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Abstract
This paper focuses on the automatic recognition of a per-
son’s age and gender based only on his or her voice. Up to
five different systems are compared and combined in dif-
ferent configurations: three systems model the speaker’s
characteristics in different feature spaces, i.e., MFCC,
PLP, TRAPS, by Gaussian mixture models. The features
of these systems are the concatenated mean vectors. Sys-
tem number 4 uses a physical two-mass vocal model and
estimates in a data-driven optimization procedure 9 glot-
tal features from voiced speech sections. For each ut-
terance the minimum, maximum and mean vectors form
a 27-dimensional feature vector. The last system calcu-
lates a 219-dimensional prosodic feature set for each ut-
terance based on voice and unvoiced speech segments.
We compare two different ways to fuse the different sys-
tems: First, we concatenate the system on feature level.
The second way of combination is performed on score
level by multi-class logistic regression. Despite there are
just minor differences between the two approaches, late
fusion is slightly superior. On the development set of
the Interspeech Agender challenge we achieved an un-
weighted recall of 46.1% with early fusion and 47.8%
with late fusion.
Index Terms: acoustic analysis, classification, Gaussian
mixture models

1. Introduction
Speech segments uttered by humans do not only contain
the (speaker-independent) semantics of the spoken text
but also non-verbal (speaker-dependent) characteristics.
This paper addresses the automatic recognition of non-
verbal characteristics, i.e., a person’s gender and age, by
means of automatic speech processing. The problem of
age- and gender recognition is treated as combined clas-
sification problem of seven classes. These classes and the
datasets used for training and evaluation of our system(s)
are described in [1]. The task of age and gender classi-
fication based on a person’s voice became quite popular
within the last few years. The most successful systems so
far model each speaker by Gaussian Mixture Models of
short-time spectral features and use either Gaussian clas-
sifiers or SVMs for classification [2, 3].
In this paper we compare five different systems for age

Figure 1: Difference between MFCC/PLP and TRAPS
feature calculation

and gender recognition. Three systems are based on
spectral features with short- and longer temporal con-
text. These systems model each utterance with Gaussian
Mixture Models (GMMs). System number four models
each utterance by a prosodic feature vector. The last sys-
tem estimates 9 glottal features estimated by a physical
two-mass vocal model. These systems can be used stand-
alone or can combined by early or late fusion.
The outline of this paper is as follows: First we describe
our five different systems and the early and late fusion in
Sec. 2. In Sec. 3 we show the results for the five individ-
ual systems and the results achieved by combination. We
finish with a conclusion in Sec. 4.

2. System Description
In this section our different subsystems are described.
Our five systems can be divided into three different
groups: GMM-based, glottal and prosodic. The first
group of systems uses supervectors, that contain con-
catenated mean vectors of Gaussian Mixture Models
(GMMs). Three different systems belong to this group:
GMM-MFCC, GMM-PLP, and GMM-TRAPS. They are
described in Sec. 2.1. The prosodic system is described
in Sec. 2.2 and the glottal excitation system is described
in Sec. 2.3. Since the glottal

2.1. GMM-based Systems

Three of our subsystems model specific features byGaus-
sian Mixture Models (GMMs). Two systems use short-
time spectral features, namely Mel Frequency Cepstrum
Coefficients (MFCCs) and Perceptual Linear Prediction
(PLPs). The third system is based on Temporal Patterns
(TRAPS).

Copyright © 2010 ISCA 26-30 September 2010, Makuhari, Chiba, Japan

INTERSPEECH 2010

2830



2.1.1. Mel Frequency Cepstrum Coefficents

A Hamming window with a size of 16ms and a time shift
of 10ms is applied to the speech signal. Afterwards the
Mel-spectrum with 25 triangle filters is calculated. We
take the first 12 Mel-frequency cepstral coefficients, sub-
stitute the first coefficient by the log energy and calculate
the first-order derivatives of these features. The deriva-
tive covers a context of five frames, two to the left of the
current frame and tow to the right of this frame. In the
end a 24-dimensional feature vector is created.

2.1.2. Perceptual Linear Prediction

The second set of features is revised PLP (RPLP) [4], a
simplified and improved variant of PLP [5] employing
the Mel filter-bank instead of the Bark filter-bank. We
took the first 13 cepstral coefficients of the PLP model
spectrum and their first-order derivatives which results
in a feature dimension of D = 26. Since we use the
same filter-bank for MFCCs and RPLP, the sole differ-
ence between these two feature types is that RPLP per-
forms an additional spectral smoothing step by applying
linear prediction (LP) on the Mel filter-bank spectrum
and obtaining the cepstral coefficients from the resulting
model spectrum [4].

2.1.3. Temporal Patterns

Our TempoRAl PatternS (TRAPS) in this work are quite
similar to the original approach of Hermansky [6]. The
main difference of our approach is the different process-
ing within the time trajectories. The time trajectories con-
sider a long temporal context (310ms) in 18 bands. These
bands are generated by a Mel-filter-bank. Each trajectory
is smoothed by a Hamming window and transformed into
frequency domain. A detailed explanation can be found
in [7].
Figure 1 illustrates the difference between the short-time
processing of MFCCs or RPLP and the long temporal
context used for TRAPS. In a fusion step we concate-
nate the 31 coefficients of each band together to a high-
dimensional feature vector (D = 558). This vector
is then transformed by a Linear Discriminant Analysis
(LDA) to a 24-dimensional vector. The LDA is trained on
a 578-speaker subset of the German Verbmobil database
[8], which was down-sampled to 8 kHz. 46 German pho-
netic classes serve as labels for this transformation.

2.1.4. GMM Modeling

After extraction of the long- or short-term spectral fea-
tures an Universal Background Model (UBM), i.e., a
speaker-independent GMM, is trained on the whole train-
ing set. This UBM is adapted by Maximum A Posteri-
ori (MAP) adaptation to the recordings of train and de-
velopment set. MAP adaptation adjusts the UBM to the
speaker dependent training data in a single iteration step
and combines these new densities with the UBM parame-
ters. Finally, for each recording a single GMM is created.
The mean vectors of each Gaussian are extracted and con-
catenated to a big vector with a dimension of D ∗ 64,
where D is the dimension of the acoustic features, and

64 is the number of Gaussian densities. These so-called
GMM-supervectors are then used for classification with
Support Vector Machines (SVM). This approach is com-
mand in the field of speaker identification and has been
applied to age recognition in [2].

2.2. Prosodic System

The prosodic system is not based on any speech recogni-
tion output or forced time alignments. Thus, the prosodic
features are calculated whenever a voiced speech segment
is found. The voiced-unvoiced (VUV) decision is based
on the zero crossing rate, the normalized energy of the
signal and the maximum energy.
Prosodic base features are calculated on the whole ut-
terance. These are, fundamental frequency (F0), en-
ergy, VUV segments and pitch periods. The structured
prosodic features are calculated on the voice segments.
Adjacent segments are merged, when they are separated
less than 50ms; the corresponding F0 contour is inter-
polated to make the segmentation more robust. Context
segments, that merge two adjacent segments together, are
used additionally. All in all 73 features are calculated for
each segment. They model F0, energy, duration, pauses,
jitter and shimmer. A detailed description of the whole
feature set is given in [9]. Finally, we compute mean,
minimum and maximum of these 73 segments features.
This forms our 219-dimensional prosodic feature vector.

2.3. Glottal Excitation System

A number of voice features that listeners often consider
to be characteristic for aged speakers, like increased
harshness or hoarseness, increased strain, higher in-
cidence of voice breaks, vocal tremor and increased
breathiness[10], may be related to physiological changes
of the larynx. This motivates an approach that applies
a physical model of the glottis to represent age-related
changes of the voice quality. The parameters of the
physical model are adapted to each speaker and contain
information about the speaker’s age. Here we decided to
use these parameters directly for age classification.
The glottis model applied to represent the characteristics
of the speaker’s voice is a physical mass-spring vocal
fold model introduced by Stevens in [11]. A detailed
description of this model and the algorithm that has been
proposed for parameter estimation can be found in [12].
Here we shortly summarize the iterative glottal inversion
procedure.
For each voiced 25 ms speech frame an optimization
loop is run starting from an initial set of nine glottis
model parameters. These parameters determine the
physical properties of the model, including the masses,
the compliances of the springs, etc. Given the parameter
values the glottis model generates an excitation signal.
The similarity of the generated excitation signal is
compared to the LPC residue of the original speech
signal. As a distance measure we use the weighted sum
of the Euclidean distance between the log spectra of the
two signals and the difference between the generated and
the original pitch for the frame. The distance measure
is handed over to the simplex parameter optimization
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System UR WR C YF YM AF AM SF SM
MFCC-GMM 42.4 42.4 56.3 39.1 40.4 37.9 33.2 39.9 50.0
PLP-GMM 41.2 41.2 53.7 41.1 39.7 35.8 31.5 38.0 48.7
TRAPS-GMM 39.3 39.4 50.2 37.5 39.1 33.7 30.3 37.6 46.9
Prosodic 39.9 40.6 44.2 36.0 32.7 36.9 37.4 37.8 54.2
Glottis 36.3 37.3 39.1 43.6 26.9 29.3 26.1 35.2 53.9

Table 1: Results of the single systems on the development set (in %)

algorithm [13, 14], generating a new set of parameters.
Thus, an optimization loop is formed that passes the
new parameters again to the excitation model until the
distance between synthesized and original speech has
been minimized.

2.4. System Fusion

We intentionally use quite low dimension GMM system
in order to compare different ways of combination, i.e.,
early and late fusion. An early fusion would not be pos-
sible in an appropriate time with GMM dimensions of up
to 2048 like it is common in speaker id. The goal of this
paper is to compare early and late fusion of different sys-
tems with the different results of the stand-alone systems
for age and gender recognition.

2.4.1. Early Fusion

The early fusion is performed on meta-feature level.
Therefore the three supervectors of the three GMM sys-
tems, the 219-dimensional prosodic vector and the 27-
dimensional glottis system are concatenated to a high-
dimensional vector. The feature dimension with an early
combination of all of our five systems is 3878. This vec-
tor is then used for classification with SVMs.

2.4.2. Late Fusion

Late calibration and fusion is based on multi-class logis-
tic regression as it is implemented in the FoCal toolkit
[15]. In a training step weights are assigned to each of
our five systems. The actual combination is a weighted
sum of the different system scores. Note that the late fu-
sion was trained on the development set. That means the
calculated weights lead to the optimal combination on the
development set.

3. Experiments and Results
The data used for system training and evaluating are suf-
ficiently described in [1]. We first show the results of our
stand-alone systems in Section 3.1. After that we summa-
rize our results achieved with early and late system fusion
in Section 3.2.

3.1. Results of single systems

For these experiments we created five different system,
while each is using a Support Vector Machine for clas-
sification. The results on the five stand-alone systems
are summarized in Table 1. The column UR denotes the

unweighted recall and WR denotes the weighted recall
in %. We also present the recall for each of the seven
classes (’C’, ’YF’, ’YM’, ’AF’, ’AM’, ’SF’, ’SM’). The
best stand-alone system, w.r.t. UR andWR, is theMFCC-
GMM system with 42.4% in both cases. This system
achieves also the best result for the classes ’C’, ’YM’,
’AF’ and ’AM’. 56.3% of all children, 40.4% of young
men, 37.9% of all adult females and 39.9% of senior fe-
males are classified correctly. Within the cepstral based
systems the MFCC system is the best stand alone system
regarding each of the seven classes. The prosodic system
has significantly better results regarding the classes AM
and SMwith rates of 37.4% and 54.2% respectively. The
glottal excitation system achieves the best results for the
class ’YM’.
Focusing on the UR and WR results of the different sys-
tems one can see, that the UR and WR results of the
GMM-based system are perfectly matched. UR and WR
of the prosodic system differs by an absolute value of
0.7%. The difference within the glottal system is even
higher; 1% absolute. We expect this difference to be
based on the different types of features, i.e., GMM-based
v.s. non-normalized min-max-mean features. We don’t
have a rational explanation for this fact yet. This needs a
deeper investigation.

3.2. Results of combined systems

In this section we describe the results achieved with the
two different ways of system combination, i.e., early and
late fusion. The results are summarized in Table 2. The
first part of the table contains the results achieved with
early fusion, the second part contains the results with
late fusion. In both cases three different combination are
used: the MFCC-GMM system in combination with the
prosodic system (denoted by MFCC+PROS), the combi-
nation of MFCC-GMM, PLP-GMM and prosodic system
(denoted by MFCC+PLP+PROS) and a combination of
all five systems denoted by ALL.

3.2.1. Early Fusion

When comparing the results of the stand-alone MFCC-
GMM and the stand-alone prosodic system vs. the early
combination of both of them, we achieve a significant
improvement of 6%.
The best UR result of 46.1% with early fusion is
achieved by the MFCC+PLP+PROS system, a combi-
nation of the MFCC-GMM, PLP-GMM and prosodic
system. This system is also the best one in terms of WR.
Note that these results are not significantly different to
the results of the early combination of all five systems.
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System UR WR C YF YM AF AM SF SM
Early Fusion

MFCC+PROS 45.0 45.0 57.2 44.5 42.7 40.2 36.6 42.8 51.1
MFCC+PLP+PROS 46.1 46.0 59.2 45.6 46.5 39.0 37.2 42.6 52.7
ALL 45.9 45.6 57.4 46.1 47.7 40.1 36.7 42.5 50.6

Late Fusion
MFCC+PROS 45.0 45.6 50.7 42.8 38.8 44.3 38.9 46.5 53.4
MFCC+PLP+PROS 47.0 47.7 53.4 45.3 40.4 45.2 39.1 47.4 58.2
ALL 47.8 48.9 51.6 47.9 38.2 44.4 39.4 51.6 61.6

Table 2: Results of different combined systems on the development set (in %)

3.2.2. Late Fusion

The late fusion is optimized on the development set,
meaning that the values shown in the table are optimal
for the development set. We achieve a maximum UR of
47.8% with the ALL system combination. This result is
not significant compared to our second best late fusion
system, the combination of MFCC-GMM, PLP-GMM
and prosodic system. WR is also highest for the ALL
combination system: 48.9%.

3.2.3. Comparison of Early and Late Fusion results

When focusing on the class-wise results it can be seen,
that the early combined systems outperform the systems
combined at score level for the class ’C’. The late fusion
systems on the other hand have a clear advantage on el-
derly speakers (SF and SM). Focusing on the UR and
WR results of the different ways of comparison shows,
that the early combination is more balance, i.e., there is
almost no difference between UR and WR. Late fusion
takes the a posterior probability of the development set
into account, which is not the case for the early combina-
tion.

4. Conclusions
In this paper we compared five system and their combi-
nation for the task of age and gender recognition. Three
systems modeled spectral features of different temporal
context, one system used prosodic features, and one used
glottal features estimated by a two-mass model. The
best stand-alone system was the GMM-UBM with an un-
weighted recognition rate of 42.4%. In case of early sys-
tem combination we achieved 46.1%. Combination on
score level achieved an additional improvement of 4%.
The best results was a UR of 47.8%, achieved by score
level combination of all five systems.
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