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Abstract. Despite the strengths and popularity of the log-chromaticity
space (LCS), there is still a significant amount of concern regarding its
narrow-band assumption (NBA). Though not always necessary, this as-
sumption is relatively common, as it leads to elegant formulations. We
present a scheme for evaluating whether a deviation from the NBA will
have an impact on the expected LCS values. We also introduce two met-
rics for measuring the divergence from the expected behavior under the
NBA in LCS. Lastly, we empirically analyze how different types of re-
flectance spectra are affected in varying degrees by this assumption. For
example, experiments with real and synthetic data show that the viola-
tion of the NBA typically has insignificant impact on bright unsaturated
colors.

1 Introduction

Many applications in computer vision, like tracking, image retrieval, and ob-
ject recognition are affected by variations in the illumination conditions. There-
fore, a considerable amount of research has been focused on the development
of illumination-invariant color spaces [1, 2]. One such color space is the log-
chromaticity space (LCS). The transformation of RGB values (IR, IG, IB) to
this space is done by first computing the 2D chromaticity values {IR/IG, IB/IG}
and then taking the logarithm of these color ratios. Two important properties
are provided by this transformation: Firstly, a surface color seen under differ-
ent illuminant colors tends to lie on a straight line in this space. Secondly, for a
given camera, all these lines are parallel to each other for different surface colors.
These two characteristics of LCS make it a very promising space for color and
reflectance analysis. Hence, LCS is already quite widely used for applications
like shadow removal [3–7], illumination estimation [8] and illumination invariant
representations [1].

Many of these techniques make an additional assumption, the so-called narrow-

band assumption (NBA) (e.g. [9, 4–7]), which states that the sensor spectral sen-
sitivities can be approximated by delta Dirac functions. Though this assumption
leads to elegant and tractable mathematical formulations, most available sensors
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exhibit non-narrow spectral sensitivities. Therefore, it is often argued that this
assumption is too restrictive and not generally applicable [10–12].

In order to broaden the applicability of methodologies that assume narrow-
spectral bands, sensor sharpening algorithms have been proposed [13–15]. Al-
though, sensor sharpening enhances color constancy performance [16], its biggest
limitation is the required camera calibration, which is can be tedious [16, 5]. Fur-
thermore, sharpening can only be performed if the sensor is available. Thus, it
can not be applied on arbitrary images (like those found on the web), where the
sensor is not available for calibration.

In this paper we evaluate the error in LCS values that is introduced by the
violation of the NBA. We show that although deviations from the expected be-
havior in LCS can occur, it is often the case that for certain families of reflectivity
(albedo) the violation of the Dirac delta assumption does not affect the LCS val-
ues. Due to the image formation process, it is difficult to separate the influences
of the sensor characteristics, the illumination and the surface reflectance. In our
efforts to address this challenge, we were influenced by previous evidence that for
certain materials, like asphalt and skin, the violation of the NBA has minimal
impact [11, 17]. Therefore, we chose to focus our analysis on the suitability of the
NBA for different surface reflectances. We introduce a new formulation which
explicitly describes the deviation from the NBA. We then propose two error met-
rics for quantitative evaluation of the impact of the deviation. Our experiments
on both synthetic and real data show that these error metrics can be used for
determining whether a particular material is unaffected by possible violations
of the NBA. Such an assessment can have a direct impact on broadening the
applicability of LCS methods on arbitrary images.

2 Theory of the Log-Chromaticity Space

In order to systematically assess the impact of the NBA in the LCS one needs
to first closely examine the image formation process as well as the influence of
the incident illumination.

2.1 Planckian Illuminant

Empirical measurements of daylight spectra [18] have shown that outdoor light
as well as indoor illuminants (CIE standard illuminants between 4000K and
13000K) closely fit the corresponding black body radiators. The behavior of a
black body radiator is in turn described by Planck’s law. For the visible range
exp( c2

λT
) ≫ 0 and thus one can use Wien’s approximation for describing the

spectral distribution E(λ, T ) of such illuminants:

E(λ, T ) ≈ Ic1λ
−5 exp

(

− c2
Tλ

)

, (1)

where λ and T are the wavelength and illuminant temperature respectively,
c1 = 2πhv2 and c2 = hv/k are constants containing the Planck constant h, the
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(a) (b) (c)

Fig. 1. Image formation. (a) Surface reflectance functions. (b) Sensor sensitivities. (c)
Spectral power distributions of Planckian illuminants.

Boltzmann constant k, and the speed of light v in vacuum. As in Finlayson and
Hordley [9], the intensity constant I is introduced to model the varying intensity
power. Fig. 1(c) shows the emission spectra of different color temperatures.

2.2 Image Formation

An image captured by a typical color camera can be modeled as:

Ic(x) = g

(∫

Ω

qc(λ)S(x, λ)E(x, λ)dλ

) 1
γ

, c ∈ {R,G,B} . (2)

This equation states that at a position x the sensor response for a certain color
channel c is a combination of the sensor sensitivity qc, the illumination E and
the surface reflectance S. The integral is computed over the visible spectrum
Ω. In order to incorporate further sensor characteristics we also consider the
camera gain g and gamma γ. The image sharpening, which is also often built-in
in modern digital cameras, is not considered in this context, as the proposed
analysis is not based on spatial but rather only on color information. Fig. 1
shows the three components of image formation.

The narrow-band assumption (NBA) [9, 6] directly affects the image forma-
tion model. This assumption states that the sensor sensitivities are considered
to be Dirac delta functions, qc(λ) = kcδ(λ − λc), centered at wavelength λc.
Assuming a constant illuminant color across the scene, Eq. 2 becomes:

Ic(x) = gk
1
γ
c S(x, λc)

1
γ E(λc)

1
γ . (3)

2.3 The Log-Chromaticity Color Space

Among the different chromaticity spaces, we choose to use the ratios of the red
and blue channel with respect to green (as in [9]). By combining Eq. 1 and Eq. 3
the chromaticity values become

Ic(x)

IG(x)
=

k
1
γ
c S(x,λc)

1
γ (λ−5

c exp(− c2
Tλc

))
1
γ

k
1
γ
G

S(x,λG)
1
γ

(

λ
−5
G

exp
(

−
c2

TλG

)) 1
γ

c ∈ {R,B} . (4)
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In order to remove the γ-nonlinearity and the exponential function in Wien’s
approximation, we take the natural logarithm. Furthermore, we model the sur-
face reflectance as diffuse reflectance S(x, λ) = wd(x)ρ(x, λ), which can be de-
composed to a wavelength-independent geometric factor wd(x) and a material
dependent albedo ρ(x, λ) at a certain position x. Thus, the LCS value of a diffuse
surface at a particular point x is:

rc,G = ln(
Ic
IG

) =
1

γ
ln(

ρc
ρG

) +
1

γ
ln(kck

−1
G λ−5

c λ5
G) +

1

γ

1

T
(
c2
λG

− c2
λc

) . (5)

rR,G and rB,G are then the LCS values of a particular pixel x. This color space is
also known as the log-ratio space and log-chromaticity differences [9]. Please note
that for the remainder of the paper we omit writing that the log-chromaticity r,
the image value I, the geometry term wd and the albedo ρ are functions on x.

If we consider the LCS values of a pixel to be a point in the 2D vector space,
the point coordinates are given by

r =

(
rR,G

rB,G

)

=
1

γ

(
ln( ρR

ρG
)

ln(ρB

ρG
)

)

︸ ︷︷ ︸

sρ

+
1

γ

(
ln(kRk

−1
G λ−5

R λ5
G)

ln(kBk
−1
G λ−5

B λ5
G)

)

︸ ︷︷ ︸

b

+
1

γ

1

T

( c2
λG

− c2
λR

c2
λG

− c2
λB

)

︸ ︷︷ ︸

d

. (6)

This equation illustrates that in the LCS all the color values of an albedo seen
under different illuminants fall on a straight line. The line is defined by a point
lying on ( 1

γ
sρ +

1
γ
b) and the direction d. The position of the line is dependent

on the albedo ρ and the sensor characteristics (kR, kG, kB , λR, λG and λB) The
scaling factor 1

T
denotes that depending on the illumination color (defined by

the temperature T ) the same material color ρ will fall on a different position of
the same line. Note that the slope of the line d is independent of the material. As
a consequence, different albedos will lie on different lines, as vector sρ changes.
However, all these lines are parallel, since they share the same slope. The factor
1/γ only causes a constant scaling of the vectors. Thus, the LCS exhibits two
key characteristics (see dotted lines in Fig. 2(b)): Firstly, linearity (As the illu-
minant color changes the LCS values of a surface fall on a straight line, pointing
in the so-called invariant direction [1]) and secondly, parallelism (For a given
camera, all such lines for different surface colors are parallel). Both properties
are extremely helpful for illumination invariance, as a normalized image can be
generated although the illuminant color is unknown or inhomogeneous across
the image (like shadow regions). On the other hand, the violation of the NBA
may disarrange the linearity and parallelism in LCS (see crosses in Fig. 2(b)).

3 Influence of the Narrow-Band Assumption

In order to analyze the influence of the NBA, we have to establish a scheme
for estimating the introduced error. The sensor sensitivities can be better ap-
proximated by Gaussian functions with means µ = λc and standard deviation
σ (see Fig. 1(b)). The standard deviation can be seen as the descriptor for the
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(a) (b)

Fig. 2. (a) Sample reflectances. (b) LCS values of the different color patches. The ideal
values form parallel straight lines.

narrowness of the sensitivities. Assuming for clarity of presentation g = 1, γ = 1,
kc = 1, Eq. 2 is then transformed to:

Ic(x) = wd(x)Ic1
1√
2πσ

∫

Ω

ρ(x, λ)e−
c2
Tλ e−

(λ−λc)
2

2σ2 dλ, (7)

In this formula we assume diffuse reflectance and a Planckian illuminant E(λ, T )
as in Eq. 1. As this equation shows, there are three factors influencing the de-
viation from the Dirac delta assumption: the albedo ρ(λ) of the material, the
standard deviation of the sensor sensitivities, and the color temperature T of the
illuminant. Since, for arbitrary images the illuminant is typically unknown, we
focus our error analysis on the influence of the albedo ρ(λ) and the filter width
σ. Such an analysis will then allow one to either safely use the Dirac assumption
or avoid it depending on the scene materials.

By rearranging Eq. 7, we obtain:

Ic = wdIc1







ρ(λc)e

−
c2

Tλc

︸ ︷︷ ︸

Dc

+

∫

Ω\λc

ρ(λ)e−
c2
Tλ

1√
2πσ

e−
(λ−λc)

2

2σ2 dλ

︸ ︷︷ ︸

Qc








, (8)

Thus, the LCS values can then be expressed as:

rc,G = ln

(
Ic
IG

)

= ln

(
Qc +Dc

QG +DG

)

, (9)

where Dc corresponds to the ideal intensity assuming Dirac delta functions and
Qc corresponds to the error which is introduced when employing cameras with
wider sensor sensitivities. Hence, in order to have an error as minimal as possible,
the ratio inside the logarithm of Eq. 9 has to be as close as possible to the ideal
ratio Dc/DG. This is equivalent to requiring that

QBDR = QRDB or
QB

QR

=
DB

DR

, (10)



6 The Narrow-Band Assumption in Log-Chromaticity Space

(a) (b)

Fig. 3. Impact of the NBA. (a) The red and blue vertical lines are the sensor responses
under the Dirac delta assumption. The shaded regions denote the error due to non-
narrow sensor sensitivities. There is no impact on the LCS values if the ratio of the
shaded regions is equal to the ratio of the corresponding vertical lines. (b) The diversity
of the shape of the spectra makes the error analysis difficult.

which is obtained when (QR+DR)/(QG+DG) = DR/DG and (QB+DB)/(QG+
DG) = DB/DG . This means that the ratio of the errors in the red and blue
channel has to be equal to the ratio of the Dirac responses. Fig. 3(a) illustrates
this relation. This means that as long as the ratio in Eq. 10 is satisfied, one
can use the NBA, even though Qc 6= 0. On the other hand, if the combination
of a sensor sensitivity with the spectrum of an albedo causes an inequality in
this relation, the position of the resulting values and the ideal Dirac values will
differ in LCS. It is important to note that this relation is dependent on the
temperature of the illuminant. Furthermore, the diversity of the shape of real
spectra makes this analysis difficult.

4 Experiments

Our goal is to systematically evaluate the impact of the deviation from the
NBA on the LCS. Unfortunately, the non-separability of the different factors of
image formation make the analytic estimation of Eq. 9 and Eq. 10 intractable
for arbitrary images. We can however measure for specific surface spectra ρ(λ)
and for different filter widths σ how deviations from the NBA affect the position
and orientation of the invariant lines in LCS.

We computed the product of different albedo curves with Planckian illumi-
nants and different sensor sensitivities. The resulting RGB values were trans-
formed in LCS and the resulting deviations were evaluated using three different
error measures. We analyzed spectra of both synthetic and real data. We simu-
lated different spectral sensitivities by using Gaussians of varying σ.

4.1 Data

For the evaluation of synthetic reflectance curves, 36 lines of different slopes
and intensity levels have been generated (see Fig. 6). For analysis of real re-
flectances, we used about 160 different reflectance spectra which were extracted
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from the CAVE database [19]. In order to gain insight into the influence of their
shape on the introduced error, the spectra have been categorized into 37 groups
according to their shape. Examples for shape-categories are shown in Fig. 5. Fur-
thermore, 357 skin reflectance curves (from 119 different persons) of the UOPB
Face Database [20] have been analyzed in Sec. 4.6.

As examples of sensor sensitivities we took the spectral responses from two
3CCD cameras: a Sony DXC-755P [20] (denoted as “Oulu” in our plots) and
a Sony DXC-930 [21] (denoted as “SFU”), see Fig. 1(b). There is a mismatch
of the wavelength-range between the natural reflectance curves from the CAVE
database (λ ∈ [400nm, 700nm]) and the sensor sensitivities. The sensors have a
non-zero sensitivity at λ < 400nm, while the sensitivity at λ > 700nm is zero. In
order to avoid asymmetry in the resulting log-chromaticities due to this spectral
cut off, we limited the spectral range to λ ∈ [400nm, 650nm]. For the evaluation
we selected T ∈ [4000K, 10000K] and the dominant wavelength of the dirac
Delta functions as λG = 450, λB = 530 and λR = 590 with kB = kG = kR = 1.

4.2 Error Measures

The error analysis is performed on the basis of three error measures: the angu-

lar error ǫang, the average distance ǫdist and the difference of ratios ǫrat. The
angular error ǫang ∈ [0◦, 90◦] defines the angle between the invariant line lDirac

obtained with the Dirac functions and the invariant line lsens computed using
non-Dirac sensor sensitivities. Not only the parallelism of the two lines is af-
fected, but also a shift between line lsens and lDirac can be observed. Thus, we
define a second error metric, the average distance ǫdist between the LCS values
of the sensor sensitivities rcG and those of the Dirac function r̂cG as:

ǫdist =
10000∑

T=4000

√

(rRG(T )− r̂RG(T ))2 + (rBG(T )− r̂BG(T ))2, (11)

Depending on the application ǫdist (clustering/segmentation in LCS) or ǫang
(illumination-invariant representation) is more important.

We also evaluated the deviation from Eq. 10 by computing the difference
between the two ratios. We denote this error measure as difference of ratios ǫrat
and compute it as:

ǫrat(T ) = (QB(T )/QR(T ))− (DB(T )/DR(T )) . (12)

Note that both ǫdist and ǫrat are explicitly dependent on the temperature of
the illuminant. In our analysis it turned out that the correlation of ǫrat and
ǫang was extremely high. In order to avoid redundancy we limited parts of our
presentation to ǫang.

4.3 Synthetic Surface Reflectances

In order to analyze the influence of a) the reflectance level and b) the general
shape of the albedo on the accuracy of the LCS values, we generated linear



8 The Narrow-Band Assumption in Log-Chromaticity Space

reflectance spectra with different slopes and intercepts (see Fig. 6). Several im-
portant observations can be made:

1. The slope of the line: The slope of the line influences the average error ǫdist.
The larger the slope of the line, the smaller ǫdist (see e.g. Fig. 6(i), 6(l)). In all
the analyzed curves, ascending lines lead to a smaller ǫdist than descending
lines (see Fig. 6(c), 6(f), 6(i), 6(l)). This observation can be explained by the
shape of the sensor sensitivities. Consider a horizontal albedo. As the blue
filter is often broader than the red one, the error in blue will be larger than
in red (QB > QR) while for the ideal values they will be equal (DB = DR).
In order to achieve a more balanced ratio of Eq. 10, the albedo needs to have
a smaller level in the blue part of the spectrum.

2. The level of the reflectance curves: In most analyzed curves it was observ-
able that the angular error ǫang decreases with increasing level of intensity
(see e.g. Fig. 6(c), 6(i), 6(l)). Again, let us consider two horizontal albedos
of different reflectivity levels. As the blue filter is wider, the error in the
blue channel is larger than in the red one. However, closer to the dominant
wavelength, the difference between the red and blue curves is decreasing.
Therefore, the higher the intensity level, the smaller the additional error in
the blue channel and the better the error ratio.

Furthermore, it seems that the average distance ǫdist is affected more by vari-
ations in the shape of the albedo curves, while the angular error ǫang is more
sensitive to the overall level of reflectivity.

4.4 Real Surface Reflectances

Similar trends can also be observed for real reflectance data. However, due to
the more complex structure of the albedo curves and the simultaneous variation
in shape and level, the interpretation of the results is less intuitive than for the
synthetic data.

1. Balancing of the red and blue part of the albedo: Similar to the synthetic
data, Fig. 5(c) illustrates that albedos with slightly increasing slopes result
in a low ǫdist, as the ratio of Eq. 10 is well balanced. This observation is also
supported by the example in Fig. 5(f). If the error in the blue band is too
high compared to the error in the red one (see Fig. 7(f)) or the other way
around (see Fig. 7(c)) both errors, ǫdist and ǫang, increase.

2. The level of the reflectance curves: Here again, it can be nicely observed
that an increased reflectivity reduces the angular error ǫang. This effect is
illustrated in Fig. 5(i).

3. Minimal level of reflectivity: Closely related to the previous investigation
is the observation that extremely small levels (e.g. ρ(λ) < 0.03) over some
parts of the considered wavelengths result in an increased error. For instance,
this is observable is Fig. 7(i), where the curve with the highest level in the
range of λ ∈ [400nm, 570nm] results in the lowest error.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Results of synthetic and natural albedo curves with changing narrowness of
the sensor sensitivities. Left: Surface reflectances. Middle: LCS values; the values for
σ ∈ {1, 10, 30nm} almost fall on each other. Right: Error scatter plot.

4.5 Influence of Sensor Narrowness and Image Gamma

In order to analyze the influence of the narrowness on the errors, we also modeled
sensor sensitivities as Gaussian curves with µ ∈ {450, 530, 590nm} and different
widths, σ ∈ {1, 10, 30, 50, 70nm}. Examples for results on synthetic and natural
reflectance curves are given in Fig.4. As expected decreasing bandwidth results
in decreasing errors. This tendency could be observed in all the analyzed curves,
independent of the shape of the surface spectra.

We also tested the effects of different gamma-values. A value of γ > 1 results
in a compression of the LCS values. In almost 100% of the synthetic data and
about 70% of the natural data γ = 2.2 resulted in an increased ǫdist and a
reduced ǫang. Sample plots are provided in the supplemental material.

4.6 Favorable Reflectance Spectra

Due to the observation that slightly increasing albedo curves (higher red and
lower blue component) fit well to the NBA, we performed an additional evalua-
tion on skin reflectance curves. Based on the melanin absorption, skin reflectance
curves tend to have this advantageous shape (see Fig. 8(a)).

As expected, in LCS, the skin values cluster well (see Fig. 8(b)). Still, the
performance of the more narrow SFU spectral sensitivities is better. This is
also supported by the error scatter plot in Fig. 8(c). We want to emphasize
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Results for real reflectances (different shape categories). Left: Color-coded sur-
face reflectances. Middle: LCS values. Right: Error scatter plot.

that reported errors are very good results compared to the average error of the
arbitrary albedos of the CAVE database. Tab. 1 illustrates this, by showing the
mean and standard deviation of the skin reflectance curves and the extracted
spectra of the CAVE database.

Tab. 2 lists the best and worst measured errors for the CAVE database and
Oulu sensor sensitivities. The corresponding spectra are shown in Fig. 3(b). The
table reveals, how the performance is dependent on the sensor sensitivities (e.g.
ǫdist for cyan). See supplemental material for further results.
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Oulu SFU

ǫdist ǫang ǫdist ǫang

CAVE 0.398± 0.273 5.128◦ ± 3.913◦ 0.449± 0.310 3.718◦ ± 2.864◦

Skin 0.192± 0.020 3.924◦ ± 0.848◦ 0.146± 0.012 3.226◦ ± 0.716◦

Table 1. Mean and standard deviation for the average distance ǫdist and the angular
errorǫang computed for the CAVE database and the skin reflectances. Both analyzed
sensor sensitivities are listed separately.

Oulu SFU

ǫdist ǫang ǫdist ǫang

CAVE min(ǫdist) for Oulu (cyan) 0.07 0.01◦ 0.44 1.00◦

CAVE max(ǫdist) for Oulu (blue) 1.71 16.37◦ 0.93 12.86◦

CAVE min(ǫang) for Oulu (magenta) 0.21 0.01◦ 0.37 1.67◦

CAVE max(ǫang) for Oulu (green) 1.03; 16.72◦ 0.59 11.38◦

Table 2. Spectra with the minimal and maximal errors of the CAVE database and
Oulu sensor sensitivities. The corresponding curves (see color) are shown in Fig. 3(b).

5 Conclusions

This paper addressed the influence of the violation of the NBA on the results in
LCS are addressed. The introduced error depends on the the color temperature
of the illuminant, the sensor sensitivities and the surface reflectance. Due to the
image formation process, these three factors are not separable. In our evaluation
we, therefore, concentrated on the color of the captured materials. Our theoret-
ical formulation of the NBA-deviation showed that: when the ratio of the errors
in the blue and red channels approximates the ratio of the respective Dirac delta
values, the violation of the NBA leads to insignificantly small errors. Our analysis
was based on two error metrics. These were designed so as to evaluate the suit-
ability of reflectances for two groups of applications: illumination invariance and
clustering/segmentation in LCS. In our analysis on synthetic and real surface
reflectances it turned out that especially for bright and unsaturated colors, like
skin color, the error in LCS is very small. Object colors with large errors, will
benefit from spectral sharpening. Furthermore, due to Eq.10, the band which
is less balanced with respect to the other two bands should be selected as the
normalizing channel in Eq.4.
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Fig. 6. Results for synthetic reflectances (different slopes and intensity levels). Left:
surface reflectances. Middle: LCS values. Right: Error scatter plot.
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Fig. 7. Results for real reflectances (different shape categories). Left: Color-coded sur-
face reflectances. Middle: LCS values. Right: Error scatter plot.

(a) (b) (c)

Fig. 8. Results of skin albedo curves. Left: Skin reflectances. Middle: LCS values. Right:
Error scatter plot.


