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Abstract

We present a real-time multi-sensor architecture for
video-based pedestrian detection used within a road side
unit for intersection assistance. The entire system is im-
plemented on available PC hardware, combining a frame
grabber board with embedded FPGA and a graphics card
into a powerful processing network. Giving classification
performance top priority, we use HOG descriptors with
a Gaussian kernel support vector machine. In order to
achieve real-time performance, we propose a hardware ar-
chitecture that incorporates FPGA-based feature extraction
and GPU-based classification. The FPGA-GPU pipeline is
managed by a multi-core CPU that further performs sensor
data fusion. Evaluation on the INRIA benchmark database
and an experimental study on a real-world intersection us-
ing multi-spectral hypothesis generation confirm state-of-
the-art classification and real-time performance.

1. Introduction

Statistics reveal that on a global scale the majority of
road traffic related deaths are among vulnerable road users
(VRUs) covering pedestrians, bicyclists and motorcyclists.
Even in Europe and the U.S., which rank first in road in-
frastructure safety, this group of traffic participants account
for 43% and 28%, respectively, of all road accident fatali-
ties [2, 3]. Hence, VRU detection is becoming an integral
part of future advanced driver assistance systems (ADAS).
Based on a prediction of collision risk, such a system could
issue a warning to the driver and perform autonomous brak-
ing or maneuvering for collision avoidance or activate VRU
impact mitigation devices to reduce severe injuries in case
of an imminent collision.

Vehicle-based embedded detection systems [31] are one
component of the solution, but visibility from the driver’s
perspective is limited. Infrastructure-based road side units
(RSUs) could complement vehicle-based sensors via wire-
less communication in order to increase the virtual percep-
tion diversity and range and thus provide a better foundation
for improved driver reaction. In particular, intersections de-
mand a high level of concentration. Within a fraction of
a second, the driver needs to filter out irrelevant informa-
tion, draw conclusions and react in time. Several research
programs address these topics. For example, the U.S. In-
telliDrive program [7], the Japanese Assistance For Safe
Driving Development area of ITS [5], the European IN-
TERSAFE projects [4], the German Ko-PER sub-program
of the Ko-FAS research initiative [6] and the French PU-
VAME project [8], all include detection of VRUs with
infrastructure-based units that support the driver in coping
with line-of-sight obstructions and stimulus overflow when
approaching an intersection or precarious traffic locations.

2. Related Work

Human detection is an inherently complex problem due
to the variability in appearance (body articulation, clothing,
occlusions, environmental conditions). At the same time, it
is a key component in many applications like surveillance,
robotics and intelligent vehicles. Hence, in the past decade,
a variety of approaches in terms of system architecture, im-
age descriptors and classification schemes have been pro-
posed in this domain, e.g. [20, 27]. Recent comparative
studies like [18] indicate that appearance-based methods
seem more promising. Experimental studies have shown
that histograms of oriented gradients (HOG) descriptors are
the leading edge in terms of classification performance.
Dollar et al. benchmarked sliding-window based pedes-



trian detectors [15], while Enzweiler and Gavrila compared
appearance-based approaches with their shape-texture de-
tection system [16, 17]. Both groups of authors conclude
that HOG outperforms other features in most ADAS-related
scenarios. Furthermore, the basic descriptor introduced by
Dalal and Triggs [14] evokes moderate computational costs
compared to other features surveyed in the benchmarks.
Real-time requirements have spurred the development of
different hardware accelerated HOG implementations, e.g.
[9, 10, 23]. Regarding the classifier itself, Dalal and Triggs
propose support vector machines for HOG classification.
Their experiments show that using a Gaussian kernel SVM
instead of a linear one increases performance significantly
at the cost of much higher run time [14]. As a result, authors
that have proposed real-time HOG detection systems chose
linear SVMs on FPGA [19] or GPU hardware [25, 28, 29]
or different classifiers such as AdaBoost [32]. However,
early rejection by one of the weak classifiers often results in
a classification performance loss. Intersection kernel SVMs
have shown to outperform linear SVMs in terms of classifi-
cation performance at the same order of computational cost
for evaluation of the similarity between histograms describ-
ing the features [21].

It is generally expected that only a combination of com-
plementary sensors will meet the requirements of real-world
applications. Best performance can be obtained when using
the top-of-the-line sensors in combination with the top-of-
the-line features and classifier.

In this paper, we present a real-time pedestrian detec-
tion system based on a multi-sensor platform for intersec-
tion assistance. Fusion of imaging data in the visible and
far infrared range (VR, FIR) is employed for hypothesis
generation. Then based on the HOG descriptor, a sliding-
window framework evaluates pedestrian candidates with a
support vector machine (SVM) classifier. In contrast to pre-
vious hardware-accelerated approaches, we employ a Gaus-
sian kernel SVM, placing great importance on classification
performance and flexibility with regard to descriptor repre-
sentations. In order to achieve real-time processing while
maintaining the superior classification performance with the
combination of HOG descriptors and a kernel SVM, we in-
troduce a hardware architecture based on FPGA, CPU and
GPU that is implemented on commercially available stan-
dard PC hardware components. Arranged in a pipeline,
feature extraction is performed on a low-cost FPGA of the
frame grabber, classification on the GPU of the graphics
card. A multi-core CPU builds the core of the processor
network.

We consider the proposed system design of a distributed
network of parallel hardware architectures as a generic and
flexible framework for a variety of applications in the do-
main of computer vision and pattern recognition beyond
pedestrian detection. Depending on the individual method

to be incorporated into the system, the appropriate device
can be chosen with respect to the implementation strategy
and hardware constraints. The fact, that all system com-
ponents are available as PC hardware including a graphics-
oriented software tool that facilitates FPGA design for im-
age processing, makes the framework attractive for rapid
prototyping and for researchers joining the field of embed-
ded computer vision.

3. Method

The proposed detection scheme is composed of two ma-
jor stages. In the first stage, pedestrian hypotheses are gen-
erated. Currently, we use background subtraction and fore-
ground analysis in this stage. Candidate regions of interest
(ROIs) are selected with respect to geometric features. Sub-
sequently, in the verification stage hypotheses are validated
based on the HOG descriptor and kernel SVM classifica-
tion.
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Figure 1. Multi-sensor hardware architecture and assignment of
tasks. Currently, the system is equipped with a CCD color camera
(VR) and a microbolometer FIR camera; integration of a LIDAR
system and of GPS data of traffic participants is prepared. HOG
descriptors are generated on the FPGA, multi-spectral candidate
selection on the CPU, and kernel SVM classification on the GPU.



3.1. Multi-Spectral Hypothesis Generation

Based on our general purpose multi-sensor platform,
see Fig. 1, our RSU merges imaging data in the visible
and far-infrared range in a sequential fusion for pedestrian
candidate generation. This multi-spectral fusion compen-
sates individual weaknesses of VR (shadow artefacts) and
FIR imaging (thermal reflections) and improves the robust-
ness of hypothesis selection. Infrastructure-based systems
that rely on stationary mounted sensors simplify the hy-
pothesis generation stage. As the global region of inter-
est remains constant, foreground objects can be extracted
by background subtraction. Our system performs two indi-
vidual background subtractions for each spectral range and
merges the resulting foreground maps. In terms of registra-
tion, the FIR image is aligned with the synchronously cap-
tured VR image based on planar homography, mapping the
planar road surface in both images by means of a projective
transformation. The transformation matrix H3*3 was de-
termined in an off-line calibration procedure, solving a sys-
tem of equations of manually labeled corresponding points
(P vr Pi fir); 1 > 4in the VR and FIR image, respectively.

As our hypothesis selection method relies on object sil-
houettes, a robust foreground segmentation is essential. For
outdoor scenes, the background must be updated recur-
sively during run-time as changes in the scene and illumi-
nation due to varying weather conditions have to be taken
into consideration. We employ the widely-used mixture of
Gaussians (MOG) model [24]. Each VR and FIR frame
is then subtracted from its respective MOG background
model, yielding two binary foreground maps. After polish-
ing each map using basic morphology, the maps are merged
via pixel-wise application of the logical and operation. Ob-
jects in the resulting foreground mask are analyzed iter-
atively in terms of simple geometrical features (position,
size, aspect ratio). If a contour fulfills coarse target char-
acteristics, it is passed to the verification module.

3.2. HOG-based Hypothesis Verification

Hypothesis verification i.e. separating human detections
from false hypotheses is performed according to the HOG
descriptor and SVM classification scheme proposed by
Dalal and Triggs [14]. Instead of using an exhaustive scan,
shifting a detection window on a regular lattice over the
image at potentially all positions and scales, we perform a
local spatial sliding-window search at the hypothesis ROL.
For each window, HOG features are computed and evalu-
ated with a kernel SVM classifier that was trained by su-
pervised learning. Assuming that this procedure provides
a peak at the correct object position and weaker responses
around it, multiple nearby detections are merged to one ROI
that best adjusts to the pedestrian using mean shift [12] as
non-maxima suppression approach.

Block Window

< 8pixels 6 cells

[ Cell

<—— 8 pixels —>

cells —
\

12 cells

cells

Block Descriptor

gnitude

8
sl

el ETe Orientation Bin

Figure 2. HOG descriptor scheme. A concatenation of cell orien-
tation histograms weighted by the gradient magnitude generates
the set of block descriptors.

3.2.1 Descriptor Structure

The basic idea of HOG is that local object appearance and
shape is characterized by the distribution of intensity gra-
dient directions. As the descriptor is well described in lit-
erature, we summarize here the structure of our implemen-
tation, which closely follows the original default detector
[14]. Our descriptor operates on the grayscale VR images
and evaluates windows of 48 x 96 pixels, see Fig. 2. First,
the gradient magnitudes and directions are computed for the
image patch. Then, in order to measure local distributions
of gradient values, the window is divided into 6 x 12 cells
covering 8 x 8 pixels each. For each cell, the pixels are
discretized according to its gradient direction into 9 evenly
spaced angular bins of an orientation histogram. The contri-
bution depends on the gradient magnitude at the respective
pixel. Because different background scenes, the presence
of shadows or changes in illumination can cause significant
variations in the gradient magnitudes, local contrast normal-
ization is essential for superior performance. Hence, sets of
2 x 2 neighboring cells are grouped into overlapping blocks.
The 4 x 9 = 36-dimensional block descriptor concatenates
the corresponding four cell histograms, normalized to unit
length. Finally, the HOG descriptor is represented by a con-
catenation of the entirety of block descriptors, yielding a
(5x11)-(2 x 2)-9 = 1980-dimensional feature space. Im-
plementation differences with respect to [14] are discussed
in section 5.1.

3.2.2 Kernel SVM Structure

Based on the HOG descriptor, machine learning techniques
such as SVMs can learn an implicit representation of the
classification object from examples and categorize unseen
image patches into one of the predefined classes, pedestrian
or non-pedestrian in our case. Part of the appeal for kernel
SVMs is that non-linear decision boundaries can be learnt



by performing a linear separation in a high-dimensional fea-
ture space. We use a 2-norm soft margin kernel SVM with
classification function f(x),

= sgn <Z azyz 31,7 + bO) (1)

where «; > 0 denote the positive Lagrange multipliers, by
the bias, y; the class label, s; the ng support vectors, x a
HOG instance and K(s,xz) = e(~7ls==I") the Gaussian
kernel function . The parameters ~ (kernel) and C' (weight-
ing factor of slack variables) are determined by grid search.
A description of the general procedure is given e.g. in [13].

4. Implementation

The road side unit is equipped with a SenTech STC-
CL232A! progressive scan CCD color camera (1600 x
1200, 30 fps) and a FLIR SR-50? microbolometer cam-
era (320 x 240, 25 fps) operating in the far infrared range
(7.5 — 13um). The hardware architecture and assignment
of tasks for data processing is illustrated in Fig. 1. FPGA
processing is performed on a microEnable IV-FULLx4 PC
frame grabber board® being equipped with two devices: a
Xilinx Spartan 3 XC3S 2000 provides data transfer inter-
faces to the camera (Cameralink) and to the host (PCle).
The HOG descriptor computation is implemented on a
Spartan 3 XC3S 4000 using the graphics-oriented hardware
development software VisualApplets®. Hypothesis genera-
tion and descriptor normalization is performed on an Intel
Core 17 CPU 920 @ 2.66 GHz, SVM classification on a
NVIDIA Geforce GTX 295 GPU. Inter-device transfers are
managed via direct memory access (DMA).

Uhttp://www.sentechamerica.com
Zhttp://www.flir.com
3http://www.silicon-software.com
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Figure 3. Flowchart of the FPGA-based convolution scheme for
HOG descriptor generation.

4.1. Convolution Scheme for HOG Computation

The FPGA-based HOG scheme computes the descriptors
for all potential window positions of the frame (pixel-wise)
in one run. We outsourced the corpus of the computation,
leaving only the descriptor normalization to the CPU. An
overview of the scheme is given in Fig. 3. In the next sub-
sections, we present our solutions of tackling these issues
with low hardware resources and we describe the imple-
mentation of individual system components. For the exper-
imental RSU setup using a long focal length lens (see Fig.
5), variations in pedestrian size are negligible and HOG de-
scriptors are computed for one single scale level.

4.1.1 Magnitude-weighted Orientation Binning

We compute the 1-D spatial derivatives G, Gy in x- and
y-direction by convolving the gradient masks M, M, with
the VR image I,

Gy =My x1 M, =
Gy=M,x*I

(-1 0 1) (2)
M, = M, 3)

The gradient magnitude |G(x,y)| and orientation angle
¢(x,y) are then computed for each pixel,

G, y) = \JGolw ) + Gylay)* @)

tan (¢ (z,y)) = m

We insist on using the square root formulation as the best
performance is reported for the Euclidean metric [14].
Note, however, that decimal places are cut off in our im-
plementation. Calculating the arctan() to get ¢ on FPGA
hardware is expensive. Hardware friendly approximation
algorithms are available but generally iterative and slow.
Similar to [10], we adopted an orientation binning scheme
that determines the angular bin (1-9, evenly spaced over
[0, 7], unsigned gradient) without computing the orientation
angle explicitly. Our implementation however, introduces
two improvements. First, the number of bins is increased
from 4 to 9 aiming for superior classification performance
[14].

Second, the gradient angle is discretized with a scheme
that avoids the use of signs, reducing the bit width for the
required relational operators. From the signs of G, Gy,
we know the angle’s respective quadrant (I — I'V'). The
quadrant-respective orientation bin is determined with an
integer multiplication scheme illustrated for bin 1, [0, §,

®)

0< tan(a) <tan (%) (6)
|Gy (z,y)| T
0< |Gl (9) %

0< |Gyl <tan () Caley)l  ®



More specifically, the quadrant-respective angular binning
[0, Z] is performed w.r.t. the horizontal principal axis of
the unit circle in case the angle « to the horizontal axis is
less than %w. Otherwise it is performed w.r.t. the vertical
axis. Hence, the comparison range for orientation binning
is reduced significantly, resulting in an equivalent reduc-
tion of bit width for the relational operators. The floating
point multiplication in the right part of inequality (8) is re-
placed by fixed point operations by multiplying the terms
by a scalar >> 1 using bit shifts.

4.1.2 Histogram Generation

At this stage, information is held in 9 binary images O;
where the value 1 denotes that the pixel’s gradient orien-
tation lies within the angular range of bin ¢, O denoting the
opposite. Now we multiply each O;(z,y) with the gradi-
ent magnitude |G(z, y)| providing 9 non-binary magnitude-
weighted bin images M;. The histogram entry of a specific
bin ¢ in a particular cell can be computed by accumulating
the pixel intensity values over the cell region within M;. In
order to calculate these bin entries for all cells over the en-
tire image efficiently, integral maps (IMAPs) are a popular
technique [10, 32]. We, instead, convolve a quadratic sum
filter kernel K¢ with M;,

Hi=KsxM;, Ks=|: - ©)

1 - 1

being implemented as a consecutive convolution of M; with
a vector of ones kg and its transposed,

Hi=k&x(ks+M;) ks=(1 --- 1) (10

because K is separable. The HOG cell histograms H; are
transferred into the main memory of the host PC via DMA
using a quad lane PCle interface (760 MByte/s). In addi-
tion, a reference copy of the VR frame needed for hypoth-
esis generation is transferred through an individual DMA
channel. The resource usage level of the Spartan 3 XC3S
4000 is presented in Table 1.

Type of Resource \ Usage \
4-input LUTSs 28,616 46%
Internal Block RAM (18 kbit) 100 61%
Embedded Multipliers (18 x 18) 18 18%

Table 1. Xilinx Spartan 3 XC3S 4000 resource usage level for a
processing resolution of 800 x 600 pixels.

4.2. GPU-based kernel SVM

We perform the kernel SVM classification on the GPU as
the runtime complexity and memory requirements of non-
linear SVMs is high. Our classifier is based on an available

GPGPU implementation [11]. Compared to a CPU, a much
larger portion of GPU resources is devoted to data process-
ing than to caching or flow control, increasing throughput
and reducing computation time. In our case, the classifier
input is a matrix storing the HOG descriptors of all the hy-
potheses. Hence, the device can parallelize the classifica-
tion over the entirety of instances.

For training the SVM, we use 2,416 positive examples of
people in upright poses and 12,180 negative examples, both
generated from the INRIA dataset [1]. Descriptors of the
training samples are extracted with the FPGA implementa-
tion that was modified in a way that the frame grabber mod-
ule is replaced by a buffer that loads INRIA samples from
the PC to the board’s memory. Training for one SVM took
a few seconds on the GPU. By grid search we generated
roughly one terabyte of data of different SVMs to finally
select the parameters C' = 23 and v = 277 for optimum
performance.

4.3. System Core

Since the CPU is the system core, its major task is the
management and flow control of the FPGA-GPU pipeline.
In addition, it is employed in the hypothesis generation, the
normalization of the HOG descriptors that are to be classi-
fied, and the tracking of detected pedestrians. Normaliza-
tion is performed by dividing the feature vector v by the

L2-norm,
v

H —
Vvl + e

where € is a small constant inhibiting divisions by zero.
Interfaces for infrastructure-to-vehicle communication can
be integrated straightforward as the system is running on a
standard PC.

Y

5. Experiments and Results

First, as a baseline, we evaluate our implementation with
the INRIA benchmark dataset [1]. Then a case study on de-
tection of pedestrians at the target intersection is presented
in order to show the real-world performance of our RSU.

5.1. INRIA Benchmark

For comparing human detection algorithms, the INRIA
dataset [1] has established as a de facto baseline [18]. Eval-
uation is performed on a per-window basis and results are
illustrated as detection error trade-off (DET) curves plot-
ting miss rate versus false positives on a log-log scale. We
have generated a CPU-based reference implementation with
our HOG scheme and we compare the Gaussian kernel
SVM classification performance of our FPGA-based HOG
scheme to this reference implementation and to results from
[14].
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Figure 4. Gaussian kernel SVM classification performance of our
FPGA- and CPU-based HOG implementations. The data for ker-
nel SVM R-HOG and linear SVM R-HOG is extracted from [14]
and represent classification performance after retraining.

The classification results plotted in Fig. 4 show that our
FPGA- and CPU-based HOG implementations are consis-
tent. In contrast to the curves extracted from [14], we have
not yet applied classifier retraining techniques that have the
potential to improve performance by an order of magni-
tude [22]. In fact, the deviation of miss rate (+6% at 10~
FPPW) lies within this margin for improvement, indicat-
ing that the performance of our kernel SVM HOG system
will meet the state-of-the-art set by Dalal and Triggs. The
tendency to inferior values for smaller FPPWs results from
quantification effects due to the size of the testing set (4,530
samples).

We expect minor effects on classification performance
due to the following implementation differences compared
with [14]. First, we work on grayscale images. Second,
gradient magnitudes are computed with fixed point accu-
racy. Third, votes are not interpolated between neighboring
histogram bin centers in both orientation and position (anti-
aliasing). Finally, our implementation does not perform a
Gaussian spatial down-weighting of values with respect to
their location in the respective block.

5.2. Case Study

Outdoor experiments show the potential for deploying
the road side unit in practice. The experimental sensor
setup and view on the target intersection is depicted in
Fig. 5. As expected, multi-spectral sensor fusion reduces
artefacts in the hypothesis generation stage. We observe,
that both shadows in the visible range and reflections in the
far-infrared range are eliminated. Results of the HOG-based
hypothesis verification are shown in Fig. 6, 7, the classifier
trained on pedestrians does detect humans on bicycles and
motorcycles as well. Visual inspection indicates that the

N £ ) 17

Figure 5. Experimental setup of the road side unit used for evalua-
tion. In the background: target intersection.

detections from the hypothesis verification module are of-
ten discriminative enough to handle occluded humans and
to separate groups of pedestrians that had been detected as
one common hypothesis object.

Our hypothesis generation is not yet optimized, it de-
tects about 80 per cent of pedestrians. For quantitative eval-
uation, we limited the ROI to a crosswalk of our target
intersection in order to mainly detect pedestrians and we
captured 5,000 frames of synchronized VR/FIR data in the
course of the day and at different weather conditions. To
ensure unbiased results, we divide the dataset into temporal
windows of 5 frames each and evaluate only one randomly
chosen frame per window. The evaluation is based on 1,000
manually annotated regions, that have been identified by hy-
pothesis generation*. Detection rate and false alarm rate per
frame are 95.4% and 0.1%, respectively.

5.3. Computation Time

The total latency of our convolution scheme for FPGA-
based HOG descriptor computation is 312 ps demonstrat-
ing the efficiency. It is obtained with 800 x 600 pixels at a
design frequency of 63 MHz. The latency distribution of the
consecutive HOG computation steps is presented in Table 2.

Due to our candidate selection, the number of windows
to be validated is decreased significantly compared to an
exhaustive scan approach. Another benefit is the inherent
reduction of false alarms while maintaining a constant de-
tection rate and speeding up the entire system as classifica-
tion tends to be the most time-consuming task. The multi-
spectral hypothesis generation takes 25 ms, depending on
the number of contours. The computation time for hypoth-
esis verification depends on the number of candidates that
are to be validated. Per candidate, we perform a local 2-
dimensional spatial search classifying 10 x 10 = 100 win-
dows. GPU-based Gaussian kernel SVM prediction takes
about 65 us per window including transfer times from and
back to the CPU. In total, the entire pipeline including de-
scriptor computation and SVM evaluation takes less than

4Data of the FIR sequences is available from the authors for non-
commercial research purposes.



Figure 6. Pedestrian detection results of the HOG-based hypothesis verification from different sequences. Note the detected bicyclist in the

first image row, second from left.

100 ms (> 10 fps) when a maximum number of 1000 win-
dows are to be classified. Being the bottleneck of the current
implementation, ongoing work focuses on outsourcing the
descriptor normalization from the CPU onto the GPU.

6. Discussion and Conclusions

In this paper we have introduced a processing pipeline
of FPGA, CPU and GPU architectures used in a multi-
sensor approach for pedestrian detection to improve inter-
section safety. Experimental results indicate the capability
of the approach to achieve state-of-the-art classification per-
formance in real time by applying a hardware-accelerated
Gaussian kernel SVM. For real-time processing, we pro-
pose a flexible hardware architecture that can be imple-
mented on available standard PC components. The HOG
descriptor generation is outsourced to a low-cost FPGA de-
vice that performs feature extraction on the fly with a novel
convolution scheme evoking a latency of 312 us. Kernel
SVM classification is calculated in parallel on the GPU. In
this road side unit setup, the evaluation of 1000 windows
takes less than 100 ms by pre-selecting candidates based on
multi-spectral image fusion. A promising direction to speed

HOG computation step Latency in [ps] \

Image buffer 26.2 8.4%
Scaling 26.0 8.3%
Gradients, magnitudes, orientations 522 16.8%
Histograms 2072  66.5%
Total 311.6

Table 2. Latencies of the consecutive HOG computation steps for
a UXGA camera input (1600 x 1200 pixels) downscaled to a pro-
cessing resolution of 800 x 600 pixels and a design frequency of
63 MHz.

up the hardware-based classification is to prefilter hypothe-
ses with a linear SVM [26] or using a multi-resolution ap-
proach [30] in order to restrict the use of the kernel SVM
to verification purposes. Classification performance can be
improved by evaluating a joint HOG descriptor of both the
VR and FIR domain, candidate selection by integrating a
time-of-flight (lidar) device. The FIR sensor will then be
used mainly for hypothesis verification and for detection of
hot spots, e.g. to discriminate between pedal cyclists and
motorcyclists.
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