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Abstract. Automatic segmentation of the esophagus from CT data is
a challenging problem. Its wall consists of muscle tissue, which has low
contrast in CT. Sometimes it is filled with air or remains of orally given
contrast agent. While air holes are a clear hint to a human when search-
ing for the esophagus, we found that they are rather distracting to dis-
criminative models of the appearance because of their similarity to the
trachea and to lung tissue. However, air inside the respiratory organs can
be segmented easily. In this paper, we propose to combine a model based
segmentation algorithm of the esophagus with a spatial probability map
generated from detected air. Threefold cross-validation on 144 datasets
showed that this probability map, combined with a technique that puts
more focus on hard cases, increases accuracy by 22%. In contrast to prior
work, our method is not only automatic on a manually selected region of
interest, but on a whole thoracic CT scan, while our mean segmentation
error of 1.80mm is even better.

1 Introduction

Atrial fibrillation is a major cause of stroke. It can be treated with a catheter
ablation therapy in the heart. However, this intervention imposes the risk of an
atrio-esophageal fistula. The air from the esophagus can enter the left atrium,
which normally causes the death of the patient [I]. Here, a segmentation of
the esophagus can be helpful during intervention planning. A segmentation can
also help to find lymph nodes in CT images of the chest area. The attenuation
coefficients are so similar that it is often impossible even for a human to separate
them given a single slice. Here, a segmentation can provide valuable overview to
a physician, and also automatic detectors benefit because the esophagus can be
excluded from search.

Automatic segmentation of the esophagus is challenging because it easily can
be confused with vessels, muscles or lymph nodes. Both shape and appearance
can vary a lot. It may appear solid, but it can also contain air or remains of
contrast agent given orally to the patient.

Prior work on the topic is limited. In [2], the esophagus is segmented with a
non-parametric shape prior of the centerline and an appearance model.
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The method is semi-automated: The user has to specify two points on the cen-
terline. Moreover, segmentations of the left atrium and the aorta are required as
anchors for the shape prior. Another semiautomatic segmentation method which
also relies on a shape prior that is relative to surrounding structures is described
in [3]. In [4], contours that were manually drawn into axial slices are interpolated
without using the image itself.

In this work, we follow the approach of [5]. There, a four step method is pro-
posed. First, a box detector based on a discriminative model is run for each axial
slice and a set of candidates of the approximate esophagus contour is generated.
Then, the candidates are clustered and merged. Now a Markov chain model is
used to infer the path through the axial slices that has the highest probability.
Finally, a surface is generated and refined, again with a discriminative model.
However, the method is only automatic on a manually cropped region of interest
(ROT) and not on a whole CT volume.

In this work, the method of [5] is extended in three ways. First, it is made
fully automatic on uncropped CT volumes as acquired by the scanner. The region
of interest is determined by detecting a salient landmark in the chest. Second,
the accuracy was improved by incorporating a new intermediate detection step.
Finally, we explicitly handle air in the esophagus and in the respiratory organs
in order to further increase the robustness.

The remainder of the paper is structured as follows: In section [ZI] we shortly
summarize the approach of [5]. Section describes our approach for automat-
ically detecting the region of interest. In section 23] the detector which finds
esophagus contour candidates is described along with the new intermediate de-
tection step. Section 2.4] explains how the distribution of air was incorporated.
Section [3] presents experiments and results, and section [ concludes the paper.

2 Method

2.1 Model Based Segmentation

In [5], the esophagus contour in axial slices is first approximated with ellipses.
They are parameterized as
e=(t0,s), 1)

where t = (x,y) is the center within the slice, 6 is the rotation angle and s =
(a,b) contains the semi-axes of the ellipse.

Ellipses are detected using a technique called marginal space learning [6].
Instead of directly searching the five dimensional search space, three classifiers
are trained. As classifiers, we use probabilistic boosting-trees (PBT). These are
binary decision trees with a strong AdaBoost classifier at each node. The first
PBT classifier learns the probability p(m = 1|H(t)) of whether there is a model
instance in the image at a certain location ¢. Here, H (t) denote Haar-like features
extracted at position ¢t. These are simple cuboid filters similar to the rectangle
filters described in [7]. They can be computed very efficiently and thus even
allow to search the volume exhaustively. The second one is trained to learn
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the probability p(m = 1|S(¢,6)) of whether there is a model instance at a given
position with a given rotation angle . It uses steerable features S as proposed in
[6], which are simple point features sampled on a regular grid, and the sampling
pattern is rotated according to €. The third classifier is trained on the whole
search space to learn p(m = 1]|S(¢, 6, s). It uses steerable features as well, but
now the sampling pattern is also scaled. By first using the detectors trained
on marginal spaces, large portions of the search space can be pruned at early
stages. The result is a set of ellipse candidates {e(l) .eN )} per axial slice.
These candidates are spatially clustered and merged. Each cluster center ¢(®) is
associated with a weight ¢(*) which is the sum of detection scores p(m = 1]e(?))
of candidates belonging to cluster k.

Now the most likely path through the axial slices is inferred using a Markov
chain model. Each slice 7 is associated with a random variable s;. Possible states of
the random variable s; are the cluster centers ¢(*) of slice i. The transition prob-
ability p(s;+1]s;) from one slice to the next is modelled by normal distributions
whose parameters are estimated from manual annotations, and the probability
p(s;|v) of a variable given an observed image slice v is set to weight ¢(*). The max-
imum a posteriori estimate of all state variables given all observed image slices
p(s1.7|v1.7) can be computed efficiently using dynamic programming.

After the best path has been computed, it is converted into a triangulated
surface representation and refined to better fit the boundary of the organ. The
vertices of the surface are individually deformed according to the output of
another PBT classifier which was trained with steerable features. Then a mesh
smoothing algorithm is applied. Deformation and smoothing is repeated once.

2.2 Automatic ROI Detection

The method described in section 2.1l only works on a region of interest showing
the esophagus. In order to make it fully automatic also on uncropped CT scans
showing for instance the thoracic and abdominal region, we detect the ROI
automatically. A salient point close to the esophagus that can be detected very
robustly is the bifurcation of the trachea. The landmark detection method used
here is described in [§]. An axis-aligned cuboidal region is rigidly attached to
that landmark such that the esophagus is always inside in 144 datasets with
a minimum margin of 3cm in z and y direction. The resulting region is of size
13.3x 15.6cm? . In vertical (z) direction, the size is set to 26cm. This ROI is fairly
large, which makes the detection harder because it contains more structures that
may be confused with the esophagus.

2.3 Discriminative Model

Within the detected ROI, we run for each axial slice a classifier that was trained
to learn p(m = 1|H(t)) as described in section 11 A set of candidates Cry =
{t1...tNn;, } is generated which contains the Ny positions with highest detec-
tion score. We now propose to train another classifier of the same type and
the same features. But now, the negative training examples are generated by



98 J. Feulner et al.

scanning images with the first classifier and collecting false alarms instead of
randomly drawing samples from the images. Thus, the second classifier gets spe-
cialized on the difficult cases. It only considers the candidates from Cp; and
generates a set Cro which contains the Npo candidates with highest scores of
the second detector. The remaining steps in the detection pipeline are similar to
[B]: A classifier trained to learn the probability p(m = 1|S(t,0)) considers the
candidate set Cpo and generates a set Crp of position and orientation candi-
dates of size Npg. Finally, a classifier that was trained on the full search space of
translation, rotation and scale is run on Crpr to generate the ellipse candidates
of a slice. Clustering, merging, path inference and surface generation are adopted
from [5].

In Fig. [ example output is displayed for each step of the detection pipeline.

() () ' © @ @)

Fig. 1. The proposed detection pipeline. (a) shows the detection scores generated by
the first translation detector. The output of the second translation detector is visualized
in (b). The bounding boxes of the ellipse candidates are shown in (c). The confidence
is color coded in HSV color space: Violet means lowest score, red is highest. The
candidate set is clustered and merged (d). The best path through the axial slices is
inferred, converted into a surface and further refined (e). The blue contour is the final
segmentation.

2.4 Including the Distribution of Air

When a human tries to find the esophagus in a CT dataset, s/he also looks for
air holes as they are clearly visible and a strong indicator for the esophagus.
One might expect the classifiers to learn this correlation, but we found that air
holes rather distract them. The reason is that the classifiers only rely on local
features. Then, air holes can be confused easily with the trachea or lung tissue,
and both are a priori much more likely because they cover a larger volume. A
human, however, recognizes and excludes the respiratory organs effortlessly.

Separating esophageal from respiratory air. Therefore, we propose to sup-
port the detector by adding the knowledge that air belonging to the respiratory
organs cannot belong to the esophagus, and air elsewhere most likely is inside
the esophagus. This is modelled with a binary mask B(t) that is zero if ¢ be-
longs to a respiratory organ and one otherwise, and a probability map S(t) of
the esophagus based on detected air holes.
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Segmenting the air of the respiratory organs in CT is straightforward because
it is one connected region. First, voxels with an attenuation coefficient below
-625HU are labeled as air. Vessels and airways in the lung are labeled as air as
well by identifying small connected components in axial, sagittal and coronal
slices. Now all regions marked as air which touch the left, right, front or back
border of the ROI are removed. The result is stored in B. Remaining regions
marked as air probably belong to the esophagus. They are labeled with 1 in a
mask F. Elsewhere, FE is zero. A similar method to find esophageal air holes
is described in [9]. Now for each axial slice, it is checked whether FE contains
exactly one connected region labeled as esophageal air. If so, we set the current
slice of the probability map S to g(|t — p|), where p is the point of gravity of
the region within the slice and g is a Gaussian with standard deviation s that is
deformed and trimmed to have a maximum of 1 and limited support in [—w, w].
We selected a value of 7Tmm as s and 10mm as w.

Integration into detector. We now define a combined probability map
C(t) as
B(t) + S(t)
cwy=""" 2)
and model the probability p(m = 1|C(t)) of observing the esophagus at position
t given the global distribution of air as being proportional to C(¢):

p(m =1[C(#)) o< C(t). 3)

During position detection, we are finally interested in the probability p(m =
1|H(t),C(t)) of observing the esophagus at a certain location t given the Haar-
like feature response H (t) and the information from the global distribution of
air C'(t). In order to simplify the notation, we will omit the argument ¢ in the
remainder of this section. Using Bayes’ rule, this can be rewritten as

p(H,C|m = 1)p(m = 1)
p(H,C)

Now we assume that the feature vector H is statistically independent from the
distribution of air C'. This is of course a simplifying assumption. H and C' are
to some extent statistically dependent. The assumption is justified by the fact
that the map C' does improve the performance as we will see, which means that
H does not contain much information about C. With this assumption, [ ) can
be transformed into

plm = 11H,C) = (4)

p(H|m = 1)p(Clm = 1)p(m = 1)
p(H)p ( )

_ plm = 1|H)p(m = 1|C) o

p(m =1) ’

which is proportional to the product p(m = 1|H)C(t) of the classifier output
and the probability map C. This means we can integrate C' into the transla-
tion detector simply by multiplying it with the detection score. In Fig. 2 the
probability map C is visualized for two axial CT slices.

p(m =1H,C) =
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Fig. 2. Two examples of CT slices along with their combined probability map C(t)
generated from the distribution of air inside the volume. Left: The air hole is a clear hint
for the esophagus. Right: No air hole is present, but respiratory air can be excluded.

Regions filled with respiratory air are not considered by the detector. There-
fore, we also do not generate negative training examples from these regions. This
makes the learning problem easier because now air is a priori more likely to be
part of the esophagus.

3 Results

The method has been evaluated on 144 CT scans of the thoracic or the thoracic
and abdominal region. No patient was included twice. The voxel spacing in x and
y direction was in the range of 0.7mm to 0.8mm. The spacing in (longitudinal)
z direction was b5mm. After ROI detection, the volumes were resampled to a
voxel spacing of 0.7 x 0.7 x 5mm?. Manual segmentations were available for all
datasets. The segmentations typically ranged from the thyroid gland down to a
level below the left atrium.

The accuracy was measured using threefold cross-validation. For each fold, all
five classifiers for translation (2x), orientation, scale and surface were trained on
the training data, and the parameters of the Markov model were estimated from
the same training data. The remaining data was used for testing. There was no
overlap between training and testing data. For evaluation, the detector was run
in z direction on the same interval covered by the manual annotation in order not
to introduce artificial errors because of different lengths of the segmentations.

ROI detection succeeded in all of the 144 datasets. Due to the large ROI, the
segmentation method can tolerate normal anatomical variations and detection
errors of the bifurcation of the trachea.

Table [M shows the results of accuracy evaluation. As error measures, we used
the mean segmentation error and the Hausdorff distance, averaged over all test
datasets. The mean error measures the mean distance between the ground truth
and the detected surface, while the Hausdorff distance measures the maximum.
The number of candidates Np; generated by the first translation detector was
set to 400, N2 to 120, Nrgr to 50, and the number of final candidates per slice
to 200. The distance threshold in the clustering step was set to 8mm.

The proposed method segmented the esophagus with a mean error of 1.80mm.
If only the binary mask B is used instead of the combined probability map C, the
error is 1.88mm. If the air model as described in section 24l is omitted, the error
is 1.94mm, meaning that explicitly modelling the air significantly improved the
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Table 1. Results of performance evaluation. Shown is the mean error and the mean
Hausdorff distance along with the corresponding standard deviations.

Method mean error in mm  Hausdorff dist. in mm
Proposed method 1.80 + 1.17 12.62 + 7.01
Only binary air model B(t) 1.88 + 1.24 13.00 £ 7.88

No air model 1.94 £ 1.39 13.06 £ 7.21
Single translation class. 2.07 + 1.47 14.50 £ 8.92

No air model, single translation class. 2.32 + 1.87 15.02 = 9.83

No Markov model 2.30 + 1.49 17.29 £ 11.42
Proposed method, best 80% 1.34 4+ 0.31 9.65 &= 3.07
Feulner et al. [5] 2.28 £ 1.58 14.5

Inter observer variability 0.78 + 0.17 729 + 222

2.2 T T T T T T
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Distance threshold in mm

Fig. 3. Left: The mean segmentation error for different distance thresholds used for
clustering. Right: Examples of automatic segmentations on unseen data (blue) along
with ground truth (green).

Mean error in mm

accuracy. If the air probability map is used, but the second translation detector
as described in section is omitted, we get an error of 2.07mm. Without both
the air model and the additional detector, performance is 2.32mm, meaning that
using both decreases the error by 22%. When the Markov model is turned off
and for each slice, the ellipse candidates are simply averaged, the error becomes
2.30mm. This is different from what is described in [5]: There, the use of the
Markov chain did hardly influence the numeric results. Here, it clearly improves
the accuracy. The reason is that the Markov model is especially useful to resolve
ambiguity that occurs much more frequently in a larger ROI. The data used for
evaluation does also contain extreme cases which in principle can be handled by
our method if enough training examples are available. This was not always the
case. If the most difficult cases are excluded from the test set, the mean error be-
comes 1.34mm. For comparison, the results of [5] are shown. We furthermore did
an experiment to measure the inter observer variability: Ten datasets were man-
ually segmented a second time by another observer. The second segmentations
were evaluated like automatic ones. The result is shown in the last row.
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Table 2. Computation time in seconds for different steps of the method

ROI detec. prob. map gen. ellipse detec. path inference refinement total
6.96 1.13 7.40 0.40 - 1073 0.34 15.83

Table 2] shows the computational requirements of the different steps of the
method, measured on a 2.2GHz dual core PC. Though the ROI is larger, ellipse
detection is slightly faster compared to [5] due to the spatial probability map
and the second translation detector which rejects most candidates of the first
one. In total, the method takes less than 16s.

4 Discussion

In contrast to prior work, our method is able to segment the esophagus from
uncropped CT volume images without any user interaction. Segmentation on an
automatically detected ROI is harder because the ROI has to be made large. Still,
our results are better than what has been reported in [5]. A mean error of 1.8mm,
which is only 1.0mm above the inter observer variability, can be considered as a
good result for this problem.
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