. LéY{,, denote the set of nodes of theth mesh, as shown in
Figure 3.5(a) and 3.5(b). The nested mesh hierarchy endffes C N,,. During prolongation
from levelm — 1 to m the function values stay the same on the node¥,jn; and the function
values on the nodes iN,,, \ V,,_; are determined by multi-linear interpolation from the \esu
on the neighboring nodes iW,,_;. The entire multi-scale implementation is summarized in
Algorithm 5.

3.4 Experiments

In this section, we will study the parameter setting of thehnod and illustrate the effects of
different parameters by the registration of two MR images.

Two MR volumes are acquired from the same individual and h#éh same machine but
with the different scan parameters (T1/T2). The originalWdighted MR (reference image
R) and T2 weighted MR (template imag® volumes are already nearly perfectly matched to
each other. In order to demonstrate the effect of registmathe T2 weighted MR is artificially
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Algorithm 5 One-to-one Edge based Registraiton Algorithm
givenimagesu” andu” .
given starting levelmng and ending levein;.
given number of iterations on each levil,,.
initialize [w?, w™, v%, vT] with 0.
intialize [¢, 1] with 1.
for m = mg to m; do
for k=1to N,, do
updatelV ® by Equation 3.16
updateV % by Equation 3.17
updateW ' by Equation 3.18
updateV T by Equation 3.19
update[®, ¥] with 5 regularized gradient descent steps by Equation 3.21
end for
if m # mq then
prolongationW® VE WT VT, &, W] from levelm tom + 1
end if
end for

deformed by a given elastic transformation. We specify tepldcement vectors on eight points
and computed the displacement vectors in the remainingopéine data using thin-plate spline
interpolation. Both of the given volumes are of side x 512 x 101 and have been resampled to
129 x 129 x 129 pixels to comply with the mesh hierarchy presented before p@rformed 18
experiments with different parameter settings. For eapleement 10 iterations were run on the
129 x 129 x 129 mesh. It took approximately two hours for the C++ implemdrgeogram to
run an experiment on a standard PC with Intel Pentium 4 psocegith 2.26 GHz and 2.0 GB
RAM. Itis expected that the computation time will decreageificantly by further optimization
of the code. Although these parameters are only tested dstration of T1- and T2-weighted
MR, they can also be used to determine the parameters fomealghing of the other modalities.

Experiments A1-A4 demonstrate how the parameteysand A\ balance edge detection and
edge matching in the algorithm. The other parameters aré &ke = 2550, v = 0.1, k = 100,
e = 0.01. In this example, we denote the phase field functions of T8 B2&-weighted MR
volumes a!' andv? respectively. Figure 3.6 shows how the two phase field fonstivaried
in a local region with different parameters. In experimefisA3, the very large regulariza-
tion weighting parametex (= 1000) prevents the algorithm from matching the edge features of
the two images. Without consideration of the edge matchimg detection of edge features is
controlled by the ratio between the auto-coupling weighparameter; and the cross-coupling
weighting parameter. In experiment Al, sincg is much larger tham, the auto-coupling
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functional Eac has more influence than the cross-coupling functiditg). The resulting phase
field functions are more likely to describe its own edge fematlExperiment A2 is exactly the
opposite case of A1l. With smatland largeu. the phase field function is more likely to represent
the edge features of its counterpart. Namelyshows the edge features of image T2 afd
shows the edge features of image T1. The parametensd ;. need to be customized to spe-
cific applications. A general principle? and . need to be set in such a way that the resulting
phase field functions® andv? clearly describe the edge features of both images, as shown i
experiment A3. For the T1-/T2-MR data in this experimenit reasonable to sétandy equal.
However, when the intensity patterns of images are largéigrent, like in neurosurgery pho-
tographs and the brain MR projection in Section 4.3, it isassary to choose the parametgérs
and . differently. In experiment A4, we activate the edge matghimrough a relatively small
regularization weighting parametar(= 10). Each phase field function describes not only its
own edge features, but also the transformed edge featuths other image. From Figure 3.6,
one can observe that the phase field functions are mergedasipect to experiment A3.

Experiments B1-B7 and C1-C7 were used to study the settinbeoparametera and «.
We measured the cross-coupling c6st, regularization cos€rec and consistency costcon
for each experiment. The values of these costs are showrbie Bal and 3.2 and have been
scaled by 10000 for presentation purposes. The minimumranithterse of the maximum of the
determinant of the Jacobians of the forward and reverssftvemations are computed to measure
the degree of preservation of the topology. If a transforomais regular, these determinants
should be close to 1.

Experiments B1-B7 demonstrate the effect of the regulddaafunctional as the weight
parameter\ is varied. In experiments B1 and B2, there are minor regzdiion constraints.
A negative Jacobian of the transformations appeared. Tleignsithat the estimated trans-
formation failed to preserve the topology of the images. MAmcreases, the regularization
constraints improve the transformations because the mmidacobian and the inverse of the
maximum Jacobian are far from being singular. ExperimertsCZ demonstrate the effect
of the consistency functional as the weight parametearies. In experiment C1, the consis-
tency functionalEcon has no influence on the registration. The forward and reveasesfor-
mations are relatively independently estimated. The issdency of the two transformations
are confirmed by the relatively large cost of the consistdnogtional. Asx increases, the
cost of the consistency functional approaches zero. Tham#hat one transformation is more
likely to be the inverse function of the other one. Note theg tost of cross-coupling func-
tional increases when the consistency constraints andamation constraints become strong,
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Table 3.1: Study of the weight of the regularization funcibFreg

Exp.| A Ccc CRrec Ccon det Jo det Jap
For | Rev| For | Rev | For | Rev |1/max| min |1/max| min

B1 | 0.01]1982 2939 | 780.9 128.,5 | 3.700 3.667 | 0.4736 —0.057 | 0.6933 0.4197
B2 | 0.1 | 2221 2944 | 517.3 94.27 | 2965 2.940 | 0.5671 0.088 | 0.7617 0.5195
B3 1 12709 2971 | 181.2 59.70 | 2.032 2.029 | 0.7348 0.4737 | 0.7358 0.4899
B4 5 | 3120 3050 | 44.24 27.27 | 1.149 1.146 | 0.8738 0.7296 | 0.8518 0.7464
B5 10 | 3328 3165 | 20.02 11.00 | 0.9419 0.9415 | 0.9253 0.8209 | 0.9070 0.8706
B6 20 | 3517 3243 | 6.180 3.031 | 0.7674 0.7699 | 0.9403 0.9000 | 0.9479 0.9301
B7 | 50 | 3550 3314 | 1.053 0.5344 | 0.1792 0.1833 | 0.9832 0.9599 | 0.9802 0.9724

Ccc: Cross-coupling functionalgres: Regularization functional,
Ccon: Consistency functional. The other weight parameters were
set as followsy = 2550, =1,v = 0.1, u = 0.5, k = 100.

which indicates a worse matching of edge features betwezhath images. The optimal pa-
rameters should be chosen so as to achieve optimal featuching least amount of topo-
logical distortion and acceptable inconsistency of thagfarmations. According to our expe-
rience, it is safe to roughly fix five of the parameters in mof2 and 3-D applications, i.e.
A =10,k =100, = 2550, = 0.1 ~ 1, = 0.01 usually achieves good results.

3.5 Summary

This new edge matching method simultaneously performsdh@ning three tasks: detecting
the edge features from two images, computing two dense mgfpnctions in both forward and
reverse directions to match the detected features, andraomsg each dense warping function
to be the inverse of the other. An adaptive regularized gradiescent, in the framework of
multi-resolution Finite Element approximation, enables algorithm to efficiently find the pair
of dense transformations.

Although the idea of simultaneous edge detection and eddgehimg has been successfully
applied on various applications of medical image analys@e Chapter 4), it is still very difficult
to register functional and morphological imaging modasitiwhich is one of the most challeng-
ing multi-modal registration problems. Actually, it is yedifficult to define the so-called edge
feature among the functional images (e.g SPECT, PET). Tinesging modalities record the
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Table 3.2: Study of the weight of consistency functioAgby

EXp. K CCC CREG CCON det Jd) det J'lb
For | Rev| For | Rev | For | Rev |1/max| min |1/max| min

Cl | 0 |3044 3121 |28.85 41.87| 3.054 3.047 | 0.8824 0.7507 | 0.8475 0.7950
C2 | 50 | 3072 3137 |27.19 45.13|0.7922 0.7891 | 0.8782 0.7251 | 0.8548 0.8136
C3 | 100 | 3088 3157 | 27.24 42.26 | 0.3255 0.3249 | 0.8751 0.7495 | 0.8569 0.8230
C4 1200|3236 3115 32.69 25.19|0.1720 0.1720 | 0.8996 0.8032 | 0.8624 0.8246
C5 | 300 | 3279 3154 | 27.72 17.06 | 0.1430 0.1426 | 0.9061 0.8046 | 0.8971 0.8824
C6 | 400 | 3291 3169 |26.82 17.50 | 0.1118 0.1165 | 0.9079 0.8086 | 0.8977 0.8758
C7 | 500 | 3334 3182 | 24.74 32.82| 0.0803 0.0803 | 0.9115 0.8170 | 0.9917 0.8794

Ccc: Cross-coupling functionalgres: Regularization functional,

Ccon: Consistency functional. The other weight parameters were
set as followsy = 2550, =1,v = 0.1, u = 0.5, A = 10.

accumulation of signals during acquisition time (typigatiore than 30 minutes) and the result
is a kind of “average” image of functional activities of onga Therefore, the borders between
organs are blurry and edge features are hard to be locaterother drawback of this method
is the difficulty of finding appropriate parameter settingsdifferent applications, where seven
constant parametera (3, v, €, x, 11, v) should be determined in an ad-hoc way. Although in the
last section the study gives a good guideline to find an apmatve parameter setting, it is still

a tedious task in practice to find the optimal one for variaggstration applications.
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Figure 3.6: Experiments A1-A4 show the influence of the patanss, 1 and A on the phase
field functions. In experiments A1-A3, the very laryelisables the edge matching functionality
and allows only edge detections. Furthermore, the ratiovdxen 5 and ;. determines whether
the phase-fields represent edge features of its own imadeedeatures of its counterpart. In
experiment A4 edge matching as well as edge detection atdezhaNote that edge matching
merged the phase-fields of both sides compared to experident
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Chapter 4

Applications of One-to-one Edge based
Registration

4.1 Registration of Inter-subject MR Datasets

In the following two experiments we use the one-to-one edgihing method to solve the inter-
object mono-modal registration problem: registering twd ata sets (MR-to-MR) and two CT
data sets (CT-to-CT). The two MR data show healthy brainwofihdividuals. The two CT data
show two other patients, one normal and one abnormal. Tleesd#s$ are collected by the same
MR and CT scanners with the same scanning parameters. TheahdRels are preprocessed by
segmenting the brain from the head using MRicro

The original sizes of the two CT data sets wete x 512 x 58 and512 x 512 x 61 while the
two MR data sets wergh6 x 256 x 160 and256 x 256 x 170. All of them have been resampled into
a257 x 257 x 257 voxel lattice with the same resolution in all three diren8oThe experiments
were performed with the previously described multi-scateesne, with 10 iterations for each of
the levels:33 x 33 x 33, 65 x 65 x 65, 129 x 129 x 129 and257 x 257 x 257. It took approximately
1 minute,10 minutes,90 minutes and hours respectively for each level. The parameters of the
algorithm were set as followst = 2550, 5 =1, v = 0.1, u = 1, A = 10, Kk = 100, ¢ = 0.01.

The matching results of the data sets are visualized by arpatf “interlace-stripe”, show-
ing the two data sets in turns within a single volume. For the-td-MR registration, sub-
figures 4.1(a) and 4.1(c) show the interlace-stripe voluofabe original data set®& and T,
while sub-figures 4.1(b) and 4.1(d) show the interlacgssttivolumes of registered data sets in
forward and reverse directions. For the CT-to-CT regigirain Figures 4.2(a)-4.2(d), the layout

http://www.sph.sc.edu/comd/rorden/mricro.html
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of sub-figures is same.

By visual inspection, the algorithm of one-to-one edge matg successfully registers MR-
to-MR and CT-to-CT volume data sets of different individiial both directions. Figures 4.1(a)-
4.1(d) show precise alignments of the edges such as thedowalnme shape, hemispheric gap
and ventricular system for inter-object MR-to-MR registva. In the inter-object CT-to-CT
registration the main interest is to obtain the fitting shapthe bone. In Figures 4.2(a)-4.2(d)
axial cuts of the 3-D CT data set are shown. Figures 4.3(a)4aBi@t) shows that the initial
mismatch of the data sets, visible by the discontinued badgesin the top row, is dissolved
with the computed transformation, as is evident from theicoous bone edges in Figures 4.3(b)
and 4.3(d).

4.2 Registration of Multi-modal Retinal Images

A concurrent representation of the optic nerve head andgheonetinal rim in various retina im-
age modalities is significant for a definite diagnosis of gtana. Several modalities of retina im-
ages have been used in the ophthalmic clinic: the refledtemphotographs with an electronic
flash illumination and the depth/reflectance retina imaggsiaed by scanning-laser-tomograph.
By acquisition, the depth and reflectance images normaihg baen perfectly matched to each
other. Thus, the task of this application is the registratdd multi-modal retina images, i.e.
to match the reflectance and depth images with the photogifaphthe registration of mono-
modal retina images we refer to [CSRT02a, CSRT02b]. Figdré&)-4.4(c) show an example
of multi-modal retina images of the same patient. In a repamer [KJO4], an affine trans-
formation model and an extended mutual information sintylaare applied for registration of
bi-modal retina images. However, as shown in Figures 4&{d)4.5(d), this method (using the
software described in [KJ04]) still cannot recover the mideviations in the domain of vessels
and neuroretinal rims. In this experiment we employ our tmmene edge matching algorithm as
a post-registration to compensate such small deviatiofis@fessels.

The images are pre-processed in the following way: firstaexiing the green channel of the
photograph as the input for the registration. Then the giragh is affinely pre-registering to
reflectance and depth images using the automatic softwacegided in [KJO4]. In the last step,
the pre-registered images are sampled in a mestvdfx 257. The algorithm is run for 10
iterations in three levels, which takes less than three tesaltogether. The parameters of the
algorithm are set as followsy = 2550, =1, v = 0.1, p = 0.5, A = 10, k = 100, € = 0.01.
From Figures 4.5(a)-4.5(f), one can observe that most ndawviations in the domain of vessels
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(@) u||lu”": Interlace-stripe volume of be- (b) uf||u” o ¢: Interlace-stripe volume
tween original data-set® andT'. of transformed” and originalR.

(c) u”'||u’t: Interlace-stripe volume of be- (d) uT||u® op: Interlace-stripe volume
tween original data-sefs and R. of transformedR and originall".

Figure 4.1: Inter-object MR-to-MR registration using adimeene edge matching. The sub-figures
(a) and (c) show the interlace-stripe volumes of the origitzda setsk and7’, while the sub-
figures (b) and (d) show the interlace-striped volumes ofsteged data sets in forward and

reverse directions.
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(@) u®||uT: Interlace-stripe volume of be- (b) uf||u” o ¢: Interlace-stripe volume
tween original data-set® andT'. of transformed” and originalR.

A
.

(c) uT'||u’t: Interlace-stripe volume of be- (d) uT||u® op: Interlace-stripe volume
tween original data-sefs and R. of transformedr and originalT".

Figure 4.2: Inter-object CT-to-CT registration using doesne edge matching. The sub-figures
(a) and (c) show the interlace-stripe volumes of the origitaga setsk and7’, while the sub-
figures (b) and (d) show the interlace-striped volumes ofsteged data sets in forward and

reverse directions.

58



(@) uf*||u”": Interlace-stripe skulls of be- (b) u||u” o ¢: Interlace-stripe skulls of
tween original data-set® andT. transformed” and originalR.

(c) u”||u®: Interlace-stripe skulls of be- (d) uT||uf o 4p: Interlace-stripe skulls of
tween original data-sefs andR. transformedr and originall’.

Figure 4.3: The matching of skulls in CT-to-CT registrati¢a) and (c): Interlace-stripe volumes
of skulls of original data sets. (b) and (d): Interlacepsn/olumes of matched skulls.
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(a) Photograph (b) Depth image (c) Reflectance image

Figure 4.4: Multi-modal retina images of the same patient.

are compensated by the computed non-rigid transformatiote that in this example with fine
elongated structures, different from more volumetric iaguctures in the other applications,
an affine pre-registration is used to compensate the laral imismatch and to avoid getting
stuck in a local minimum.

4.3 Matching Photographs of Neurosurgery to MRI Volume

In neocortical epilepsy surgery, the tumor may be locatgdcaut to, or partly within, the so-
called eloquent (functionally very relevant) corticalibreegions. For a safe neurosurgical plan-
ning, the physician needs to map the appearance of the ekpoaa to the underlying function-
ality. Usually, an electrode is placed on the surface of tiagkin the first operation for electro-
physiological examination of the underlying brain funcotdities, then the photograph within the
tested anatomical boundaries is colored according to thetifin of electrode contacts. On the
other hand, the pre-operative 3-D MR data set contains tbenmation of the underlying tumor
and healthy tissue as well. In the second procedure, thsteegd photograph and MRI volume
are used together to perform the cutting without touchiogjeént areas. Currently, a neocorti-
cal expert needs to manually rotate the 3-D MR to find the bd&3t2ojection matching to the
photographs. However, due to the different acquisitiordsthe brain shift during surgery, the
photograph and MR projection cannot be accurately alighretthis experiment, we make use of
our one-to-one edge matching algorithm to refine the magdb@tween a 2-D digital photograph
of epilepsy surgery to the projection of 3-D MR data of the sgmatient.

The digital photographs of the exposed cortex are takenavitandheld Agfa €1280 digital
camera (Agfa, Cologne, Germany) from the common perspeciithe neurosurgeon’s view.
The high-resolution 3-D data set is acquired according ¢oTth-weighted MR imaging proto-
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(a) Original photograph and depth) Registered photograph and or{g) Registered depth image and
image. inal depth image. original photograph.

(d) Original photograph and rée) Registered photograph and or{f)- Registered reflectance image and
flectance image. inal reflectance image. original photograph.

Figure 4.5: The example of post-registration of bi-modéhegeimages using one-to-one edge
matching. The photograph is registered with the depth infajyéc) and the reflectance image
(e)-(f). Aregistration method published in [KJO4] for bieatal retina images cannot fully recover
the minor deviations of fine structures in (a) and (d). Theveod and reverse transformations
estimated by the one-to-one edge matching successfullgwesuch minor mismatching.

col (TR 20, TE 3.6, flip anglg0°, 150 slices, slice thickness 1mm) using 1.5 Tesla Gyroscan
ACS-NT scanner (Philips Medical Systems). The brain is iaatiically extracted from the MRI
volume using the SISCOM module of the Analyze software (Magondation, Rochester, MN).
For both the photograph and the MR projection, the regionstefest are manually selected by
a physician.

Figures 4.6(a)-4.6(d) show the input images, preprocdssages, interlace-stripe registered
and unregistered images. In Figure 4.6(a), the digital graiph shows the exposed left hemi-
sphere from an intraoperative viewpoint, the frontal lobele upper left, the parietal lobe on the
upper right and parts of the temporal lobe on the bottom. Tiase with the gyri and sulci and
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the overlying vessels are clearly visible. Alongside, Fgg4.6(b) displays the left-sided view
of the rendered MR volume in the corresponding parts. Comgafigures 4.6(a) and 4.6(b),
one can notice that the undesired surface vessels and aeftectlash are strongly presented
in the digital photograph, while the MR projection imagesarly display the desired edge fea-
tures. The photographic image and the projection image pregrocessed by appropriate GIMP
filter chains for edge enhancement. The preprocessed inaagedisplayed in Figures 4.6(c)
and 4.6(d), respectively. Both images were resamplezD40 x 2049 pixels. The algorithm
was run from level 3 to level 11. We note that the values of tameterss and . are quite
different from the other examples. The reason is that thg@maodalities of the photograph and
the MR projection differ largely from each other. The two graeters are set t6 = 100 and

1 = 0.1, so that both phase field functions clearly represent the éslgtures on the brain and
have comparable influence on the registration. In Figuré@jand 4.7(c), the interlace-stripe
images illustrate the mismatch of photograph and MR pragacFigures 4.7(b) and 4.7(d) show
that the method greatly refines the matching of the desirege é&shtures. Especially the brain
sulci and gyri, which are significant for neurosurgery, agany perfectly aligned to each other.
We have implemented a mutual information algorithm in theedinite Element framework
(including the step sized controlled, regularized, msdtéle descent) for a comparison. Overall,
our method gives comparable results in most cases, edyeglan dealing with coarse struc-
tures. However, in this example that contains a large nurobfne structures, the edge based
matching gives better alignment. The zoom views of localomgin Figures 4.8(a)-4.8(d) show
that the edge-matching method can achieve a better alignohéne structures than the mutual
information based registration.

4.4 Motion Compensation for Frame Interpolation

Temporal interpolation of video frames in order to incretigeframe rate requires the estimation
of a motion field (transformation). Then pixels in the intexrate frame are interpolated along
the path of the motion vector. In this section, we give a pmfofoncept that the one-to-one
edge matching method can be used for this application. Feviaw of the frame interpolation
method, we refer to [KWM99, KBS04].

We perform our test on the Susie sequérare interpolate frame 58 in Figures 4.9(a)-4.9(f).
We use &57 x 257 cropped version for the experiment. Frames 57, 58 and 5%a@ed ad;,
F5s and Fiq respectively. The forward transformatign: F5; — Fs9 and reverse transformation

2Susie sequence from http://image.cse.nsysu.edu.tinfge/sequence/gray/susie.rar

62



(a) The original photograph of the ef) A section of the projection of the MR
posed left hemisphere from an intraopeslume, whose orientation is specified by
ative view point. physicians.

(c) Preprocessed photograph. (d) Preprocessed MR projection.

Figure 4.6: A neurosurgery photograph of a section of thenkaad its MR projection. All the
sub-figures only display the region of interest: the expasetex. Image (a) and (b) are courtesy
of Dr. J. Scorzin (Department of Neurosurgery, Bonn Unikgidospital).

Y : Fyy — Fj5; are estimated by the one-to-one edge matching with the Eadesrsetting:
a=2550,=1,v=0.1,u=1,A=10,xk = 100, e = 0.01. Frame 58 is interpolated a&;s =

0.5 x (F5700.5¢ + F59 0 0.5). Itis compared with a standard block matching algorithnmgsi
an adaptive rood pattern search [NMO2§ x 16 blocks and a search range pf16, 16] in
the horizontal and vertical directions. The experimengauits show that the block matching
algorithm produces blocky and noisy motion fields, while ¢time-to-one edge matching based
motion estimation gives an excellent visual quality of feamterpolation.
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(a) Interlace-strip of unregistered pho{®) Interlace-strip of registered MR pro-
graph and MR projection jection and original photograph.

(c) Interlace-strip of unregistered M@®) Interlace-strip of registered photo-
projection and photograph graph and original MR projection.

Figure 4.7: (a) and (c) are interlace-stripe image of ursteged image. It illustrate the mismatch
of photograph and MR projection. (b) and (d) are interlatgas image of registered image.

They show that the method greatly refines the matching oféseedd edge features. Especially
the brain sulci and gyri, which are significant for neuroguyg are nearly perfectly aligned to

each other.

64



One-to-one edge based registration Mutual informatioethasgistration

(a) Zoom view 1 (b) Zoom view 1

(c) Zoom view 2 (d) Zoom view 2

Figure 4.8: Comparison of one-to-one edge matching (a) endafd the mutual information
based matching (b) and (d). The two algorithms are impleeteimt a same Finite Element
framework including the step size controlled, regularipediti-scale descent. The first row
shows how the pre-processed images are registered by theméttiods. The zoomed views
of local regions in the registered images show that oneaerige matching performs a better
registration of fine structures.
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(a) Frame 57 (b) Frame 58 (c) Frame 59

(d) Averaging interpolation (e) One-to-one edge based registra-(f) Standard block matching
tion

Figure 4.9: Top: Original frame 57, 58 and 59 of Susie seqeieBottom: the interpolated frame
58 using simply averaging, one-to-one edge matching magimation and standard block
matching motion estimation. The experiment shows thattor@e edge registration based mo-
tion estimation gives an excellent visual quality of fram&rpolation, respect to the other two

methods.
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Part |l

Segmentation based Validation for
SPECT/CT Hybrid Imaging
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Chapter 5

Accuracy Evaluation of SPECT/CT
Imaging

5.1 Fusionof SPECT and CT

Hybrid scanners, which enable the performance of SingleédPhemission Computed Tomog-
raphy (SPECT) and X-ray Computed Tomography (CT) in one intagession, have been one
of the greatest advancement in the field of medical imagindpenlast decade. See the exam-
ple in Figures 5.1(a)-5.1(c). The coupling of SPECT and C% been proved to have con-
siderable diagnostic potential. It offers physicians tip@artunity to acquire spatially corre-
lated physiological and morphological information in agdensession. These hybrid systems
have greatly improved the diagnostic accuracy and havefibrer been widely accepted clini-
cally [HRO6, RNU"06, USM™06, SRCG04, KO07, KRHO7, SLRG07, BAOO#].

(b) SPECT (c) SPECT/CT

Figure 5.1: Combining SPECT/CT imaging. Image source: earcinedicine department of
university of Erlangen.

With respect to traditional SPECT imaging, the largest gbation of hybrid SPECT/CT
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Figure 5.2: Siemens Symbia SPECT/CT system combines \euaalgle dual detector SPECT
with 6-slice CT and allows accurate CT based attenuatiorecbon. The graphics courtesy of
Prof. T. Kuwert from nuclear medicine department of uniitgrsf Erlangen.

imaging is that the metabolism activities of patients are oty clearly visualized but also
correctly mapped to the anatomical position. “Historigaftiuclear medicine has focused on
radiopharmaceuticals trapped in organ structures andrédsepce of disease hallmarked by the
absence of activity. A conventional nuclear medical examsigally followed with additional
procedures, like a biopsy, to determine the particularatisgrocess.” explains David Rollo,
chief medical officer of Philips Medical Systems. Today, tglmaging allows newly developed
SPECT tracers to be target-specific, concentrating in teigydated tissues or organs. Therefore
the physicians can observe the particular disease pracesse precisely.

Moreover, hybrid imaging eases the correction of atteounagiffects of SPECT imaging,
using anatomic maps derived from CT. The measurement ptenof SPECT shows that atten-
uation of SPECT is the loss of these useful photons, eithgrhmgoelectric absorption or by
scattering in an angle sufficiently large that they can n@éorbe detected. Assuming poiAt
and pointB are respectively close to and far away from the surface. &twes points have the
same degree of radioactivity. Due to the attenuation effeetdetection of activity from point
A is easier than from poinB and in the reconstructed image the pixel intensitylas higher
than of pointB. In order to eliminate this attenuation artifact, tissuesity maps (distribu-
tion of attenuation coefficient) have to be taken into acto@m stand-alone SPECT scanners,
transmission scans are often performed to determine themhy®rid scanners, the attenua-
tion coefficients can be computed directly from the CT datauisefield units), according to a
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SPECT/CT

Figure 5.3: Two examples of mismatching of hybrid scann&ise yellow arrows point to the

lesions in CT and blue arrows point to the corresponding potisn SPECT. Upper row: Coronal
views of somatostatin receptor SPECT and CT in a patient aitleuroendocrine carcinoma
(NEC). Lower row: Transversal views of somatostatin receSPECT and CT in another NEC
patient.

general model developed in [BSDSZ03].

5.2 Evaluation of Accuracy

However, combined SPECT/CT imaging is still far from beirggfpct. A major problem is that
SPECT and CT scanning cannot be performed at the same titheugh they are done within
one examination. For example, the Siemens Symbia SPECH4I&ms in Figure 5.2, combining
a dual-detector variable angle gamma camera with a spirald@mner, requires about one hour
for the SPECT exam and only a few seconds for the CT exam of@region. It seems that
the CT scanner takes a “snapshot” of the objects while theC3REBage accumulatively records
a blurry “averaging” functional information. Between thegaisition of the CT and SPECT,
the respiratory or cardiac motion as well as patient movesnegsult in the mis-registration of
hybrid imaging. The misalignment artifact does not onlyedietrate the imaging quality, but also
negatively influences the diagnoses based on the SPECTiIgreFs.3 shows two examples of
misalignment between CT and SPECT datasets.

Evaluating the anatomical accuracy of image fusion inheterthese systems remains a
challenge. Phantom studies are not suitable for the vadiatf the hybrid scanners because
it is technically difficult to simulate such complicated dehations. Due to our knowledge,
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Table 5.1: Segmentation algorithms for two validation neaskof SPECT/CT imaging

| | kidneys | mal-functional hot spots |
CT Active Shape Model [CTCG95, Random Walk Segmentation [Gra06]
HWWMO5]
SPECT| Shape Template Matching Localized Maximally Stable Extremal
Regions [MCUPO02]

the anatomical accuracy of SPECT/CT scanners has not b#enesly validated. In a recent
study [NWD"06], the accuracy of a SPECT/CT system has been prelimneviluated by
measuring the distance between the centers of gravity cdgeonding lesions in two modalities.
However, reproducibility and accuracy of the validationthogl were not guaranteed, since the
centers of gravity were interactively selected by the users

The next two chapters present more reliable and more aecorethods for evaluating the
fusion quality of SPECT/CT hybrid scanners with minimumrniegeraction. The basic idea is to
segment the corresponding objects in both modalities adrtieasure the distance between the
centers of gravity of the segmented objects. This distaregsorement quantitatively describes
the fusion quality of SPECT/CT datasets. A small distandcevéen two centers of gravity indi-
cates a high accuracy fusion. Actually, such kinds of distameasurements have been used to
compare various registration techniques in several disittidies. Compared to previous studies,
the work reported in this chapter makes the following threg¢amcontributions:

e Two kinds of anatomical objects have been selected as ¢nalumarkers for two different
examining regions, i.e. hot spots for the neck region anddyd for the abdominal region.

e Four different full- or semi-automatic segmentation methbave been found as well as
adapted, in order to correctly extract hot spots and kidirelgeth modalities, respectively.
The selected segmentation algorithms are listed in Tatftle 5.

e The proposed evaluation methods have been validated usahglinical datasets and the
accuracy and reproducibility of the measurements have perten by the experiments.

The validation tool has been successfully integrated intoramercial software application
for medical image analysis (InSpace, Siemens Medical Boisi.
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Chapter 6
Evaluation using Hot Spots

In this chapter we will introduce the accuracy validationSFECT/CT fusion using hot spot
segmentation and present the evaluation of the validatethod on patient datasets.

6.1 Segmentation for SPECT Hot Spots

The determination of the surface that separates diffeteygiplogical features in functional im-
ages is difficult because of the low spatial resolution, tliering of the edges and the high noise
characteristics of functional images. Thresholding is ohthe most widely used techniques to
segment the volume of interest in functional image data. thheshold can have a fixed value,
for example in [GDMK76]25%, 40%, or 50% of the maximal gray level is used. The threshold
can also be automatically computed for each individual a4 classic adaptive thresholding
method, histogram based thresholding [Ots79], has beeelywiged to segment the object in
the SPECT volume [MJGB6]. It determines the threshold value by maximizing thearare
between the population of background voxels and objectlgoBait the distinction between the
background and the object class in the histogram is oftemwtak to find the optimal threshold.
The study [KLB91, EWLE95] shows that the threshold of the SPHesions can be correctly
calculated with knowledge of the size of lesions and thevagtof the background. However,
the prior knowledge about lesions is often not availableoutine circumstances. In this work,
we present a fully automatic thresholding method for sedgatem of SPECT hot spots. The
method is based on a localized version of MSER algorithm [@B@CUPO02], which does not
need any prior knowledge about the object.

A discrete three-dimensional image is defined as a mapping?2, € Z* — G, where
(2, is the set of voxels and, is the set of gray levels, e.g{0, 1, ...,255} is a typical set for
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(& CT (b) SPECT (c) Fusion

Figure 6.1: Sagittal views of a hot spot in the neck regioims & physiological accumulation of
submandibular gland.

SPECT images.Region Q is a continuous subset @?., for which each paifx, z;) € Q
of pixels is connected by a path fully contained@h The algorithm starts from a seed,
typically user-specified, which is located within the hobspn this work, we define bcalized
extremal region Q, : ¢ € G, as a maximal region that contains the segdind(x) > g for
all z € Q,. We sayy is thebase-levelof the localized extremal regio@,. It is clear that the
sequence of localized extremal regio@s, ..., Qg, Qg+1, ..., Qi(ay) IS NEStE, i..9) D Qg iy
andx, € Q,. For the purpose of segmentation, we are more interestdtiaxtremal region
Q; that is maximally stable if the area variation

i

#(Qg-a) — #(Qy1a) (6.1)

p(9) = #(0,)

has a minimum ag*. Here#(.) denotes cardinality and € Z is a given parameter.

A straightforward way is to compute the area of all the exaeragionsQy, ..., Q;(z,), then
to choose the region with minimum area variation. This metban successfully segment the
“strong” hot spots, which have relatively cool backgroumatsl have no other compatible hot
objects in the neighborhood. The submandibular gland haitisghe left of Figure 6.2 belongs
to this case.

However, in practice lesions frequently appear as “weal’spots, whose intensities are not
so distinctive from the background, or some other hot objact close to the hot spots lesion.
These global maximally stable regions cannot always ctiyreegment this class of weak hot
spots. The liver lesion hot spot in the right of Figure 6.2 nisexample of a weak hot spot.
The plot of area variation with respect to various baseleukearly shows the problem. The
minimum of area variation lies in the low base-level, whisHfar away from the true hot spot
base-level. In order to avoid this problem, the algorithraudth not search for the maximally
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Hot Spot

Isolines

Area variation
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Change rate of area
variation 0s

0
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0 50 100 150 200 0 20 40 60 80 100
threshold threshold

Figure 6.2: Two examples of segmentation of SPECT hot spadt: A physiological accumula-
tion of submandibular gland. Right: A tumor lesion of liveY.= 1 for both examples.
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stable region among all the extremal regions but only amaosef af localized extremal regions
that always contain the seag but have not yet merged with surrounding regions. The merge
of the localized extremal region with surrounding regiosgally results in a dramatic increase
of region area. It can be easily detected by the change rateeafvariation (see the last row of
Figure 6.2). Because the algorithm proceeds from relativgh base-leve; ) to the lowest
base-level, the change rate of area variation is defined as

P9 =g +1) 6.2)

A(
pAg+1)

0°(9) =

The implementation of the method is summarized as follows:

Algorithm 6 Localized MSER for SPECT Hot Spot
Manually select a point, within the SPECT hot spot as a seed
for i = I(x),...,0 do
compute the area of extremal regi@, |
if g >2A then
compute the area variation of regipfi(g — A)
if 02(g—A) > ¢, setg’ = g — Athenbreak
end if
end for
among the regions (), - - -,
find the localized MSERD,- that has minimal area variation.

Relationship with standard MSER. The localized MSER is actually a simplified version of
the standard MSER. In the standard MSER method, the stahlgsisis performed on a region
tree, which is efficiently calculated by a partition meth@L (05]. The merge of two regions
has been implicitly encoded in this rooted tree structute ddditional merge detections are not
necessary any more. While the localized MSER actuallysthe connected thresholding from
the given seed and seeks a range of thresholds that leavpsdhkeof hot spot effectively un-
changed. Although both methods theoretically can achibwest the same segmentation of the
hot spot, the localized MSER appears to be more efficienttt@standard MSER method. The
partition algorithm of standard MSER method has a compartaticomplexity ofO(n log log n),
wheren is the number of voxels. The computation time of the localisSER method is de-
pendent on the size of the desired object. For the segmamtatia small hot spot among a
large volume data, the localized MSER method becomes mficesef than the standard MSER
method.
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6.2 Random Walk Segmentation in CT Datasets

In this application, the largest challenge of segmentatibcorresponding structures in CT is
the unclear boundary between the desired object and iemelesurrounding tissues. This is
demonstrated in Figure 6.3(a).

Most fully automatic segmentation methods that do not usa gnowledge of the shape
and size of the object cannot reliably locate such almogsiiole boundaries. For example,
the standard fast marching level set method iterativelyvegxhe level set interface (boundary)
based on a speed function, which is typically a function ef ghadient magnitude. As shown
in Figure 6.3(b), the speed function cannot stop the levelrgerface crossing the invisible
boundary. Given a perfect parameterization, some morenaédasegmentation methods can
satisfactorily segment the lesion in this example. Howgververy tricky for users to determine
the optimal setting of multiple algorithm parameters focleaegmentation task. For example,
the well-known gradient vector flow method [XJ. L. Prince®8quires the user to specify four
parameters at the same time. Moreover, it is difficult to debbjective stopping criteria for
many fully automatic iterative methods. In practice, therugives a fixed number of iterations
or interactively stops the iterations. Due to the tediousypeeterization and subjective stopping
criterion of fully automatic methods, many medical resbars favor interactive segmentation,
with the help of a mouse or a light pen. However, the manuaicsiein of a three-dimensional
boundary is not only time-consuming, but also non-reprduac

Random walk segmentation [Gra06] is chosen to detect stegtn this application. Thisin-
tuitive semi-automatic segmentation allows the user ectskeeds to mark the inside and outside
regions. Then the algorithm determines the optimal partibased on the image intensity and
pre-selected seeds. Figure 6.3(c) shows the selected ckttdsneck lesion and Figure 6.3(d)
shows the lesion segmented by random walk method.

The two-label (object and background) random walk is descrihere with a simplg x 3
image in Figure 6.4. For the description of the general makiel case, we refer to [Gra06].
In the random walk segmentation, an image is modeled as & gfapodes and edges, where
each node is a voxel and an edge connects the adjacent nogggsmifng that the user selects
node 2 and 7 as a seed of background and object respectiwelya¢h unlabeled node the
algorithm would determine the following: given a random keailstarting from this node, what
is the probabilityp; that it first reaches the object seed? Obviously the proitiabilof object
seed and background seed iand0. When the probabilities of unlabeled nodes are known, the
boundary of the object (the curve in Figure 6.4) can be apprated by interpolation between
the adjacent object nodes (> 0.5) and background nodesg;(< 0.5).
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In the random walk algorithm, the image structure is represkby the edge weights:

wyy = exp(~B(I () — I(x,))?). (6.3)

wherel(x;) andI(x,) are the intensities of nodésandj, 3 € R is the only free parameter in
the algorithm. Intuitively, if two adjacent voxels have aga variation of intensity, the random
walker has a relatively low probability of crossing the edggween them. The probabilities
of unlabeled nodes are determined by a combinatorial Deighroblem, in which the discrete
Laplacian matrixL is defined as:

—Wjj if nodei andj are adjacent
Lij = dz :Ezwlj |f’L:j,
0 otherwise.

The given seeds serve as known valygs 0, p; = 1), which can be moved into the right hand
side vector. The corresponding linear system is

do  —wo —we3 Do 0
—Wo1 dy —Wi4 h P2Wi2
—Wo3 d3 —W34 —Wsp Ps3 0
—Wi4 —W34 dy —Wys Ps | = | PrW14 | - (6.4)
—Wys ds —Wsg Ps P2Was
—Wse dg Pe PbrWie
L —Ws8 dg 1 L Ps ] | Prwrs |

Generally, the system equation of the random walk segmentatdenoted as
Lp=f. (6.5)
With respect to the retrospective methods, random walk setgtion has five advantages.

1. If sufficient seeds can be correctly selected, small ¢bjgith partially unclear boundaries
can be satisfactorily segmented.

2. Compared to a fully manual selection, the user interadgaminimal. From our expe-
rience, drawing the seeds on the middle slice in the axigiittshand coronal views is
sufficient.
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3. The method does not require any stopping criteria. Tharigtgn only requires the solution
of a large, sparse, symmetric positive-definite systermefdr equations.

4. The segmentation is almost real-time. A fast multigriveothat has complexit¥)(n) is
implemented to solve the linear system.

5. The method has only one algorithm parameter that is keystaat in all experiments.

Next we briefly introduce a fast node based multigrid (MG) moettto solve the linear sys-
tem of Equation 6.5. For the definitions of mathematical tiotes and the detail of this multi-
grid solver, we refer to [TOS01, BHMOO] and our previous wofKKR07, KSR07]. Multi-
grid solvers are based on the assumption that high frequennays can be treated efficiently by
an appropriate smoother on a fine scale and low frequencysesire approximated on coarser
scales. Therefore we build up an image pyramid and condfmgeation 6.5 on each level. The
whole algorithm of MG solver can be recursively defined by onétigrid iteration, computing
Pt = Mo (P, Ly, fns 11, 1) by Algorithm 7.

Algorithm 7 Multigrid Correction Scheme

given an initial guesp,(fb) = O
pre-smoothinggy) = S (pik) ,Lm, fm)
compute residuat,, fm — mem
restrict residuat,; = I;l} T

if number of coarse grid points ¢,,,;, then
SolveL, e, = r, exactly

else

€, = Mm' (0, Lm/, TV, 1/2)
end if ,
interpolate erroe,,, = I’”, em

coarse grid correctlopm = ﬁffi) + en

post-smoothing's ™ = s2(p!) L. £.)

As smoother we apply a line-wise red-black Gauss-Seidehotetlenoted bys” , where
the parameter specifies the number of performed Gauss-Seidel iteratiodsnais the current
scale or level. Then we compute the residraland restrict it to the next coarser level by
a full weighting restriction operatdf;g/. Afterwards the so-called error equatidn, e, =
r, . is solved on leveln' recursively by multigrid. The coarse matrfx = I];},mez, is
computed by Galerkin coarsening. Next the egr is interpolated by a trilinear interpolation
operatotZ™, to the fine leveln and used there as a correction to the current solytjpnFinally
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we apply again some post-smoothing Gauss-Seidel stepgehtile As stopping criterion we
check, if the norm of the residugr,, || drops below a given threshold that we choosé @S
in our implementation. To reduce the number of multigridateons we additionally use iterant
recombination [BM95, CKRO05] that is similar to preconditing.

The solution of the system for a typicHl x 40 x 40 sub-volume, using the described multigrid
solver with 2 pre- and 2 post-smoothing steps and 5 V-cyosegiires less that seconds on an
AMD Athlon 3200+ computer (2.20 GHz, 2.00 GB RAM).

6.3 Experiments

6.3.1 Patient Dataset

To evaluate the validation tool, 21 patients, 13 females &mnaales between 10-80 years old
with the average age at 59.22, were examined by a SPECT/€Tirscanner (Siemens Symbia
system) between November 2006 and March 2007. Datasetsseteeed where both the hot
spot on SPECT and the corresponding structure on CT werdyclasible in the neck region.
We chose adenomas of the parathyroid glands on 8 patieetgphysiological accumulations
of the submandibular gland on 10 patients, thyroid noduld @atient, neuroendocrine tumor
on 1 patient, thyroid carcinoma on 1 patient for this studgere Tc-99m MIBI (18 patients),
[-131-Nal (2 patients) and In-111-SMS (1 patients) weraleetracers.

6.3.2 SPECT Hot Spot Segmentation

First we evaluated the localized MSER method for the segatiemtof SPECT hot spots. The
proposed method was compared with the histogram basedtihdasy [Ots79], a widely used
segmentation method for functional images [M3B8]. Two radiologists were asked to evaluate
the segmented hot spots by the two methods. To avoid anyrbike ratings, the evaluation was
carried out independently by the two radiologists. The sagation results were scored between
0-2 by the radiologists: (1) If one segmentation method wagausly better than the other, this
method would be scored 2 and the other method would be scoré€2) 0f both segmentation
methods had comparable results, both methods would bedsdord-or the hot spots in the
selected data-sets, the evaluation showed that the rgttdovere much more satisfied with
localized MSER segmentation: The average scores of thézedaViISER method were 1.667
and 1.619, while the average scores of the histogram baseshtiiding were only 0.333 and
0.381, respectively.
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6.3.3 Accuracy Test

The accuracy of the validation tool was evaluated as folilowg operators perform the valida-
tions independently. One operator directly used the vatidaool to measure the distances in
X-, Y- andZ-direction(¢,, t,,t,) between the hot spot on SPECT and the structure on CT. In
the same way, the second operator validated the SPECT/@mesl|, where the SPECT volume
had been artificially shifted itk -, Y- and Z-directions. The shift paramete(s,, s,, s,) were
randomly generated betwedmm and10 mm or between-5 mm and—10 mm. We denote the
distances measured by the second operat()fwaé,ﬁ). The extent to which the ground truth
shift (s, s,,, s.) and the measured shit,, d,, d.) := (t, — t,,t, — t,, L. — t.) match, indicates
the accuracy of the validation. As shown in Figures 6.5(&)d), the experiment yielded a clear
linear association between the ground truth and the measmte The correlation coefficients
are(.9927, 0.9909 and0.9853 in X-, Y- and Z-directions, respectively. The anatomical inac-
curacies, measured by the mearstandard deviation of the absolute error, were reporteeto b
0.7189+0.6298 mm in X -direction,0.92504+0.4535 mm in Y -direction and).9544 +0.6981 mm

in Z-direction, respectively.

6.3.4 Reproducibility Test and Time Measurement

To evaluate the intra-observer reproducibility, the dists between the SPECT hot spot and CT
structure were measured 20 times in five different patigmtding a mean standard deviation of
0.2177 mm in the X -direction,0.3039 mm in theY -direction and).3350 mm in the Z-direction
respectively. This indicated a high intra-observer repailility of the measurements of theé-,

Y- andZ-distances. The mean time for a full validation procesduiiag data loading and user
operations, was less than 2 minutes on an AMD Athlon 3200+peder (2.20 GHz, 2.00 GB
RAM).

81



(b)

(c) (d)

Figure 6.3: (a): The sagittal view of a patient with a lesiothie neck. (b): Gray levels represent
the normalized speed function of the fast marching levehssthod. The red region represents
the segmentation result after 100 iterations. (c): The \wéseed selection for the random walk
method. The blue frame defines the region of interest. The lirhes (seeds), drawn by users,
define the outside of the lesion, while the red ones definenthde of the lesion. (d): The region

segmented by the random walk method.
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Figure 6.4: The graph of a simpkex 3 image, where node 2 and node 7 are the seed of back-
ground and object. The values inside each node indicatathmpilities that the random walker
starting from this location reaches the object seed.
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Figure 6.5: Comparison of the ground truth sliit, s,, s.) and the measured shiid,, d,, d.).
Two shift parameters iX -, Y- and Z-directions are close to lines of identity.
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Chapter 7
Evaluation using Kidneys

Although the method introduced in the previous chapter le@nsuccessfully used in some
clinical studies and its accuracy and reproducibility hbeen proven in some specific regions,
like regions of neck and head, it is still far away from a gahewvaluation scheme for multi-
modal registration. The choice of a hot spot as the evalnatiarker limits the applicability of
this evaluation method, because the patient data sometiaseso hot spots in both modalities
or the hot spots in either modality (quite often in the lowsddCT) are not clear enough to be
correctly segmented. Figures 7.1(a) and 7.1(b) shows amm@eawhere the lesion is almost
invisible in the low-dose CT, so that the automatic segntemtaf such a almost invisible object
is nearly impossible. The snapshot in Figures 7.1(a) an@)/also gives the clue to solving the
problem in this case: the kidney can be a good alternativieeaswtaluation marker.

More generally, the accuracy of matching between morphocébgnd functional data can be
measured by the degree of matching of the organs that canidlelyesegmented from the both
modalities. The candidates can be kidney, liver or bladu®rpnly because all these organs are
normally highly active in the functional modalities but@lhe statistic shape models of organs
can be created to effectively guide the segmentation of thamamong the noisy images. In
this chapter, we mainly discuss the kidneys based evatuatethod for SPECT/CT fusion. One
should note that the idea can be easily extended to othen ongakers and other combinations
of modalities. Section 7.1 gives an introduction on how tostaict the active shape model of
kidneys and how to customize the model to segment kidneydindlumes. In Section 7.2, a
template matching method is used to localize the kidneyswg8®ECT modality. In Section 7.3
we introduce a fast method to automatically correct the Iigisanent of kidneys between SPECT
and CT images. Section 7.4 presents the validation teseah#éthod.
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(a) SPECT/CT (b) CT

Figure 7.1: Sagittal views of a patient abdomen region. iméRample, the hot spot in the liver
is not suitable to evaluate the accuracy of SPECT/CT fusiecause the corresponding structure
in the low-dose CT dataset is almost invisible. A possibterahtive of the evaluation marker
could be the kidney, which is clearly visible in both modakt

7.1 Active Shape Model Segmentation for CT Kidneys

Active Shape Models (ASMs), first proposed in [CTCG95], aegistical models of the shape
of objects which are built by learning patterns of variapilirom a training set of correctly
labeled images. Active shape models are an elegant way tesesgt the inherent inter- and
intra-personal shape variability inherent in biologicalstures, where shapes of structures are
similar but not identical. The shape models can iteratieldform to fit the new objects in the
images, however, the models should only be able to deformayswuch that the characteristic
of the class of objects is still represented. The constdadeformation or model based fitting
enables ASM to more reliably segment the desired biologittakcture, even though the image
may be corrupted by the noise or parts of the boundaries a®imgi The active shape model
based segmentation can be roughly decomposed into two parts

e Construction of the point model of the object of interestetjuires the alignment of train-
ing data, determining the point correspondence betwederelift data sets and building
the point distribution models using Principal Componenaysis (PCA).

¢ Instantiation of the derived shape model for the segmemtaif the object among the
current image data. It updates not only the pose paramewrsranslation and rotation,
but also the shape parameters defined in the shape models.
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In the rest of this section, the active shape model used §pnsatation of a single kidney will
be briefly introduced. The implementation details of the ei@dn be found in [Spi06, SHV09].
Because the Point Distribution Model (PDM) plays the keeriol the ASM for modeling the
training data, parameterization of shape as well as segti@mtof the object, PDM will be
defined in Subsection 7.1.1. Subsequently, the method efegiistration of training data and
the method for point correspondence will be discussed irs&etion 7.1.2. Finally, we show in
Subsection 7.1.3 how to adapt ASM to segment the object artih@nighage.

7.1.1 Point Distribution Model

In this subsection we focus on how to apply the concept of RCBuild up the statistic model.

Let us assume that we have a setp$hapes as training data and these shapes have been correctly
aligned to each other. Each input training set is repreddmtea set of., landmarks stored in a
single vectok € R3". Letg, be the vector collecting the coordinates of thepoints of ther-th

shape in such way:

T
Sr = (xrla Lr2y ooy Lrngy Yrly Yr2y o5 Yrngy Brls Zr2; --vy Zrns) ) (71)

where the(z,,, y,2, 2,2)7 is, for instance, the coordinate of the second point inrtiie shape.
The vectors of all the training data, defined in Equation fofim the columns of the landmark
configuration matrix:

Lc = (§17§27'-'7§n7-)- (72)

We will discuss the method of determination of these coestdandmarks among the training
data in the Subsection 7.1.2.

One can imagine that these,-D points cluster within some region of the space, the so-
called “Allowable Shape Domain” [CTCG95]. The center ofstipioint cloud, presenting the
mean shape of n, different training examples, is calculated by

s= Y6 (7.3)

r=1

PCA attempts to usedn,-D ellipsoid to fit this point cloud and each axis of this edigqid defines
a mode of variation, a way in which the landmarks tend to mewb@shape varies. We calculate
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the3n, x 3n, covariance matrix:
Se=—> (-9 -3 (7.4)

The principal axes of the ellipsoid are describedghi = 1, ..., 3n,), the unit eigenvectors of
S. such that

S.pi = \ipi (7.5)

where), is thei-th eigenvalue of5., \; > \,.; andp!p; = 1. The eigenvector corresponding
to the largest eigenvalues describes the longest axes ellifheoid, and also the most significant
variation mode among the training population. The eigaratdicates the significance of the
corresponding variation mode. In practice, most of theatamn can usually be described by a
small number of modes (let us s&ythat have the largest eigenvalue. In this work, we choose
the smallest, such that more tha®0% variation is included, i.e.,

3Ins

t
SN >09> N (7.6)
=1 i=1

Let P, = [p1, ..., p:J. The training examples can be approximated by the mean sirapa
linear combination of principal axes, i.e.

s=c+Pb (7.7)

The weight vectob € R’ can be regarded as the parameter that defines the allowattemnd&on
of shape. The Figure 7.1.1 shows the effects of varying tsedind second parameters of the
right kidney model.

7.1.2 Point Correspondence

In order to build statistic shape models of right and leftriggs, a set of training shapes needs
to be generated. Therefore, 40 different kidney-pairs e manually segmented by clinical
experts. The shape of every single kidney is representedsky @ mesh points of the surface.
In order to automatically generate ASM from this trainingedt, first of all, the training dataset
need to be registered to each other. In other words we nedttmfit effects of scale, translation
and rotation. One should note that the correspondence ohésh points are unknown at this
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Figure 7.2: Effects of varying the first (left) and the secgnght) parameters of the variation
model. Graphics courtesy of Martin Spiegel [SH3Q].

point. Thus, for such an alignment problem without givennp@iorrespondences, algorithms
based on the concept of Iterative Closest Point (ICP) [BM2292] need to be used to register
these training surfaces. The details of the ICP algorithue lieeen introduced on page 27. One
notes that the transformation is defined by the parametdovgc= [gr|qr|’, whereqr =
(41, 92, g3, q4] 1S the unit quaternion anglr = [gs, g6, ¢7] IS the translation vector.

The next task is to automatically define landmarks, such tthatlandmarks on different
training examples are located at corresponding positidhg. problem of establishing a dense
correspondence over a set of training surfaces can be pssitaof defining a new param-
eterization for each training data, leading to a dense spardence between equivalently pa-
rameterized boundary points [DT02]. Various attempts have been made to determine the
dense correspondence from sets of training surfaces. Awieweand comparison of different
algorithms for point correspondence can be found in [SB3]. The Minimum Description
Length (MDL) approach for ASM, which was first proposed in [D&l, DTC"02] and ex-
tended in [HWWMO05, HWMO6], is implemented to solve the potoirrespondence problem
of the shape model of kidneys. This method minimizes a costtion based on MDL of the
resulting statistical shape model and shows a superiooeéaince in comparison with the other
approaches.

Mesh Parameterization

Parameterization of a surface mesh is important for theliaation of the correspondence be-
tween the training surfaces as well as for an efficient mdaimn for a better correspondence
in the optimization process afterwards. Roughly spealkantyrmal kidney has a shape of genus
0 [LLO6], which is topologically equivalent to a sphere. Téfare, a one-to-one mapping is
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Figure 7.3: Example of barycentric coordinate transforamatOne-to-one mapping between the
points of shape and unit sphere.

assigned from every points in the mesh to an unique positiothe unit sphere, which can
be specified by the longitude anglec [0, 27| and the latitude anglé € [0, x|, as shown in
Figure 7.3. There exist a number of approaches to generatsutffiace parameterization and
minimize the distortion error. A comprehensive overviewtlois topic can be found in [FHO5].
In this work, we choose a method that preserves the angtesifithe point on the unit sphere
moves in one direction, the corresponding point in the skalbenove in the coherent direction.

Cost Function: Minimum Description Length

For automatic landmark generation, a certain cost funatieeds to be defined to quantify the
current parameter setting, such that the chosen landmarks the training data are correctly
located on the corresponding position. Davies et al. [DGTDICH02] first used the minimum
description length (MDL) of the resulting shape model asdbgt function to measure the cor-
respondence of landmarks. The key insight is that the “bestel is the one that describes
the entire training set as “efficiently” as possible. In pice less complex variants based on
the eigenvalues have been proposed in [Tho03, KT98]. Invibi¥k, we choose the MDL cost
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function described in [Tho03] to measure the landmark spwadence. It is defined as follows:

1+ log(A; f >
EmpL = ZLi with L, = { +1log(Ai/Ae)  for, Ai > A,

i/ A for A\; <A, (7.8)

and X\, = (=)%

where)\; is the eigenvalue defined in Equation 7¢5is the standard deviation of noise in the
training data and is the average radius of the training shapes. Parameterthe threshold
controlling the noise in the training data by separatingdigenvalues into a high lambda region
(A; > A.) and a low lambda regiof\; < A.). The attractive property of this cost function is
that it tends to zero when all the eigenvalues tend to zem aathe same time both; and its
derivative are continuous at the cut-aff[Tho03].

Re-parameterization

Assume that we have a known principal directiatt, A#), in which the vertices in the neigh-
borhood of(#, ) should move to improve the landmark correspondence. A Gaussvelope
function defined as:

g9(d, o) =

{ exp(5%) —exp(34)  for d <30 79)

for d > 30

restricts the re-parameterization within a local neighibbod by the multiplication:g(d, o) -
(A0, A9), whered denotes the Euclidian distance between the current vertisetcenter of the
kernel, whilec defines the size of the kernel. In this way, the distant moveseutside oBo,

are ignored. At the beginning large kernels with lasgare applied to optimize the large region.
During the course of optimizatiom, is decreased to optimize the details. Figures 7.4(a)-)V.4(c
show three examples of kernels with differentOne should note that this method works in the
most regions of théd, v) space, except for the poles & 0 or ¥ = 7). The reason is that all
the vertices within the polar region move toward or away friv@ polar points, depending on
the givenAd. Figures 7.5(a) and 7.5(b) present two examples of suchgohenon nearby the
north polar point{? ~ 0). To solve this problem, a random matrix is used to changeeta¢ive
kernels. The details of this method are described in [Arv92]
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(@o=04 (b) 0 =0.3 (c)o=0.2

Figure 7.4: Kernel configuration fer values of0.4, 0.3 and0.2. Red colors mark regions allow-
ing large movements. The graphics are taken from [ThoO3].

(@) A0 =0, A9 < 0 (b) A6 =0,A9 >0

Figure 7.5: Examples of movement of vertices in the polearegi~ 0.

Calculating MDL Gradients

Now we need to compute the gradigntd, A) in a certain position to minimize MDL cost
function of the resulting shape model. The cost functiongu&tion 7.8 is actually defined with
the eigenvalues of the covariance matsixin Equation 7.4. The eigenvalues and eigenvector of
S. can be computed by a singular value decomposition (SVD)3of,ax n,. matrix

! (L. —L.), (7.10)

A=
n, —1

whereL, is the landmark configuration matrix defined in Equation 1@ &, is a matrix with
all columns set tg@. The matrixA is an unbiased landmark configuration matrix, with respect t
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the biased landmark configuration matifix. It is decomposed as:
A=UDVT, (7.11)

whereU € R3=*" andV € R™*" are two column-orthogonal matrices and the matrix
D :=diagd,) € R"*" is a diagonal matrix. According to the theory of SVD, the ritatsU
and.D? contain the corresponding eigenvectors and eigenvalube ahatrixAA”. One should
notice that an advantage of this method is that PCA of trgidisita can be obtained without an
explicit computation of covariance matrix.

The derivative ofi-th singular valuel; with respect to the landmark matri& is computed
by:

od,

LR 7.12
Dy UiV, (7.12)

Herea;x, u;; andvy; are the single entries of the matwk, U and V' respectively, whiled; is
thei-th diagonal entry of the matri>. Since); = d?, the derivative of the-th eigenvalue is
computed as

N 9N ad;
8ajk N 8dz 8ajk

Thus, the gradient of the cost functidiyp, in Equation 7.8 for every landmark can be calculated
by

(7.14)

8EMD|_ o Z 8L2 . 8L2 . 2Uji’U]ﬂ'/di for )\i > )\C
N p Oajk Oajk N

with
Oajk 2diujivki/)\c for Ai < A

The last step is the computation of the movement diredtitth A«) within the parameterization
mesh. Fott := (6, 1), the gradient with respect tois calculated by

OFEwvpL _ OBEwvpL  day;
8t &LU 8t

(7.15)

where the surface gradiedit,; /0t can be approximated by the finite difference method. The re-
sulting optimization algorithm works in a gradient deceadtfion, i.e., in each iteration, the gra-
dient is computed by Equation 7.15 to guide the re-paramateyns for every training surfaces.
The step lengths are adapted, until there are no parametets tune. For the implementation
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of the algorithm, we refer to [HWWMQO5].

7.1.3 Model Customization

In this subsection, we discuss how to customize a shape rabkieheys, according to the image
data, in order to correctly segment a new kidney within thegen ASM based segmentation was
sometimes called image search in literature. Given annestaf modelX = {¢,},—1 ., this
iterative algorithm proceeds as follows: First locate ther@nt model in the image and examine
the region around each model pointto find the best nearby matching poit then update
the pose and shape parameters to best fit the set of matchimg po = {s.}.—1. ... The
procedure continues until no parameters change any mopgattice, the initial approximation
does not need to be very close to the final solution, thus, itbad can automatically segment
the object on its own in most cases. Compared with convegitisegmentation methods, a
distinguishing feature of this method is that the modelsafit to deform to better fit the data,

but only in ways which are consistent with the shapes fourtbertraining set [CTCG95].

Detection of Matching Points

Usually, the mean shape of a training set is placed in the@spgce as an initial estimate of the
position of the model. For each model point, a matching poé#ds to be searched along the
line normal to the surface of the model. A straightforward/wa detect the matching point is
to simply locate the strongest edge along the profile. Howélve desired matching point is not
always located on a strong edge. Especially for medical @satihappens quite often that weak
edges represent the boundary of structures. A method of limagthe local structure has been
developed in [CT99] to effectively solve this problem.

Based on a given model point, we sample the derivative alqurgfde with [ pixel normals
to the boundary on both sides among each training data. Avect= (g0, .., g-2)" collects
the2! + 1 derivative samples for this model point in theh training data. This vector is further
normalized as follows

1
2 gr-
> i=o|9rl

Let{g,},—1. ., denote the normalized samples vectors of this model pomtsgn, training
dataset. Assume that thg’s are samples of,.-dimensional Gaussian distributign) whose
mean and covariance are denotedgognd ;. This Gaussian distribution gives a statistical

gr — (7.16)
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model of intensity patterns at these model points. Givervaprefile vectorg', the quality of fit
with the intensity pattern is measured by the Mahalanolsisdce:

du(g)=(g -9)"%,' (9 —9) (7.17)
During the fitting of the model, a profile (ﬂpixels on either side is sampléa > [), then we
search a position on the profiles that best fits the given &itiepattern, minimizing the distance
in Equation 7.17. This process is repeated for every modat pod a set of matching points is
generated in the end.

In order to improve the efficiency of the algorithm, as welltasavoid being trapped in
local minima, the searching of matching points is impleradnin a multi-resolution frame-
work [CT99]. A three-level volume pyramid is build for eitha training example or a test
volume. The base volume in the level O is the original one,levthe volume on level 1 is
smoothed and down-sampled with half the number of pixel@ohaimension. The volume on
level 2 is built in the same fashion based on the level 1 voluhie profiles of the model point
have the same number of pixels in all levels. Obviously, dileravith a coarse resolution has
a larger range in the physical space than the one with a firdutes. Assume the search is
performed in a pyramid of 3 levels. The search begins witkll@y where large movement is
allowed and local minima are rejected. The searching proeeenters the next level whéa%
of the matching points are stable. From the current matghanigts, the procedure restarts in the
next level and continues searching on a finer resolution.

Computation of Pose Parameters and Shape Parameter

For given model points and corresponding points, first alrigansformation needs to be esti-
mated to match them. A functidfir ; defines the transformation with a rotation matfxand
translation vectot. The scaling effects are not considered, because both tdelmoints and
matching points are explicitly defined in the physical cooates. The alignment involves the
following three steps:

1. Compute the centers of gravity of model points and matchoints, which are denoted as
¢, andc; respectively.

2. Translate all the model points, so that the centers ofitgraf’ two sets of points overlap.
The translation vector is= ¢,,, — c;.

3. Singular value decomposition is applied on the cormetatnatrix for obtaining the rotation
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matrix [Kan94]. See the formulation in Equation 2.36.

Given the transformatioff’z ;, the matching pointsX" are projected into the frame of the
model coordinates by the inverse transformaflgyt, i.e

i

Xy =Tgry(X) (7.18)

The shape parametebsdefined in Equation 7.7, are computed to fit the resultingehpdints
X and X ,, i.e. minimizing the sum of square distang& — X ,||2. According to the
Equation 7.7, the shape parameters are updated by

b=P' (X, —73). (7.19)

The estimation of post parameters and shape parameternisasized in Algorithm 8.

Algorithm 8 Computation of post and shape parameters

given matching pointsX’

setshape parametérto zero.

repeat
Compute the current model instange=< + P,b
Estimate the transforifir ; from the model points to matching points.
Transform the matching points into the model coordinaiés: , = Tg,lt(X')
Compute the shape parametérss P(X,. , —3).

until b converges

7.2 Shape based Tracking for Kidneys in SPECT

This section introduces a method to localize the kidneys 8P&CT image based on a seg-
mented kidneys in a corresponding CT image. As introducé&hapter 5, the interest of nuclear
medicine is the biodistribution of a radiolabeled substandthe radioactive tracer — that is de-
termined by the body’s physiological and biochemical fisrdhg. Compared to morphological
imaging, it is more difficult to determine the location of faes in functional imaging, because
of the blurring of the edges, the sampling and the presenemisk [KLB91]. Currently, the
boundary of an organ is determined by either thresholdiniipats or the maximum in the local
gradient. See [PvAL93] and the reference therein. The segmentation of the k&imea CT
dataset, which was introduced in the previous section,eaety useful to localize the kidneys in
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Figure 7.6: An example of a shape template of the kidney-pair

the corresponding SPECT dataset. In other words, the taglbmedefined as tracking an object
in the SPECT image, which has a similar shape as the CT kigmepglate. The prior knowledge
of the size, shape and contrast of the organ has been usetetmae the threshold for organ
segmentation in SPECT images [LKS92, EWLE95]. But the me¢tir@sented in the following
makes use of the framework of rigid registration to estinthte pose parameters, so that the
shape template is optimally aligned with SPECT image datasealogously, segmentation of
kidneys in CT, which includes the construction of the moahel the customization of the model,
the segmentation of the kidneys in SPECT consists of twoesga steps: the construction of
the shape template and the template tracking of the objbety Will be introduced in the rest of
this section.

7.2.1 Construction of Shape Template

In Section 7.1, kidneys in CT segmented by the ASM methodgppeesented by a set of con-
tinuous geometric primitives, which cannot be directlyisegred to SPECT volume data. An
alternative to conventional geometric representation, wWblumetric representation is an uni-
form, simple and robust description of measured objectsi@mdry convenient to serve as the
shape template in the registration frame. Figure 7.6 shovexample of such a shape template
volume of a kidney-pair. The reformulation process thabagglishes the conversion from a
set of continuous geometric primitives to an array of voxelthe 3-D discrete space is called
voxelization. Many methods have been proposed to condualization. A short summary of
voxelization can be found in [ZCB)4].

In this work, we use the implementation of from open sourealy ITK! to perform vox-

linsight Segmentation and Registration Toolkit. http:/fwitk.org/
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elization of kidneys. The basic idea of voxelization is siiated by the 2-D example in Fig-
ures 7.7(a)-7.7(c).
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Figure 7.7: A 2-D example of solid voxelization. (a): The gbaf an object is represented by
a set of vertices and lines (geometric primitives).(b): €dithe grid, the algorithm casts rays in
either direction and computes the fragment that interseitksthe segmented kidney. (c): The
output image matrix is generated by assigning differentiesl(e.gl and0) to the voxels of
inside and outside of intersections.

For the voxelization of the 3-D shape model of kidneys, soduteonal aspects of the imple-
mentation are considered. The elementary geometric pvarof the 3-D shape is the polygon
or triangular. For reasons of efficiency, the algorithm dogtsreally cast a ray for every element
of theyz-matrix (assume the casting direction parallel to:tkexis), but traverses every polygon
or triangular and records its intersection with the castaygin the direction ofc-axis. After all
the pieces are processed, the surface intersections of gx@ement are known. For the com-
plex shape, a casting ray may go through the object more thed, dut the valid,z-element
always has an even number of intersections. The output dkeapaate volume has the same
grid as the original CT volume. A high resolution templatéuvoe could reduce the error of
voxelization. However, an extremely high resolution htkelpositive effect in practice, because
the generated template volume will later be registered thithSPECT volume of a much lower
resolution, normallys ~ 10 times lower than the CT resolution.

7.2.2 Shape based Tracking

Conventional image based segmentation approaches pepmonly when segmenting organs
in molecular images, because little contrast is presemgalmundaries and different parts of
the same organ sometimes have different gray levels. Tiesatpriori knowledge of the
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shape of the underlying structures can be very useful. Thie lidea of so-called “shape based
segmentation”, actually very similar to image registmfis to estimate a spatial transforma-
tion such that the transformed shape model is mapped to therlying structure in the im-
age. Various shape representations and transformatioelmbédve been investigated for dif-
ferent segmentation tasks. For more details on this topécrefer to the recent representative
works [TYWT03, Par03, PFKO05] and the references therein.

Since the SPECT/CT pair belongs to the same patient, thetsddshe no great shape variance
between kidneys in the two modalities. Therefore, if thenkigs have been correctly segmented
in the CT volume, a rigid transformation can map the tempiatie the SPECT kidneys. Due to
this reason, we prefer to call the method “shape based trgtkA binary volume (introduced
in Section 7.2.1) is used to represent the a-priori knowdealgout the shape of the kidneys.
Although the level-set function is possibly a more accusdi@pe representation, which has ap-
peared in some works [Par03], we find out that it does not yréafprove the shape based
segmentation of SPECT kidneys in this work.

(b) (©

Figure 7.8: An example of tracking the kidney from SPECT.T(la¢ kidney in CT is segmented
by ASM. (b) An obvious misalignment exists between hybricESF/CT. (c) The kidney in
SPECT is detected by shape based tracking method.

Normalized cross correlation is chosen as the similarityasnee of the registration. Let
u"(x) anduf;(x) denote the fixed SPECT volume and the floating template voteaneformed
by ¢, respectively. The normalized cross correlation betwagnvblumes is defined by
Jo uf(x)uy(x) dz

I (@) da [ (o ()? dar

Snee = (7.20)

Gradient descent approach is applied for optimization. dike size of each iteration is auto-
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matically computed according to Armijo’s rule and the op#ation stops when the estimated
step size is too small (see the introduction on page 47). hikey registration systems, this
registration work is also implemented in a multi-level fash) i.e. at first images are registered
in a low resolution then in a fine resolution, and the transfttion estimated in a low resolution
is the initial point of the optimization in finer resolutian&s defined in Section 7.1.1, the trans-
formation is parameterized by the vecipe= [qr|qr]’, Wwhereqy, is the unit quaternion angy

is the translation vector. These seven parameters do nayslave to be estimated at the same
time in practice. Because the shape template is usuallg ¢tothe kidneys in SPECT and the
misalignment is dominated by shifting in most situationsalfdation, the search for parameters
can be divided into two parts: First the quaternion vegtgris fixed, estimating the transla-
tion vectorgr until convergence. Then search for optingal with fixed gr. The optimization
converges after several rounds, when bpthandgy are stable.

7.3 Fast Correction of Misalignment

In this section we present a method that can quickly corfeetargan misalignments of the
SPECT/CT hybrid imaging, see the example in Figure 7.9, irclwkhe segmented kidney in
the SPECT image is transformed as a rigid structure, whiteosading tissues are deformed
elastically. In [LHH97] an efficient algorithm is proposeddolve this problem. The deformation
with and without rigid constraints in Figures 7.10(a)-{d)0shows clearly the distinguishing
properties of the method. It seems that the fast correctiocorporating rigid structures can
achieve more reasonable deformations than the pure nhregistration. Roughly speaking,
the method is a kind of extension of landmark based deforenedgistration (introduced on

page 26). The basis functions combined with a weight funaie formulated to handle the rigid
constraints. This method computes the transformationtamdtively but analytically. In other

words, once the validation result is at hand, the transfaona@an be computed immediately.

In the following, the mathematical framework and implenagioin details of the fast correc-
tion method will be presented. First, we integrate singledrtransformation constraint into this
framework in Subsection 7.3.1. Then, the framework is edteinin Subsection 7.3.2 to allow
multiple rigid objects movement. The mathematical notaim this section are consistent with
those of point based registration framework introducedaigep26.

100



(@) (b)

Figure 7.9: Automatic correction of misalignment of orgafa) Surface of right kidney has

been marked by red points. The corresponding kidney in SPiEQ@deasured by the method
introduced in Chapter 7 about 8 mm deviated from its truetmsi(b) The kidney in SPECT is

transformed by a deformation field (marked by the green aytwachieve a better fusion in the
local region. The deformation defines the kidney to be tianséd as a rigid object.

7.3.1 Deformation with Single Rigid Constraint

The difficulty lies in the integration of a rigid transfornmtanthe framework of point based defor-
mation. The desired deformation should transform a pamefitage with a pre-defined rigid
transformation, while in the rest of the image, the deforamats controlled by landmarks. Ac-
tually the point based deformation in Equation 2.38 is ralydivided into a linear part and a
non-linear (radius base) part. The coefficient mattixn Equation 2.40 controls the linear parts
of the transformation. The basic idea is to use the madrito control the linear transformation
in the pre-selected region and modify the radius basis fomcif the nonlinear part, such that in
the pre-selected regions the radius basis function temgstis zero.

Assume that we have only one rigid object calgdvhose transformation can be represented
using the linear basis function in Equation 2.39 as

T(x) = G(x)A. (7.21)

0 ifceg
distance fromc toG elsewhere.

In this work, a linear-time Algorithm [FHO4] is employed tormpute the distance. The radius
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(a) Template (b) Reference (c) Non-Rigid (d) Rigid Constrained

Figure 7.10: Comparison of deformations with and withogidriiconstraints. The template im-
age, a gray square in the center of the image, is registetbd teference image, the gray square
rotated in30° with respect to the template square. The curvature regelhmon-rigid regis-
tration, although it nearly perfectly registers them, iggsothe desired underlying rigid rotation.
The deformation with rigid constraints treats the objeats surrounding separately and the rigid
movement is seamlessly merged into the deformable neigbbdr

basis function is weighted with the distance function: Foe pointz and one landmark,, it is
defined by

og(x,ts) = dg(x)dg(ts)o(x,ts). (7.23)

The new radius basis functian;(x, ts) tends to zero as the poimttends to the rigid objedf.
The resulting matrixx9 whereEZ.gj = og(t;, t;) can be decomposed as

> =DYD", (7.24)
and
dg(t;) ifi=j,
DY - 6(t:) J (7.25)
0 otherwise

Matrix DY is diagonal and invertible if no landmarks are defined on ifje bbjectG. The top
equation of 2.40 is rewritten as

B+ GA=U (7.26)
Rearranging the equation, the unknown parameter matrogpated by
BY = (X971 (U - GA) (7.27)
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Thus the interpolation solution with one rigid object f&f — R? is defined in the following
manners,

x— ¢(x)=ATg(x)+> (B o%(x,t.) (7.28)

s=1

7.3.2 Deformation with Multiple Rigid Constraints

Now we consider a more general situation, where the deseftrdation transforms several ob-
jects with their pre-defined rigid transformations, whitethe rest of the image, the deformation
is still controlled by landmark based interpolation. Wigspect to the deformation with single
rigid constraints, the major difference is the definitionttoé linear part of the transformation,
i.e. the matrixA” g(x) in Equation 7.28, respectively.

In the following, we use as index of rigid objects. Assume that we hayeobjects, named
asg,,o = 1,...,n,. The objects may have any shape, but cannot be overlappiggdénotes a
union of all objects, i.&/ = G; UG, U ... U G,,_, the definition of the distance map is the same as
in Equation 7.22. Let, = (1¢,15,13,15)",0 = 1, ..., n, denote the coefficient vector of the linear
transformations associated with objégt i.e. ¢, (x) = (991 () + I9g2(x) + 1393(x) + 1994(x).

In order to represent, linear transformations in a single matrix, @A in Equation 7.26, a
kind of inverse distance weighted interpolation [She6&]9ed. The linear term is defined by a
weighted sum of each linear transformation. The weight fsxdd by

gi(x)

>0t Go(®)

Hered¢(x) denotes the distance map (defined by Equation 7.22) witlectsp the object,.
The weight is normalized, i.& 7, w;(x) = 1 for all z. The weight works only among the
associated object, i.e

1
whereq,(x) = and: =1, ..., n,. (7.29)

= Ty

’ 0 ifaeG,j=1..nmj#i

Smoothness of the interpolation is determined by the pame= 1.5 in this work. Thus the
overall linear transformation is defined as
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The matrix of linear transformatio® A in Equation 7.26 is replaced by a new matfixwhich
is defined by

g(t:) Ly (th)
p | 9t Lults) | (7.32)
g(tn>TLw (tns)
and
BY = (X994 U -T). (7.33)

The interpolation solution with multiple rigid objects f&* — R? is defined in the following
manners,

Ns

x — ¢(x) = Ly(z)g(x) + > (B0 (x,t,). (7.34)

s=1

7.4 EXperiments

7.4.1 Patient Datasets

To evaluate the kidney based validation, we selected 24mpadiatasets, where the kidneys are
clearly visible on both SPECT and CT images. Among these 2dnis, there are 10 female and
14 male between 15-78 years old and the average age is 53121 them are abdomen studies
generated by a SPECT/Spiral CT scanner of the Universitylahgen, in which 9 patients were
examined between November 2006 and March 2007, the restexareined between August
and November 2008.

7.4.2 Accuracy Test

The accuracy of the validation method is measured in the saayeas in Section 6.3.3. The
right kidneys in the data-sets were used as validation th@u the shift paramete(s,, s, s.)
were randomly generated betweemm and23 mm or —7 mm and—23 mm. As shown in
Figures 7.11(a)-7.11(c), the experiment yielded a clewai dependency between the ground
truth shift and the measured shift: The correlation coeffits are).9923, 0.9807 and0.9704

in X-, Y- and Z-directions, respectively. The anatomical inaccuraamsasured by meati
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standard deviation of the absolute error, werg79 + 0.8401 mm in X -direction, 1.9992 +
1.3920 mm in Y -direction and2.7823 + 2.0672 mm in Z-direction, respectively.

25 2
25
o
. + . .
. / :,'/ W
.oo T 7 - + *
s
g S 7 ) 4
25 -15 3 5 15 .3 2% 15 5 5 15 % a5 e = = e %
7Y 0,983x - 10,0452 2 ¥ =0;9436x+0;5078 =1, ;
. / | R?= 09847 X / . R%=0,9618 / ) R’ = 0,0417
3 ' N + t
25 =25 25
s s, s
(a) sg-d; (b) sy-d, (c) s.-d,

Figure 7.11: Comparison of the ground truth skift, s, s.) and the measured shit,,, d,. d.).
Two shift parameters iX -, Y- and Z-directions are close to lines of identity.
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Chapter 8
Conclusion

In this thesis, medical image registration and quantiéatalidation methods have been explored.
Firstly, reviews of state-of-art of registration methodse/given. Then, two novel methods were
introduced, namely, an original non-rigid edge based tegien method and a new validation
method for hybrid imaging by automatic segmentations ofkea:. In the end of this thesis, we
summarize the methods, present their contributions anel tte the future works.

One-to-one Edge Based Registration

This new method makes use of the Mumford—Shah model to samedtusly detect the edge
features of two images and jointly estimate a consistenbfsetinsformations to match them.
Compared to the current asymmetric methods in the litegatbis fully symmetric method al-
lows one to determine one-to-one correspondences betweeedge features of two images.
The entire variational model is realized in a multi-scasiework of the Finite Element approx-
imation. The optimization process is guided by an EstinmNbnimization type algorithm and
an adaptive generalized gradient flow to guarantee a fastrandth relaxation.

The algorithm is tested on T1- and T2-weighted MR datasettudy the parameter set-
ting. We also present promising results of four applicatiohthe proposed algorithm: inter-
object mono-modal registration, retina image registratioatching digital photographs of neu-
rosurgery with its volume data and motion estimation fonfeainterpolation.

One-to-one edge based registration is a general framewtikh provides enough flexibil-
ities to adapt to different registration applications. A& tmoment, users have to spend a lot of
effects to find the optimal parameter setting or adapt théedmpntation for each application. In
front of us, there is still a lot of work to customize, or in sersense to simplify, this general
method to specific application. We also hope this method eanitlely accepted by the others,
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Figure 8.1: User interface of validation software.

especially for the non-rigid registration of medical imatgasets.

Automatic Segmentations for Validation of Hybrid Imaging

This validation method measures the anatomical accuratlyedfiybrid imaging by the compu-
tation of the distance between the segmented corresponaknkers in both modalities. Two
kinds of objects are used as markers in this work for valatathot spots and kidneys. Both of
them can be segmented in hybrid modalities with minimum urgeraction.

The experimental results on the clinical data sets - 21 pigtifor hot-spot-marker and 24
patients for kidney-marker - show that the measurementisfulidation tool is sufficiently
accurate and reproducible for clinical datasets. Accartlinthe testing results, the inaccuracies
of hot spot based validation for neck regions @& 89 + 0.6298 mm in X -direction,0.9250 +
0.4535 mm inY -direction and).9544 + 0.6981 mm in Z-direction. The inaccuracies of kidneys
based validation for abdomen regions &#979 + 0.8401 mm in X -direction,1.9992 + 1.3920
mm in Y -direction and2.7823 + 2.0672 mm in Z-direction. The tool implemented in a plugin
of InSpace software platform has been used by Clinic of Nurdi#edicine, Friedrich-Alexander
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University of Erlangen, for the purpose of research. Seeutigg interface of the software in
Figure 8.1. Although we only tested the method with the dataegated by the Siemens Symbia
SPECT/spiral CT system in this work, the tool and the samejpie can be also applied on the
other SPECT/CT systems.

There is still a long way to go, and this thesis has only solemnall part of the valida-
tion problems. More potential validation markers, e.getiand bladder, need to investigated.
Appropriate segmentation methods need to be developeaWmmarkers. The concept of seg-
mentation based validation can be easily extended to PETRDTid imaging. In our future
work, we plan to apply this validation tool to analyze theiaaon of the accuracy of hybrid
scanners with respect to different patient positions,etrmor acquisition protocols. Since the
tool has been installed and used in clinics, we expect tha¢ mwod more medical studies using
this tool would appear.

In Section 7.3, we introduce a fast method to remove the igisalents of SPECT/CT im-
ages. It constraints specified misaligned objects to bdlyisiansformed, while in the meantime
in the other regions non-rigid deformations are computadhik thesis, the mathematical defi-
nition of the method was presented and its effects need torbieef validated by testing on more
patient datasets. However, This method presents a new ségfna based registration method
and could have a huge mount of applications in future.

109



110



Bibliography

[AAF99]

[AHB87]

[Alt86]

[ArvO2]

[AT90]

[BAOOS]

[BHMOO]

[BM92]

J. Ashburner, J. Andersson, and K. J. Friston. Hajmensional nonlinear
image registration using symmetric priofseurolmage9(6):619-628, 1999.

K. S. Arun, T. S. Huang, and S.D. Blostein. Least sguftting of two 3-d
point sets.IEEE Transactions on Pattern Analysis and Machine Intelige
9(5):698 — 700, 1987.

S. L. Altmann. Rotations, Quaternions, and Double Grou@xford Science
Publications, Oxford, England, 1986.

J. Arvo. Fast random rotation matricepages 117-120. Academic Press
Professional, Inc., New York, USA, 1992.

L. Ambrosio and V. M. Tortorelli. Approximation of factionals depending
on jumps by elliptic functionals vid'-convergenceCommunications on Pure
and Applied Mathemati¢c€3:999-1036, 1990.

T. Bunyaviroch, A. Aggarwal, and M. E. Oates. Optaad scintigraphic eval-
uation of infection and inflammation: Role of single-pho&mission com-
puted tomography/computed tomography fusion imagiSgminars in Nu-
clear Medicine 36(4):295-311, 2006.

W. Briggs, V. E. Henson, and S. F. McCormick.Multigrid Tutorial. Society
for Industrial and Applied Math, Philadelphia, USA, 2ndteat, 2000.

P. J. Besl and N. D. Mckay. A method for registration38 shapesIEEE
Transation on Pattern Analysis and Machine Intellegenté(2):239-256,
1992.



[BMO5]

[BNGO6]

[Bo089]

[Bor88]

[Bro81]

[Bro92]

[BSDSZ03]

[BuhO3]

[CDRO2]

[Chr94]

A. Brandt and V. Mikulinsky. On recombining iteranis multigrid algo-
rithms and problems with small islandSIAM Journal on Scientific Comput-
ing, 16(1):20-28, 1995.

M. Bro-Nielsen and C. Gramkow. Fast fluid registoatof medical images. In
Lecture Notes In Computer Science; Vol. 1131, Proceedihipeadith Interna-
tional Conference on Visualization in Biomedical Compgitipages 267—-276,
Londom, UK, 1996. Springer-Verlag.

F. Bookstein. Principal warps: thin-plate spliaesl the decomposition of de-
formations.IEEE Transactions on Pattern Analysis and Machine Inteltige
11(6):567-585, 1989.

G. Borgefors. Hierarchical chamfer matching: agwaetric edge matching
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelige
10(6):849-865, 1988.

C. Broit. Optimal registration of deformed imageBh.d thesis, University of
Pensylvania, 1981.

L. G. Brown. A survey of image registration technggu ACM Computing
Surveys24(4):325-376, 1992.

C. Bai, L. Shao, A. J. Da-Silva, and Z. Zhao. A gatized model for the con-
version from ct numbers to linear attenuation coefficielEEE Transaction
on Nuclear Sciengé0(5):1510-1514, 2003.

M. D Buhmann.Radial basis functions theory and implementatio@am-
bridge University Press, July 2003.

U. Clarenz, M. Droske, and M. Rumpf. Towards fast-+agid registration. In
Inverse Problems, Image Analysis and Medical Imaging, AptRial Session
Interaction of Inverse Problems and Image Analys@ume 313, pages 67—
84. AMS, 2002.

G. E. ChristenserDeformable shape models for anatan®h.d thesis, Sever
Institue of Technology,Washington University, 1994.



[CHRO2]

[CJO1]

[CIMO7]

[CKRO5]

[CLGO5]

[CM92]

[CSM™06]

[CSRT024]

[CSRTO2b]

U. Clarenz, S. Henn, and K. Rumpf, M. Witsch. Relatd®etween optimiza-
tion and gradient flow methods with applications to imagdstegtion. In

Proceedings of the 18th GAMM Seminar Leipzig on Multigridi &elated

Methods for Optimisation Problemgages 11-30, 2002.

G. E. Christensen and H. J. Johnson. Consistent imeggsgtration. IEEE
Transactions on Medical Imaging0(7):568-582, 2001.

G. E. Christensen, S. C. Joshi, and M. I. Miller. \foletric transformation
of brain anatomy.IEEE Transactions on Medical Imagind6(6):864—-877,
1997.

I. Christadler, H. Kostler, and U. Ruide. Robust afficient multigrid tech-

niques for the optical flow problem using different regutars. InProceed-

ings of 18th symposium simulationstechnique ASIM 200kime 15, pages
341-346, Erlangen, Germany, September 2005.

M. Couprie, L. Najman, and G. Bertrand. Quasi-linaégorithms for the
topological watershedJournal of Mathematical Imaging and Visip82(2-
3):231-249, 2005.

Y. Chen and G. Medioni. Object modeling by registoatiof multiple range
images.Image and Vision Computin@(10):145-155, 1992.

I. A. Carreras, C. Sorzano, R. Marabini, J. Carazo, C. ®Sblorzano, and
J. Kybic. Consistent and elastic registration of histatadjisections using
vector-spline regularization. I8omputer Vision Approaches to Medical Im-
age Analysispages 85-95. 2006.

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbai feature-based,
robust, hierarchical algorithm for registering pairs otiges of the curved hu-
man retinalEEE Transactions on Pattern Analysis and Machine Intelige
24(3):347-364, 2002.

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenha feature-based
technique for joint, linear estimation of high-order imagemosaic transfor-
mations: mosaicing the curved human retilBEE Transactions on Pattern
Analysis and Machine Intelligenc24(3):412-419, 2002.



[CSV00]

[CT99]

[CTCG95]

[CVO1]

[CWO8]

[DBO6]

[DCTO1]

[DROA]

[DRO6]

[Dro05]

T. F. Chan, B. Y. Sandberg, and L. A. Vese. Active coin$ without edges
for vector—valued imageslournal of Visual Communication and Image Rep-
resentation11:130-141, 2000.

T. F. Cootes and C. Taylor. Statistical models of appece for computer
vision. Technical report, University of Manchester, Wolissmage Analysis
Unit, Imaging Science and Biomedical Engineering, Mantdres113 9PT,

UK, 1999.

T. F. Cootes, C.J. Taylor, D.H. Cooper, and J. GrahActive shape models—
their training and applicationComputer Vision and Image Understanding
61(1):38-59, 1995.

T. F. Chan and L. A. Vese. Active contours without eslEEE Transactions
on Image Processind.0(2):266-277, 2001.

Y. Chen and L. Wu. Second order elliptic equations and elliptic systems
volume 174 ofTranslations of Mathematical Monographémerican Math-
ematical Society, Providence, RI, 1998. Translated froe@1891 Chinese
original by Bei Hu.

Michael Donoser and Horst Bischof. 3d segmentatipmiaximally stable
volumes (MSVs). IrProceeding of international conference on pattern recog-
ition (ICPR), pages 63—66, Hong Kong, China, August 2006.

R. H. Davies, T. F. Cootes, and C. J. Taylor. A minimdascription length
approach to statistical shape modelling. Aroceedings of the 17th Interna-
tional Conference on Information Processing in Medical ¢jimg, pages 50 —
63, London, UK, June 2001. Spring-Verlag.

M. Droske and M. Rumpf. A variational approach to nagid morphological
registration.SIAM Journal on Scientific Computing4(2):668-687, 2004.

M. Droske and W. Ring. A Mumford-Shah level-set amio for geometric
image registrationSIAM Journal on Applied Mathematia86(6):2127—-2148,
2006.

M. Droske.On Variational Problems and Gradient Flows in Image Proecess
ing. Ph.d thesis, University Duisburg, 2005.

iv



[DRROY]

[DTC+02]

[DZLGHO6]

[EWLE95]

[FBTCO7]

[FHO4]

[FHO5]

[FM99]

[FM04]

[Fri09]

M Droske, W. Ring, and M. Rumpf. Mumford-Shah basedistration: a
comparison of a level set and a phase field appro&@dmputing and Visual-
ization in Sciencegl2(3):101-114, 2009.

R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Watertard €. J. Taylor.
A minimum description length approach to statistical shayoeleling. IEEE
Transactions on Medical Imaging1(5):525 — 537, 2002.

Y. Deuerling-Zheng, M. Lell, A. Galant, and J. Hmgger. Motion compen-
sation in digital subtraction angiography using graphaslivare.Computer-
ized medical imaging and graphic30(5):279-289, 2006.

Y. E. Erdi, B. W. Wessels, M. H. Loew, and A. K. Erdihileshold estimation
in single photon emission computed tomography (SPECT) éanthp imag-

ing for clinical radioimmunotherapyCancer Researghb5(23 Suppl.):5823—
5826, 1995.

R. Fabbri, O. M. Bruno, J. C. Torelli, and L. F. Castad Euclidean dis-
tance transform algorithms: A comparative sun&¢M Computing Surveys
40(1):1-44, 2007.

P. F. Felzenszwalb and D. P. Huttenlocher. Distanaesforms of sampled
functions. Technical report, Cornell Computing and Infation Science
Technical Report, 2004.

M. S. Floater and K. Hormann. Surface parameteoznata tutorial and sur-
vey. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editgkdyances
in multiresolution for geometric modellingages 157-186. Springer Verlag,
2005.

B. Fischer and J. Modersitzki. Fast inversion of ntas arising in image
processingNumerical Algorithms22(1):1-11, 1999.

B. Fischer and J. Modersizki. A unified approach ta fasage registration
and a new curvature based registration techniqueear Algebara and its
Applications 380:107-124, 2004.

M. Fried. Multichannel image segmentation usingyative finite elements.
Computing and Visualization in Sciende(3):125-135, 2009.

\Y



[GDMK76]

[Gra06]

[Gur81]

[HBD*07]

[HBR+06]

[Her02]

[HHNB8S]

[HKC*08]

[Hor87]

[HRO6]

M. L. Goris, S. G. Daspit, P. McLaughlin, and J. P.i$9. Interpolative back-
ground subtractionJournal of Nuclear Medicingl7(8):744—747, 1976.

L. Grady. Random walks for image segmentatidBEE Transactions on
Pattern Analysis and Machine Intelligen@38(11):1768-1783, 2006.

M. E. Gurtin. An Introduction to Continuum MechanicAcademic Press,
Orlando, Florida, 1981.

J. Han, B. Berkels, M. Droske, J. Hornegger, M. Rumpf, Chaler,
J. Scorzin, and H. Urbach. Mumford-shah model for one-te-etige match-
ing. IEEE Transation on Image Processirig(11), 2007.

J. Han, B. Berkels, M. Rumpf, J. Hornegger, M. Droske, ked, J. Scorzin,
and C. Schaller. A Variational Framework for Joint Image iR&gtion,
Denoising and Edge Detection . In H. Handels, J. EhrhardtHérsch,
H. Meinzer, and T. Tolxdorff, editorsBildverarbeitung fir die Medizin 2006
pages 246—250, Hamburg, 2006. Springer.

G. Hermosillo. Variational Methods for Multi-modal Image Matching?hD
thesis, Université de Nice, France, 2002.

B. K. P. Horn, H. M. Hilden, and Sh. Negahdaripour.o§¢d-form solution
of absolute orientation using orthonormal matriceurnal of the Optical
Society of Americab(7):1127 — 1135, 1988.

J. Han, H. Kostler, Bennewitz C., Kuwert T., and Horneggd. Computer-
Aided Evaluation of Anatomical Accuracy of Image Fusionvietn X-Ray
CT and SPECT.Computerized Medical Imaging and Graphi@&2(5):388—
395, 2008.

B. K. P. Horn. Closed-form solution of absolute otigtion using unit quater-
nions. Journal of the Optical Society of Americ&(4):629 — 642, 1987.

M. Horger and R. Bares. The role of single-photon emis computed tomog-
raphy/computed tomography in benign and malignant boreade&sSeminars
in Nuclear Medicing36(4):286—294, 2006.

Vi



[HS52]

[HWMO6]

[HWWMO5]

[JC02]

[Kan94]

[KBS04]

[KJO4]

[KKRO7]

[KLBO1]

Magnus R. Hestenes and Eduard Stiefel. Methods gtigate gradients for
solving linear systemsJournal of Research of the National Bureau of Stan-
dards 49(6):409-436, 1952.

T. Heimann, I. Wolf, and H. P. Meinzer. Optimal landnk distributions for
statistical shape model construction. The Proceedings of SPIE, Medical
Imaging 2006, Image Processingplume 6144, San Diego, CA, USA, March
2006.

T. Heimann, I. Wolf, T. G. Williams, and H. P. Meinze 3d active shape
models using gradient descent optimization of descriggagth. InThe Pro-
ceedings of Information Processing in Medical Imagipgges 566577, Col-
orado, USA, July 2005.

H. J. Johnson and G. E. Christensen. Consistent larkdamd intensity-based
image registrationlEEE Transactions on Medical Imaging1(5):450-461,
2002.

K. Kanatani. Analysis of 3-d rotation fittindEEE Transactions on Pattern
Analysis and Machine Intelligenc&6(5):543-549, 1994.

H. A. Karim, M. Bister, and M. U. Siddiqi. Multiresation motion estimation
for low-rate video frame interpolatiodournal on Applied Signal Processing
11:1708-1720, 2004.

L. Kubecka and J. Jan. Registration of bimodal rétimages - improving
modifications. InProceedings of the 26th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EME)04) vol-
ume 3, pages 1695—- 1698, 2004.

E. M. Kalmoun, H. Kostler and U. Ruide. 3D optical\laomputation using
a parallel variational multigrid scheme with applicatiencardiac C-arm CT
motion. Image and vision computing5(9):1482-1494, 2007.

M. A. King, D. T. Long, and A. B. Brill. SPECT volume antitation: in-
fluence of spatial resolution, source size and shape, angl s@e. Medical
Physics 18(5):1016—-1024, 1991.

vii



[KOO7]

[Kos91]

[KRHO7]

[KSRO7]

[KT98]

[KWM99]

[KYZ01]

[LEF]

[LHHO7]

[LKS92]

Y. Krausz and O. Israel. Single-photon emission cated tomogra-
phy/computed tomography in endocrinolo@geminars in Nuclear Medicine
36(4):267-274, 2007.

P. Kosmol. Optimierung und Approximationde Gruyter Lehrbuch, Berlin,
Germany, 1991.

T. Kuwert, W. Romer, and J. Hornegger. Correlativeaging in cardiology.
principles and clinical applicatiorHerz 32(2):122-128, 2007.

H. Kostler, M. Stirmer, and U. Rude. A fast full ftigrid solver for appli-
cations in image processingNumerical Linear Algebra with Applications
15(2-3):187 — 200, 2007.

A. C. W. Kotcheff and C. J. Taylor. Automatic consttion of eigenshape
models by direct optimizatiorMedical Image Analysj2(4):303-314, 1998.

R. Krishnamurthy, J. W. Woods, and P. Moulin. Framéerpolation and bidi-
rectional prediction of video usingcompactly encodedaghtflow fields and
label fields.IEEE Transactions on Circuits and Systems for Video Teduypl
9:713-726, 1999.

T. Kapur, L. Yezzi, and L. Zollei. A variational fraework for joint segmen-
tation and registrationProceedings of the IEEE Workshop on Mathematical
Methods in Biomedical Image Analysis (IEEE CVPR - MMBp&ges 44-51,
2001.

A. Lorusso, D. Eggert, and R. Fisher. A comparison afrfalgorithms for es-
timating 3-d rigid transformations. IRroceedings of the 4th British Machine
Vision Conference (BMVC '95pages 237 — 246.

J. A. Little, D. L. G. Hill, and D. J. Hawkes. Deformans incorporating rigid
structures Computer vision and image understandif§(2):223—-232, 1997.

D. T. Long, M. A. King, and J. Sheehan. Comparativalaation of im-
age segmentation methods for volume quantitation in spéetlical Physics
19(2):483-489, 1992.

viii



[LLO6] S.J. Liu and J. Li. Genus-zero shape classificatiomgispherical normal
image. InNICPR 2006. 18th International Conference on Pattern Rettomm
volume 2, pages 126—-129, 2006.

[Mar92] R. March. Visual reconstructions with discontities using variational meth-
ods.Image and Vision Computing0(1):30-38, 1992.

[MCO03] M. Moelich and T. Chan. Joint segmentation and regi&in using logic mod-
els. Technical report, Y.-N. YOUNG AND D. LEVY, Technical pert, 2003.

[MCOS'02] T. Makela, P. Clarysse, N. Pauna O. Sipila, Q. C. PharKatila, and I. E.
Magnin. A review of cardiac image registration methodsEE Transactions
on Medical Imaging21(9):1011-1021, 2002.

[MCUPO2] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robudevbaseline stereo from
maximally stable extremal regions. Rroceedings of the british machine vi-
sion conference (BMVCyolume 1, pages 384-393, Cardiff, UK, September
2002.

[MFO2] J. Modersitzki and B. Fischer. Fast diffusion regasibn. In M. Z. Nashed and
O. Scherzer, editor§yMS Special Session on Interactions of Inverse Problems
and Image Analysis: Inverse Problems, Image Analysis ardiddelmaging
pages 117-127. AMS, 2002.

[Mic86] C. A. Micchelli. Interpolation of scattered dataidbance matrices and condi-
tionally positive definite functionsConstructive Approximatiqr2(1):11-22,
1986.

[MJG'86] L. Mortelmans, J. Nuyts, G. Van Pamel, V. van den Maegdegih M. De

Roo, and P. Suetens. A new thresholding method for volumermiétation
by SPECT.European Journal of Nuclear Medicine and Molecular Imaging
12(5-6):284—290, 1986.

[MKGL96] K.V Mardia, J. T. Kent, C. R. Goodall, and J. A. Ligl Kriging and splines
with derivative information Biometrikg 85(2):207-221, 1996.

[Mod04] J. ModersitzkiNumerical Methods for Image Registratiddxford University
Press, Oxford, 2004.



[MS89]

[MS95]

[MTTO3]

[MV97]

[NMO02]

[NWD*06]

[Ots79]

[Par03]

[PFO3]

[PFK*+05]

D. Mumford and J. Shah. Optimal approximation by piise smooth func-
tions and associated variational probler@@mmunications on Pure and Ap-
plied Mathematics42:577-685, 1989.

J. M. Morel and S. Solimini.Variational methods in image segmentation
Birkhauser Boston Inc., Cambridge, MA, USA, 1995.

S. Marsland, C.J. Twining, and C.J. Taylor. Groupgnon-rigid registration
using polyharmonic clamped-plate splines. In Randy EsHitid Terry M. Pe-
ters, editorsSixth International Conference on Medical Image Compuding
Computer-Assisted Intervention (MICCIA'QINCS, pages 246—-250, Mon-
treal, 2003. Springer Verlag.

J. B. A Maintz and M. A. Viergever. An overview of meditimage reg-
istration methods. Symposium of the Belgian hospital physicists associa-
tion(SBPH/BVXF)12(5):1-12, 1996/1997.

Y. Nie and K.-K. Ma. Adaptive rood pattern search fast block-matching
motion estimation.IEEE Transactions on Image Processirid.(12):1442 —
1449, 2002.

A. Neomayr, W. Romer, D. Strobel, W. Bautz, and T. Kuwefnatomical
accuracy of hybrid SPECT/spiral CT in the lower spirfguclear Medicine
Communications27(6):521-528, 2006.

N. Otsu. A threshold selection method from gray ldvstograms. IEEE
Transactions on Systems, Man, and Cybernéiit):62—66, 1979.

N. Paragios. A level set approach for shape-driegm&ntation and tracking
of the left ventricle IEEE Transactions on Medical Imaging2(6):773 — 776,
2003.

J. P. W. Pluim and J. M. Fitzpatrick. Image registatiEEE Transaction on
Medical Imaging22(11):1341-1343, 2003.

K. M. Pohl, J. Fisher, R. Kikinis, W. E. L. Grimson, and W.. M/ells, I11.
Shape based segmentation of anatomical structures in t@ggsonance im-
ages. InComputer Vision for Biomedical Image Applications 20pages
489-498, 2005.



[PFL*+05]

[PMVO3]

[PVAL*93]

[RFS03]

[RKO6]

[RLO1]

[RNU*06]

[Roh01]

[RPA9S]

K. M. Pohl, J. Fisher, J. J. Levitt, M. E. Shenton, R. KikinW. E. L. Grim-
son, and W. M. Wells. A unifying approach to registrationgreentation,
and intensity correction. I8th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCp8ges 310-318,
2005.

J. Pluim, J. Maintz, and M. Viergever. Mutual infoation based registra-
tion of medical images: A surveyEEE Transactions on Medical Imaging
22(8):986-1004., 2003.

P. H. Pretorius, A. van Aswegen, M. G. Lotter, M. G. Nelf”Z Herbst, and
A. C. Otto. Verification of a varying threshold edge detectipect technique
for spleen volume: A comparison with computed tomographHymwes. The
Journal of Nuclear Medicineg34(6):963—-967, 1993.

D. Rueckert, A. F. Frangi, and J. A. Schnabel. Autiier@nstruction of 3-d
statistical deformation models of the brain using nonrigigistration.IEEE
Transactions on Medical Imaging2(8):1014-1025, 2003.

P. Rogelj and S. KovaCic. Symmetric image registra Medical Image
Analysis 10(3):484-493, 2006.

S. Rusinkiewicz and M. Levoy. Efficient variants ofetiicp algorithm. In
Proceedings of Third International Conference on 3-D [Cagitmaging and
Modeling (3DIM 2001)pages 145-152, 2001.

W. Reomer, A. Nomayr, M. Uder, W. Bautz, and T. Kuwert.E®H -guided
CT for evaluating foci of increased bone metabolism clasgiéis indetermi-
nate on SPECT in cancer patienisurnal of Nuclear Medicine47(7):1102—
1106, 2006.

K. Rohr. Landmark-Based Image Analysis: Using Geometric and litiens
Models Kluwer Academic Publishers, Norwell, MA, USA, 2001.

A. Roche, X. Pennec, and N. Ayache. The correlatioas a new similarity
measure for multimodal image registration Medical Image Computing and
Computer-Assisted Intervention-MICCAI,98ctober 1998.

Xi



[She68]

[SHV+09]

[SLRGO7]

[Spi06]

[SRCGO4]

[SRN*+03]

[SS01]

[STUO5]

[SW92]

[SWOO]

D. Shepard. A two-dimensional interpolation fumctfor irregularly space
data. InProceedings 23rd National Conference of the AQidges 517-524,
1968.

M. Spiegel, D. Hahn, Daum V., J. Wasza, and Hornegger §m@atation
of Kidneys using a New Active Shape Model Generation Teamnigased on
Non-rigid Image RegistratiorComputerized Medical Imaging and Graphics
33(1):29-39, 2009.

O. Schillaci, L. Filippi, R. Danieli, and G. Simattie Single-photon emission
computed tomography/computed tomography in abdominalagdiss. Semi-
nars in Nuclear Medicing37(1):48-61, 2007.

M. Spiegel. Generation of active shape models fgnmsmntation and registra-
tion. Prediploma thesis in Computer Science, Chair fordPatRecognition,
University of Erlangen-Nuremberg, July 2006.

O. Schillaci, R. Danieli, C. Manni, and G. Simond# SPECT/CT with a hy-
brid camera useful to improve scintigraphic imaging intetation? Nuclear
Medicine Communication25(7):705-710, 2004.

M. Styner, K. T. Rajamani, L. P. Nolte, G. Zsemlye, G. I&d¢, C. J. Tay-
lor, and R. H. Davies. Evaluation of 3d correspondence nustlior model
building. InInformation Processing in Medical Imagingages 63—75, July
2003.

L. G. Shapiro and G. C. StockmanComputer Vision pages 279-325.
Prentice-Hall, New Jersey, USA, 2001.

C. O. S. Sorzano, P. Thevenaz, and M. Unser. Elasgistration of biological
images using vector-spline regularizatideEE Transactions on Biomedical
Engineering 52(4):652—663, April 2005.

R. Schaback and H. WernerNumerische Mathematik Springer-Verlag,
Berlin, 4th edition, 1992.

O. Scherzer and J. Weickert. Relations between aggation and diffusion
filtering. Journal of Mathematical Imaging and Visiph2(1):43—-63, 2000.

Xii



[ThoO3]

[TOS01]

[TYW*03]

[USM+06]

[Ven02]

[VW97]

[WSV91]

H. H. Thodberg. Minimum description length shapd appearance models.
In Information Processing in Medical Imagingages 51-62, 2003.

U. Trottenberg, C.W. Oosterlee, and A. SchilMultigrid. Academic Press,
London and San Diego, 2001.

A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. FaM, E. Grimson,
and A. Willsky. A shape-based approach to the segmentafioredical im-

agery using level set$EEE Transactions on Meical Imaging2(2):137-152,
February 2003.

D. Utsunomiya, S. Shiraishi, M. Imuta, S. Tomiguchi, KawWanaka, S. Mor-
ishita, K. Awai, and Y. Yamashita. Added value of SPECT/CSidn in as-
sessing suspected bone metastasis: comparison withgsaptty alone and
nonfused scintigraphy and CRadiology 238(1):264—-271, 2006.

P. VenkataramanApplied Optimization with MATLAB Programmingohn
Wiley and Sons Inc., Hoboken, USA, 2002.

P. Viola and W. M. Wells. Alignment by maximization afutual information.
International Journal of Computer Visio84(2):137-154, 1997.

M. W. Walker, L. Shao, and R. A. Volz. Estimating 3-@chtion parameters
using dual number quaterniorimage Understanding4(3):358 — 367, 1991.

[XJ. L. Prince98] C. Xu and J. L. Prince. Snakes, shapes, eautlent vector flowlEEE Trans-

[YLOS]

[ZCB*04]

[ZFO3]

actions on Image Processing(3):359-369, 1998.

Y. Young and D. Levy. Registration-based morphing ative contours
for segmentation of ct scansMathematical Biosciences and Engineering
2(1):79-96, 2005.

D. Zhao, W. Chen, H. Bao, H. Zhang, and Q. Peng. Real-tioxehzation for
complex polygonal models. IRroceedings of Pacific Graphics 200dages
7378, October 2004.

B. Zitova and J. Flusser. Image registration methaal survey.Image and
Vision Computing21(11):977-1000, 2003.

Xiii



[ZYKO1] L. Zollei, A. Yezzi, and T. Kapur. A variational fraework for joint segmen-

tation and registration. IMMBIA'0O1: Proceedings of the IEEE Workshop on

Mathematical Methods in Biomedical Image Analypeges 44-51, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

Xiv



List of Publications

Refereed Journal Articles

¢ J. Han, B. Berkels, M. Droske, J. Hornegger, M. Rumpf, C. 8eha. Scorzin and H. Ur-
bach,Mumford-Shah Model for One-to-One Edge MatchilifEE Transaction on Image
Processing16 (2007) No. 11 pp. 2720-2732.

e J. Han, H. Kostler, C. Bennewitz, T. Kuwert, J. Horneggaomputer-Aided Evaluation
of Anatomical Accuracy of Image Fusion between X-Ray CT &tCS, Computerized
Medical Imaging and Graphic2 (2008) No. 5 pp. 388-395

Conference Proceeding Articles

¢ J. Han, C. Bennewitz, J. Hornegger, T. Kuw&gmi-automatical Validation of SPECT/CT
Scanners3rd Russian-Bavarian Conference on Biomedical Enginegiitlangen, Ger-
many, 2007 vol.1, pp. 93-100.

e J. Han, B. Berkels, M. Rumpf, J. Hornegger, M. Droske, M. &ri& Scorzin, C. Schaller,
A Variational Framework for Joint Image Registration, Dé&ing and Edge Detectign
Bildverarbeitung @ir die Medizin 2006Hamburg, Germany, 2006, pp. 246-250.

e J. Han, J. Hornegger, T. Kuwert, W. Bautz, W. Rontegature Constrained Non-rigid
Image RegistratioyFrontiers in SimulationErlangen, Germany, 2006, pp. 638-643.

e J. Han, M. Qiao, J. Hornegger, T. Kuwert, W. Bautz, W. Romfertomatic sub-volume
registration by probabilistic random searclProcceeding SPIE Medical Imaging 2006
San Diego, USA, 2006, vol. 6144, pp. 799-807.

e F. Jager, J. Han, J. Hornegger, T. Kuwértyariational Approach to Spatially Dependent
Non-Rigid RegistratiojProcceeding SPIE Medical Imaging 20dan Diego, USA, 2006,
vol. 6144, pp. 860-869.

XV



F. Jager, J. Han, J. Hornegger, T. Kuwaffjssensbasierte Nicht-Starre Registrierung
von SPECT/CT Dateaszen Bildverarbeitung fir die Medizin 2006Hamburg, Germany,
2006, pp. 236-240.

J. Han, M. Qiao, J. Hornegger, T. Kuwert, W. Bautz, W. RorRartial Image Data Regis-
tration using Stochastic OptimizatipRrontiers in SimulationErlangen, Germany, 2006,
pp. 644-645.

M. Prummer, J. Han, J. Hornegg@D-3D Non-rigid Registration using Iterative Recon-
struction Vision Modeling and Visualizatigierlangen, Germany, 2005, pp. 187-194.

W. Romer, J. Hornegger, J. Han, W. Bautz, T. Kuwliin-rigid Fusion of Morphological

and Functional Images Using Anatomical Fix Points and Canéc A New Approach to
Overcome the Current Drawbacks of Retrospective ImageoRuie Radiological Society
of North America (RSNAThicago, USA, 2005

Awards in Conferences

The workA Variational Framework for Joint Image Registration, D&ing and Edge De-
tectionwas awarded with “BVM-Preis fiur ein Herausregendes PbstdBildverarbeitung
fur die Medizin KonferenAHamburg, Germany, 2006

The workAutomatic sub-volume registration by probabilistic ranadeearchvas awarded
with “Honorable Mention Poster Award” iSPIE Medical Imaging 2006 Symposiugan
Diego, USA, 2006

Supervised Student Theses

S. GafflingNon-rigid Registration for Interpolation of Defect SlicesSequences of Mi-
croscopic PhotographBlaster thesis, 2007.

Y. Zhou,Automatic segmentation of liver lesions in CT data Setaster thesis, 2006.
Z. Mou, Multigrid methods for non-rigid image registratipMaster thesis, 2006.
M. Qiao,Mono-modal Image Registration for Partial Volume Daéaster thesis, 2005.

C. Siller, Vergleich vonAhnlichkeitsmassenif eine multimodale Bildregistrierung unter
Beruicksichtigung anatomischer MerkmakRrediploma thesis, 2004.

XVi



Acknowledgements

First and foremost, | would like to thank my advisor Prof. Dfoachim Hornegger for
giving me the opportunity to participate in the project ChOSonderforschungsbereich (SFB)
603, funded by the German Research Foundation (DFG). | adkdge his inspirative advice,
constant encouragement and especially his trust and dugyramg some difficult periods of my
Ph.D study. Likewise, my appreciations go to Prof. Dr. MaRumpf who invited me to work
in his team for four months. This wonderful cooperation dad only widen my perspective of
the methods of mathematical analysis in the field of imagegssing but also inspired me to
formulate one of the most important theoretical foundatiohthis thesis. | am also thankful
to Prof. Dr. Torsten Kuwert for my fruitful inclusion at theudear medicine department of
university of Erlangen. His expertise and valuable coméetped me very much to discover
new aspects of registration techniques in the clinical field

| was very lucky to work with the colleagues at the chair foitgan recognition for more than
three years. First of all, | want to thank Eva Rothgang andsiét Balda for the time and effort
to improve this manuscript. | received so much help from niicefmate Marcus Prummer who
always patiently answered all my questions on teachingaret and our backup system. Eva
Kollorz was so nice to endure my poor German for such a long tmd patiently review my
papers, presentations and reports. Also | want to thanlebigahn and Volker Daum, two very
talented programmers, for their quick and sharp answersyt@uestions on implementation
topics. | would also like to thank Martin Spiegel and Andr&ssnmer for passing on their
knowledge on computer graphics and the InSpace framewarietcAlthough | cannot mention
the names of all those involved here, | would neverthelésstth express my gratitude for the
support they gave me and also the fun we had together.

In addition to the colleagues at our chair, | am very glad tha&s able to have wonderful
cooperations with Dr. Wolfgang Romer, Dr. Harald KostiBenjamin Berkels and Christian
Bennewitz during my Ph.D.

Last, but not least | would like to thank my family and friendSspecially important are
my wife Yu and my son Jitong, who constantly give me joy, sgterand confidence in my life.
Without their understanding and encouragement, | wouldhaoé been able to finish this thesis.

Jingfeng Han



