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Abstract. Atrial fibrillation is the most common sustained arrhyth-
mia. One important treatment option is radio-frequency catheter abla-
tion (RFCA) of the pulmonary veins attached to the left atrium. RFCA
is usually performed under fluoroscopic (X-ray) image guidance. Over-
lay images computed from pre-operative 3-D volumetric data can be
used to add anatomical detail otherwise not visible under X-ray. Un-
fortunately, current fluoro overlay images are static, i.e., they do not
move synchronously with respiratory and cardiac motion. A filter-based
catheter tracking approach using simultaneous biplane fluoroscopy was
previously presented. It requires localization of a circumferential track-
ing catheter, though. Unfortunately, the initially proposed method may
fail to accommodate catheters of different size. It may also detect wrong
structures in the presence of high background clutter. We developed a
new learning-based approach to overcome both problems. First, a 3-D
model of the catheter is reconstructed. A cascade of boosted classifiers
is then used to segment the circumferential mapping catheter. Finally,
the 3-D motion at the site of ablation is estimated by tracking the re-
constructed model in 3-D from biplane fluoroscopy. We compared our
method to the previous approach using 13 clinical data sets and found
that the 2-D tracking error improved from 1.0 mm to 0.8 mm. The 3-D
tracking error was reduced from 0.8 mm to 0.7 mm.

1 Motivation

Recent research in the area of X-ray guidance for electrophysiology (EP) proce-
dures found that augmented fluoroscopy using overlay images rendered from 3-D
images (CT, MRI, C-Arm CT) facilitates more precise catheter navigation and
a reduction in fluoroscopy time [1–3]. Critical structures like the esophagus and
the left atrial appendage are invisible under regular fluoroscopy unless contrast
agent is applied. Thus, rendering overlays of such structures for visual procedure
guidance further improves safety. Unfortunately, current image overlay methods
still lack motion compensation. A first approach tracking a commonly used map-
ping catheter has been proposed in [4]. This circumferential mapping catheter
measures the electrical potentials at the ostium of the pulmonary vein (PV)



2 Brost et al.

(a) ROI (b) Filtering (c) Classification

Fig. 1. (a) A region-of-interest around the catheter is presented on the left. (b) The
result of the segmentation by filter methods [4, 7, 8]. (c) Segmentation using a boosted
classifier cascade.

considered for ablation. Catheter tracking was accomplished by calculating a
3-D model of the catheter, a filter-based segmentation and 2-D/3-D registra-
tion of the catheter model to biplane fluoroscopic images. Various methods for
catheter tracking have been proposed. They involve filter-based techniques [5]
as well as template-matching and learning-based approaches [6]. For electro-
physiology procedures, different types of catheters are available. They differ in
width, number of electrodes and electrode spacing. These parameters have to
be considered explicitly for a filter-based catheter tracking approach. This adds
additional complexity often reduces the robustness of filter-based approaches.
This is why learning-based methods are often preferable for more complicated
pattern recognition problems. They can reach a better performance if the train-
ing set is sufficiently comprehensive to capture all relevant catheter features
encountered in clinical practice. Learning-based algorithms are usually superior
with respect to suppressing interfering structures that are not of interest. This
is demonstrated in Fig. 1 presenting a comparison between segmentation results
obtained using filtering [4, 7, 8] and by classification. We used a boosted classi-
fier cascade to segment the circumferential mapping catheter. In the next step,
the 3-D catheter model is generated as proposed in [4, 7, 8]. Tracking itself is
performed by a 2-D/3-D registration. These steps are explained in more detail
below.

2 Catheter Model Generation

Our method requires the generation of a 3-D catheter model, which is based on
the assumption that the perspective projection of the circumferential mapping
catheter, when fit to the pulmonary veins, can be approximated as a 3-D ellipse.
The circumferential mapping catheter can also be approximated as an ellipse in
2-D, because a 3-D elliptical object remains elliptical when perspectively pro-
jected onto a 2-D imaging plane. The ellipses on the 2-D fluoroscopic images are
denoted as CA/B ∈ R

3×3, with the index A or B indicating the corresponding
imaging plane of the C-arm. A 3-D elliptical cone can then be spanned with the
projection matrix PA/B ∈ R

3×4 and the ellipse within the imaging plane. The
base of the elliptical cone is the ellipse in the imaging plane and the vertex is
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the optical center. It can be shown that the elliptical cone can be represented as

QA/B = P T
A/BCA/BP A/B (1)

in matrix presentation [9]. The 3-D ellipse representing the 3-D mapping catheter
is reconstructed by intersecting the two elliptical cones QA and QB correspond-
ing to plane A and plane B of a biplane system respectively. The solution is
found by calculating η such that the quadric

Q(η) = QA + ηQB (2)

is of rank 2 [9]. As pointed out in [4, 7, 8], there are two possible solutions. Prior
knowledge about the pseudo-circular shape of the mapping catheter is used and
the result that is more circular is chosen.

3 Classifier Cascade

The catheter segmentation method not only has to be reliable, but it needs to
be fast as well. Speed is necessary to ensure that the catheter can be tracked
in real-time at the frame rate set at the X-ray acquisition system. We found
that a combination of Haar-like features and a cascade of boosted classifiers met
both requirements to differentiate the live fluoroscopic images into catheter and
background. Haar-like features [10] calculate various patterns of intensity differ-
ences. Several feature prototypes are listed in Fig. 2(a). Some features detect
edges, whereas others focus on line structures. Especially the latter are useful
for detecting the circumferential mapping catheter, which often appears as a
thin, elongated object with a loop at its end, see Fig. 1(a). Actual features are
obtained by shifting and scaling the prototypes within a predefined window. In
our case, a window size of 15 × 15 was found to be sufficient for good results.
Thereby, contextual information around the center pixel is considered, which is
important to differentiate between catheter and background structures. How-
ever, even for moderate window sizes, the resulting number of features is large
and easily amounts to several hundreds of thousands. Features are calculated ef-
ficiently through integral images [10]. To achieve reliable and fast segmentation,
the most suitable features for discriminating between catheter and background
have to be chosen and integrated into a classifier in a suitable manner. This is
carried out by the AdaBoost algorithm [11]. The idea is to combine several weak
classifiers, to form a strong classifier. The classifier minimizing the classification
error is added to a linear combination of weak classifiers until the overall error
is below the desired threshold. After each training iteration, the importance of
individual samples is re-weighted to put more emphasis on misclassifications for
the next evaluation. Instead of single features and intensity thresholds, we use
classification and regression trees (CARTs) [12] as weak classifiers. A CART is
a small tree of fixed size. At each node, a threshold θj associated with a fea-
ture partitions the feature space. This way, flexibility is increased and objects
with complex feature distributions can be handled. The result of a CART is the
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Fig. 2. Features types and classifier structure for catheter segmentation. (a) Sev-
eral prototypes of Haar-like features. (b) Exemplary classification and regression tree
(CART) with five feature nodes θ1, . . . , θ5 and six leaves α1, . . . , α6. (c) Classifier cas-
cade consisting of N stages with strong classifiers ξ1, . . . ξN ; each strong classifier ξi

consists of a linear combination of weak classifiers, here CARTs.

value αk of the classifier reached as leave node. An exemplary CART is shown
in Fig. 2(b). We organize N strong classifiers ξi, . . . , ξN composed of weighted
combinations of CARTs into a cascade, which is illustrated in Fig. 2(c). In our
case, four strong classifiers (N = 4) yielded good results. At each stage, a sam-
ple is either rejected (−1) or passed on to the next stage. Only if the sample is
accepted (+1) at the final stage, it is accepted as part of the object. Thus during
training, the focus is on maintaining a high true positive rate while successively
reducing the false positive rate, either by adding more weak classifiers to a stage
or by adding an entirely new stage. The training data set consisted of 13 clinical
data sets with a total of 938 monoplane frames. For evaluation, the classifier
cascade was trained on a leave-one-out basis, i.e., 12 sequences were used for
training and the remaining sequence was used for segmentation and tracking.

4 Tracking by Registration

The elliptical shape of the circumferential mapping catheter is used for tracking.
Catheter tracking itself is performed by rigid registration [13] of the catheter
model to the segmentation result derived from the previous step. To this end,
the same ROI as for the classification is used. As the size of the mapping catheter
may not be available beforehand, the previous approach in [4, 7, 8] used normals
to the ellipse to simulate the width of the catheter. As the length and the sam-
pling of the normals depends on further parameters that need to be adjusted, we
use a thinning algorithm as proposed in [14]. By thinning, we generate a skeleton
of the catheter, which involves far fewer parameters than needed otherwise. A
distance map IDT,A/B is calculated from the skeleton as proposed in [15] for
each imaging plane. It encodes the absolute distance from a pixel to its closest
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segmented catheter pixel. It also provides a smooth representation of the fluo-
roscopic image with a pronounced minimum around the shape of the mapping
catheter to increase the capture range. Model-based catheter tracking in 3-D is
achieved by performing 2-D/3-D registration. Hence, the reconstructed catheter
model is rotated by R ∈ R

4×4 and translated by T ∈ R
4×4 first. It is then

projected onto the two imaging planes of the bi-plane C-arm system. The aver-
age distance between the projected points and the closest feature point (i.e. the
circumferential mapping catheter) in fluoroscopic images is efficiently calculated
using the distance map introduced above. A suitable rotation and translation is
found by optimizing

R̂, T̂ = arg min
R,T

∑

i

IDT(P A · T · R · wi) +
∑

i

IDT (P B · T · R · wi) (3)

with the 3-D catheter model points wi ∈ R
4 in homogeneous coordinates. The

projection matrices P A and P B do not need to be identical to the ones in
Eq. 1. The parameters used for optimizing are three rotation angles around the
main axes in 3-D, combined in R, as well as a three-dimensional translation,
represented in T . As optimization strategy, a nearest neighbor search [16] is
used, i.e., the position of the local optimum on a large scale is taken as starting
point for the optimization on a smaller scale. The estimated 3-D rotation and
translation can be directly applied to the 2-D overlay to move it in sync with
the tracked device. An overview of the reference method [4, 7, 8] is presented in
Fig. 3 and an overview of our proposed algorithm is given in Fig. 4.

5 Evaluation and Results

Our approach was evaluated on 13 clinical data sets, collected from 6 different
patients at one clinical site. Three different circumferential mapping catheters
were used. For evaluation, we calculate the 2-D tracking error as the average
2-D distance between the projection of the 3-D catheter model and a 2-D gold-
standard segmentation of the circumferential mapping catheter provided by a
cardiologist. We compare our results with those in [4, 7, 8], see Fig. 5. Clinical
data set No. 6 contains a barium swallow of the patient to outline the esophagus,
a critical structure during ablation. Unfortunately, in one frame of this sequence,
the barium hides the mapping catheter, resulting in a rather high maximum
error. This single frame was not excluded. Since catheter tracking is performed
in 3-D, we follow the evaluation in [7, 8] to estimate the 3-D motion correction.
Therefore, the tip of the mapping catheter was manually localized throughout
all sequences by triangulating its 3-D position from bi-plane frames to get a
reference point. In the next step, we applied our motion estimation approach
to the catheter tip to move it from its 3-D position in the previous frame to
the next frame. Because of that, we can compare the 3-D position reached by
applying the estimated motion to the actual 3-D reference point obtained by
triangulation [17]. Finally, the error was calculated as the Euclidean distance in
3-D space. Moreover, an error without performing motion compensation can be
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Fig. 3. Flow diagram of the filter-based catheter tracking approach for motion compen-
sation [8]. The objective is to obtain a dynamic fluoroscopic overlay image for improved
catheter navigation.
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Fig. 4. Flow diagram of our learning-based motion compensation approach. Image
pre-processing has been replaced by classification-based segmentation followed by a
post-processing step. The goal is to obtain a distance map.
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Fig. 5. Comparison of the different catheter tracking approaches. (a) The result of
the reference method presented in [4, 7, 8]. This method yielded an average 2-D track-
ing error of 1.0 mm ± 0.4 mm. (b) Our improved algorithm using a boosted classi-
fier cascade to segment the circumferential mapping catheter yielded a 2-D error of
0.8 mm ± 0.4 mm.

calculated was well. To this end, the 3-D distance between the first frame to all
remaining frames is used to estimate the observed 3-D motion. A comparison
of the observed 3-D motion to both motion correction approaches is shown in
Fig. 6(a). A direct comparison of the filter-based approach versus the learning-
based method is given in Fig. 6(b).

6 Discussion and Conclusions

We presented a method for 3-D motion estimation for radio-frequency catheter
ablation of atrial fibrillation. It is based on tracking of a circumferential mapping
catheter in biplane fluoroscopy imaging. Catheter tracking is performed by 2-
D/3-D registration of a 3-D elliptical catheter model to 2-D biplane images. The
method assumes that the circumferential mapping catheter remains anchored
at the pulmonary vein during ablation. Our clinical data suggests that the cir-
cumferential mapping catheter indeed moves very little with respect to the PV
ostia when used to measure the electrical signals at the pulmonary ostia. When
comparing the two tracking approaches, it can be seen, that the learning-based
approach performs better than the filter-based approach overall. The 2-D track-
ing error could be reduced from 1.0 mm ± 0.4 mm to 0.8 mm ± 0.4 mm and the
3-D error from 0.8 mm ± 0.5 mm to 0.7 mm ± 0.4 mm. This has been displayed
in Fig. 1 showing one frame of Seq. 5. Here, the learning-based method reduced
the average 3-D tracking error from 2.0 mm to 1.2 mm. The benefit of mo-
tion compensation for X-ray fluoroscopy guidance can be appreciated by looking
at contrast-enhanced anatomical structures. An example is presented in Fig. 7.
The main advantage of the proposed learning-based approach is its robustness.
In particular, it generates fewer false positives as obtained when using the filter-
based approach. The advantage of 2-D/3-D registration with biplane images is
that it provides a more robust 3-D tracking compared to a monoplane situation.
The quality of the segmentation could be further improved by using either more
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Fig. 6. Comparison of the different catheter tracking approaches. (a) The result of
the filter-based method [4, 7, 8] and the learning-based method compared to the actual
3-D motion. An average 3-D motion of 4.5 mm ± 2.4 mm has been observed in our
clinical data. (b) Direct comparison of the 3-D tracking error of the filter-based and
the learning-based method. The filter-based method yielded an average 3-D tracking
error of 0.8 mm ± 0.5 mm, whereas the learning-based approach yielded an average
error of 0.7 mm ± 0.4 mm.

(a) (b) (c)

Fig. 7. Motion compensation can be visually assessed by contrast injection into a pul-
monary vein. (a) One image of a fluoroscopic sequence showing the administration of
contrast agent. (b) Misfit of a static overlay due to motion. (c) Visual overlay with
improved positioning of the (red) fluoroscopic overlay image thanks to motion com-
pensation.

cascades or an increased number of features, but this goes hand in hand with
higher computational time. Our current implementation reaches a processing
speed of one frame-per-second (fps), as this frame rate is used at our clinical
partner for simultaneously biplane fluoroscopy. The presented method has not
yet been optimized for multi-core CPUs or GPUs. Further speed improvements
can be expected by taking advantage of parallel processing options. Moreover,
a classifier cascade was used to segment the catheter, but other segmentation
approaches could be applied as well. Beyond improving the technology, future
work will also focus on clinical evaluation of this method.
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