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Abstract—Interventional perfusion imaging with a C-arm an-
giography system capable of 3-D imaging (C-arm CT) could op-
timize the clinical workflow during stroke treatment. Acquisition
times are currently of the order of several seconds per short-
scan and filtered backprojection reconstruction artifacts can arise
due to the time-dependence of the attenuation values. In this
paper, we present a novel formalism to model reconstruction
artifacts by a spatio-temporal filter in the object domain. The
filter consists of terms that depend on the temporal derivatives
of the attenuation values. Using this model, artifacts due to time-
dependent attenuation values can be well explained and studied.
We apply the filter model to analyze redundancy weighting
schemes in order to reduce these artifacts. Furthermore, this
model could be the basis to develop new dynamic reconstruction
algorithms.

I. INTRODUCTION

CT perfusion imaging can be used for stroke diagnosis.
After injection of a contrast bolus a series of reconstructed
images is obtained to track and analyze the contrast flow.
Interventional perfusion imaging with a C-arm angiography
system capable of 3-D imaging (Figure 1) could optimize the
clinical workflow. Currently, the rotational speed of the C-arm
is of the order of 3-5 seconds per short-scan. With the filtered
backprojection (FBP) reconstruction artifacts can arise due to
the time-dependence of the attenuation values.

To date there exist some studies on FBP artifacts due
to time-varying attenuation values [1], [2], [3] but there is
no model to describe the characteristics of these artifacts.
Therefore, in this paper we present a novel formalism to model
reconstruction artifacts by a spatio-temporal filter in the object
domain with terms that depend on the temporal derivatives of
the attenuation values and derivative-weighted point spread
functions.

The filter model can be used to analyze reconstruction
parameters (e.g. redundancy weighting schemes) in order to
reduce the artifacts or to develop new dynamic reconstruction
algorithms by inversion of this model.

II. PRELIMINARIES

We assume that the X-ray source of the scanner rotates with
a constant angular velocity !s on a circular path of radius R
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Figure 1. C-arm angiography system capable of CT-like imaging (C-arm
CT; Artis zeego, Siemens AG).

Figure 2. Fan-beam acquisition geometry described in Section II.

around the origin of the coordinate system (Figure 2). The
location of the source a(�(t)) at time t can be written as

a(�(t)) = (R cos(�(t)), R sin(�(t)))T (1)
�(t) = !s ⋅ t+ �0 (2)

where �(t) is the angular position of the source at time t
and �0 is the angle at t = 0. For time-dependent attenuation
values �(x, �(t)), an example is shown in Figure 3, at locations
x = (x, y)T the projections p(�(t), ) under the fan angle 
can be written with help of the usual definition of the delta



Figure 3. Example for a perfusion time-attenuation curve �(x, t) measured
in one voxel at x. The measured projections are inconsistent if the attenuation
value changes during the C-arm rotation.

function as

p(�(t), ) =

∫∫ +∞

−∞

�(x, �(t)) ⋅�(∗(x, �(t))−) dxdy (3)

where ∗(x, �) defines the fan angle at source location � that
intersects the pixel at location x. This particular fan angle can
be computed as

∗(x, �) = arctan

(

x ⋅ eu(�)
R− x ⋅ ew(�)

)

(4)

where we used the unit vectors eu = (− sin(�), cos(�))T and
ew = (cos(�), sin(�))T. We can reconstruct the object density
�rec(r, trec) at location r corresponding to the estimated object
state at time trec by using the filtered backprojection [4]

�rec(r, trec) = R

∫ +∞

−∞

1

∣∣r − a(�(t))∣∣2

∫ +∞

−∞

p(�(t), )

⋅ g(∗(r, �(t))− ) ⋅ cos() ⋅ w(�(t)− �(trec), ) ddt (5)

with

g() =

(



sin()

)2

⋅ ℎramp() (6)

where ℎramp() is the ramp filter [4]. The function w(�, )
is a sliding window of length Λ. It is zero for ∣�∣ ≥ Λ/2 and
takes function values mΛ(�, ) ∈ [0, 1] inside this angular
interval to compensates for redundant data in the fan beam
acquisition geometry. For mΛ(�, ) we choose the function
proposed in [5].

Current C-arm CT systems cannot perform continuous rota-
tions of the C-arm but the C-arm rotates in an alternating man-
ner. Equation (5) therefore only applies to the data acquired
during the rotation of the C-arm in one direction. Furthermore,
the geometry of the flat-panel detector is approximated by a
curved detector.

III. NOVEL FILTER MODEL

Combining Equation (3) and Equation (5), changing the
order of integration and evaluating the convolution with the
delta function yields the equations

�rec(r, trec) =
∫∫ +∞

−∞

�(x, r, trec) dxdy (7)

�(x, r, trec) = R

∫ +∞

−∞

1

∣∣r − a(�(t))∣∣2
⋅ �
(

x, �(t)
)

⋅ g
(

∗(r, �(t))− ∗(x, �(t))
)

⋅ cos
(

∗(x, �(t))
)

⋅w
(

�(t)− �(trec), 
∗(x, �(t))

)

dt (8)

We can interpret Equation (7) and Equation (8) as a filter
that transforms the true attenuation values � into the recon-
structed attenuation values �rec. The function �(x, r, trec) can
be interpreted as the contributions from locations x to the
reconstruction at r, i.e. it gives the reconstruction artifact due
to time-varying attenuation values at x.

We compute the Taylor expansion of �(x, �(t)) around
�(trec) in order to investigate the properties of � with respect
to derivatives of �.

�(x, �(t)) =
∞
∑

n=0

dn�(x, �(t))
d�n

∣

∣

∣

∣

t=trec

⋅
(�(t)− �(trec))

n

n!
(9)

Here we assume that �(x, �(t)) can be represented as a
Taylor series in the time interval that corresponds to the
current angular sliding window w. In practice this is reasonable
since perfusion time attenuation curves are continuous, low-
frequency functions. According to Equation (2) second and
higher-order derivatives of �(t) vanish, therefore we have the
following total derivative

dn�(x, �(t))
dtn

∣

∣

∣

∣

t=trec

=

∂n�(x, �(t))
∂�n

∣

∣

∣

∣

t=trec

⋅

(

d�(t)

dt

∣

∣

∣

∣

t=trec

)n

(10)

We combine Equation (8), Equation (9) and Equation (10) and
change the order of summation and integration to obtain

�(x, r, trec) =
∞
∑

n=0

dn�(x, t)
dtn

∣

∣

∣

∣

t=trec

⋅ !−n

s ⋅ Pn(x, r, �(trec))

(11)
with

Pn(x, r, �(trec)) =
R

n!

∫ +∞

−∞

(�(t)− �(trec))
n

∣∣r − a(�(t))∣∣2

⋅ g
(

∗(r, �(t))− ∗(x, �(t))
)

⋅ cos
(

∗(x, �(t))
)

⋅ w
(

�(t)− �(trec), 
∗(x, �(t))

)

dt (12)

We can interpret Pn(x, r, �(trec)) as a derivative-weighted
point spread function. It is weighted with the n-th derivative
value of �(x, trec) and the inverse X-ray source velocity !−n

s .
The angle �(trec) is the center of the sliding window. An
illustration of the filter model is shown in Figure 4. For a



Figure 4. Illustration of the filter to model reconstruction of inconsistent
projection data: The reconstruction artifact �(x, r, trec) around x arises from
a varying attenuation value �(x, trec) at x. It is a superposition of derivative-
weighted points spread functions Pn. For each term the weights consist of the
n-th derivative of �(x, t) at trec and a C-arm angular velocity (!s) dependent
factor.
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Figure 5. The redundancy weighting of the central ray according to the
function proposed in [5] for different angular window intervals Λ.

reconstruction of a static object the filter model reduces to a
convolution with the point spread function P0. The function
Pn(x, r, �(trec)) is shift-variant (it depends on r) due to the
fan-beam acquisition geometry but it is 2� periodic with
respect to �(t).

We have performed numerical simulations by forward and
backprojections of different time-dependent attenuation value
functions to confirm the mathematical derivation and the filter
model showed excellent agreement with the reconstruction
results.

IV. APPLICATION

The filter model separates the temporal dynamics (deriva-
tives of �(x, t), C-arm rotation speed !s) from the scan
and reconstruction parameters that influence the point spread
functions Pn. Therefore, it is possible to study the effect
of different reconstruction parameters (e.g. Λ, ℎramp) on the
artifacts by investigation of Pn.

Figure 5 shows examples of the redundancy weighting
function mΛ(�, 0) with different angular windows lengths
Λ. Figure 6 shows plots of Pn(x, (0, 0)T, 0) computed for

Λ = 200∘ 240∘ 280∘ 320∘ 360∘

n
=

1
n
=

2
n
=

3

Figure 6. Derivative-weighted point spread functions Pn of the artifact model
computed for different sliding window length Λ. The window center is 0 HU
and the window widths are held constant for each n. The colormap range is
from black to white.
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Figure 7. The effective temporal resolution given as the full width at half
(FWHM), quarter (FWQM) and tenth (FWTM) maximum of the redundancy
weighting function of the central ray for different angular window intervals Λ.

different Λ and n. The window with Λ = 200∘ represents
the short-scan reconstruction. For this case the function P1

has distinct streaks. They are reduced if Λ = 360∘, i.e. if
redundant data is included with a smooth weighting function.
Artifacts that depend on higher-order (n ≥ 3) derivative values
increase in magnitude for this Λ. However, since perfusion
time attenuation curves are low frequency functions the con-
tributions from lower-order derivatives are more important and
we can optimize the sliding window length to suppress these
contributions. Similar results were obtained empirically in [6]
and can now be explained by this filter model from a different
perspective.

The choice of Λ influences the reconstruction artifact but
also affects the temporal resolution of the reconstructed time
attenuation curves. Figure 7 shows the effective temporal
widths of the redundancy weighting function for different Λ
assuming a C-arm rotation speed ws = 60 ∘/s. While the
FWHM does not change the parameters FWQM and FWTM
increase for increasing Λ. The temporal modulation transfer
function could also be computed for different Λ and could be
the basis for further evaluations of the trade-off between the
magnitude of the artifact and the temporal resolution.

Since all terms in the filter model (Equation (7) and (11))



are linear a numerical inversion of the model could be possible
and lead to novel dynamic reconstruction algorithms.

V. DISCUSSION AND SUMMARY

We developed a novel formalism that can describe image
reconstruction artifacts from inconsistent data due to time-
dependent attenuation values. It is well suited to describe
artifacts in perfusion imaging. Typical time attenuation curves
in perfusion imaging can be approximated as piecewise linear
functions and thus only the components from a few derivative
terms are sufficient to characterize the artifact.

The model yields a better understanding of the artifacts
and can be applied to investigate their magnitude for given
temporal dynamics. The influence of reconstruction parame-
ters on the artifacts can be studied by investigation of the
point spread functions of the model. Finally, new dynamic
reconstruction algorithms could be developed based on this
linear filter model, e.g. by deconvolution of the point spread
functions.

The filter model can be easily extended to reconstruction
algorithms that work with cone-beam data like the FDK
algorithm [7]. In this case the equations in Section II must
be adapted and the same principle in the derivation must be
followed. The focus of our work is perfusion imaging with
a C-arm CT but this filter model may also be of interest for
other applications with slowly rotating scanners (e.g. dynamic
SPECT or cone-beam CT in radiotherapy).

Interventional C-arm CT perfusion measurement is a new
application and a current area of research. It requires fast
image reconstruction which can be achieved by using the
FBP reconstruction. Our novel filter model is a mathemat-
ically exact analysis of the FBP algorithm in the presence
of time-varying attenuation values. It contributes to a better
understanding of these artifacts and it can improve the design
of FBP-based reconstruction methods.
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