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Abstract
On a database of non-native English productions annotated

by 60 native English speakers as for their quality w. r. t. in-
telligibility, non-native accent, melody and rhythm, we study
how inter-labeller correlation and performance of a regression
system change when varying the number of labellers used for
training. This depends highly on the difficulty of the labelling
task, the features used by the regression system and the type of
regression used. We propose a model that parametrises these
dependencies and is able to predict the system’s performance
when increasing the number of labellers. This can provide a
valuable basis for decision-making when trying to improve an
existing regression system as efficiently as possible. We show
the plausibility of our approach by experimental evaluation.
Index Terms: non-native prosody, speech melody, rhythm,
crowdsourcing, inter-labeller agreement, regression system,
performance model

1. Introduction
Non-native prosodic, especially rhythmic traits are a main
source for low intelligibility of the speech of non-native L2
speakers of English – and any other language. To assess such
traits automatically, we normally need data that are annotated
as for the degree of deviation from native prosody, serving as
‘reference’ or ‘ground truth’ for training automatic procedures
such as classifiers or regression. Note that the following state-
ments can be conceived as generic, valid for any annotation
task, not only for prosodic assessment which is the topic of this
article: apart from the speech data that should be annotated –
type, size, sub-samples such as male/female, degree of profi-
ciency, etc. – the main alternatives to be chosen from is a choice
between experts and ‘naive’ subjects for annotation and/or per-
ceptive evaluation, and the decision on how many people to em-
ploy. Snow et al. conclude that for the task of affect recognition
in speech, using non-expert labels for training machine learn-
ing algorithms can be as effective as using gold standard an-
notations from experts [1]. So far, however, there are no strict
guidelines for that; recently, there seems to be a trend towards
low-cost (non-expert) crowdsourcing using, for example, Ama-
zon Mechanical Turk [1]. Experts are rare and more expensive
than ‘naive’ subjects; moreover, they may be biased in some
way towards their own theoretical preferences. Naive subjects
are less expensive, thus more of them can be employed, they
are less biased, but care has to be taken that the task is well-
defined. Thus normally, less experts are employed than naive
subjects. How many to employ is foremost a matter of time
and money – as long as some rules of thumb are followed: if
there are three or more labellers, we can use majority decisions.
If there are 5 or more labellers, we are more safe when estab-
lishing ordinal judgements, based on the average score of all
annotators. Intuitively, around 10 is a good figure; more than

20 are employed rather rarely. However, to our knowledge, it
has not been investigated systematically yet how the number of
labellers influences the performance of automatic procedures.

The variability between labellers can be traced back to at
least two main factors: first, speaker-specifictraits such as gen-
der, dialect, sociolect, talent for assessing speech, etc., and sec-
ond, speaker-specificstatessuch as boredom, interest, tiredness,
illness, etc. Together, all these factors can be modelled as error
whose variability is higher if less subjects are employed.

This paper is a continuation of [2] where we assessed the
same task – however, always based on the full set of human la-
bellers. Thus, in [2], the question was how good we are with dif-
ferent input features when we use all information we do have, in
the present paper, the question is how does performance change
when systematically varying the number of labellers.

2. Material and human assessment
We recorded 55 English L2 speakers: 25 German, 10 French,
10 Spanish, and 10 Italian speakers.They had to read aloud 329
utterances shown on the screen display of an automated record-
ing software.The data to be recorded are described fully in [2].
Based on annotations of three experienced labellers [3], we de-
fined a subset of the five sentences that were judged as ‘prosod-
ically most error-prone for L2 speakers of English’, cf. [2].

For annotation, a perception experiment was conducted for
scoring intelligibility, non-native accent, perceived L1, melody
and rhythm, using the tool PEAKS [4]. 20 native American En-
glish, 19 native British English, and 21 native Scottish English
speakers with normal hearing abilities judged each sentence in
random order. As shown in [2], there are no real differences be-
tween judgements from these three varieties of English. Thus,
all 60 labellers are lumped together. We only deal with the an-
swers to the melody question in this paper (THIS SENTENCE’ S
MELODY SOUNDS: (1) normal(2) acceptable, but not perfectly
normal (3) slightly unusual(4) unusual(5) very unusual). The
labels on the Likert scales were averaged over all sentences of a
speaker to get a single score for each criterion.

3. Features
After segmenting the recordings with forced alignment of the
target utterance using a cross-word triphone HMM speech
recognition system, we automatically compute a large number
of features measuring different prosodic traits on speaker level
(a more detailed description is given in [2]):

Speech Rate Measures: 6 featuresSRdescribing the rate
of syllables, stressed syllables and vocalic segments.

Isochrony Features: 12 featuresIso capturing distances
between stressed and between unstressed syllables and the stan-
dard deviations of those distances, in order to capture possible
isochrony properties [5].



Variability Indices: Following [6], we identify vocalic and
consonantal segments and calculate the raw Pairwise Variability
Index (rPVI) which is defined as the absolute difference in du-
ration of consecutive segments and its normalized version nPVI
for vocalic and consonantal segments. We compute 8 speaker-
level Pairwise Variability Index featuresPVI.

Global Proportions of Intervals: Following [7], we com-
pute the percentage of vocalic intervals (of the total duration
of vocalic and consonantal segments), the standard deviation of
the duration of vocalic and consonantal segments, and derive 6
featuresGPI measuring Global Proportions of Intervals.

General-Purpose Prosodic Features: In addition to the
specialized features, we apply our comprehensive general-
purpose prosody module which has already been successfully
applied to diverse problems such as phrase accent and phrase
boundary recognition, word accent position classification, and
emotion recognition [2]. The features are based on duration,
energy, pitch, and pauses, and describe arbitrary units of speech
(in our case words, syllables, and nuclei) by 35 features (or
104, if context is included). A more detailed overview of the
prosodic features is given in [8]. We use these prosodic features
computed over different units and contexts to construct exten-
sions of theIso, PVI and GP features to form a total of 523
general-purpose prosodic featuresPros.

Speech Recognition Features Additionally, we use 6 fea-
turesWRdescribing the accuracy of a free unigram speech rec-
ognizer with respect to the target utterances.

4. Modelling Labeller and System
Performance

In order to predict the speaker’s melody score from the features,
we apply multiple linear regression in two setups, which differ
in the way dimensionality is reduced before applying regres-
sion. In thePCA regression system, we apply PCA using the
Kaiser-Guttman criterion to select up to a maximum of 40 prin-
cipal components. In the alternative setup, we apply feature se-
lection (FS) and use the 5 best features resulting from a greedy
forward search in a wrapper approach. We refer to this system
as theFS regression system. We evaluate the performance of the
systems in terms of the average Pearson correlation coefficient
in a 10-fold, speaker-independent cross-validation.

We denote thePearson correlation coefficientbetween
two random variablesA and B by ρA,B = Corr(A, B) =
Cov(A,B)

σAσB
. Its estimate computed from samples ofA andB is

the sample correlation coefficientr(A, B). We adopt a very
coarse model for the annotations given by the labellers: we
do not distinguish between speaker-specific traits and states,
and neither account for differently scaled labels nor for the fact
that different pairs of labellers have different correlation coef-
ficients. The annotationsXk of the labellersk = 1, 2, . . . are
modelled as jointly normally distributed random variables with
Var(Xk) = σ2 andCov(Xi, Xj) = cσ2 for any pair of la-
bellersi 6= j. Consequently, the annotations of two labellers
have a Pearson correlation coefficient ofc, which reflects how
competent the labellers are for the given labelling task.

Combined Annotationsformed by linear combination1 of
multiple labellersX1, X2, . . . , XN are denoted by

XN :=
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1For ease of notation,XN is not shifted to a certain mean or scaled
to varianceσ2, as the correlation is independent of shifting and scaling.

which leads to a natural definition of the (imaginary) “ground
truth” labels asL := limN→∞ XN .

What is the correlation coefficient between combined an-
notations? LetY M be a combined annotation formed from la-
bellersXN+1, XN+2, . . . , XN+M , i. e. a group ofM labellers
disjunctfrom the group that formsXN . Then we get

Corr(XN , Y M ) =
c
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c
. (1)

c can be estimated by computingr(XN , Y M ) on samples of
Xk and solving (1) forc. Comparing a combined annota-
tion XN with the ground truthL yields Corr(XN , L) =
q

c/( 1
N

+ N−1
N

c).

We model the labelŝXN produced by the automatic regres-
sion system when trained withXN as the sum of its training
labels and two independent error components:

X̂N = XN + Ei + El(N),

with expected valuesE(Ei) = E(El(N)) = 0 andVar(Ei) =
ei, representing an “internal” error of the system (due to sub-
optimal input features, parameter estimation from finite sam-
ple, violation of model assumptions, etc.).El(N) increases
with the derivation of the labels from the ground truth (bad
training labels are normally harder to predict because they are
less consistent with the input features). We choose its vari-
ance proportional to the fraction of unexplained variance of
XN with respect toL (which equals1 − Corr(XN , L)2),
i. e. Var(El(N)) = el(1 − c/( 1

N
+ N−1

N
c)). When training

the system withXN , its output andY M correlate as follows:
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ei andel can be estimated by computingr(X̂N , Y M )) for two
different values ofN and solving the resulting instances of (2).

Up to here, we expressed dependencies between combined
annotations formed fromdisjunct groups of labellers. In the
remainder of this section, we will give useful relations forover-
lappinggroups of labellers. The correlation of a single labeller’s
annotationX1 and the combined annotationXN from N la-
bellers,includingX1, is

Corr(X1, X
N ) =

1 + (N − 1)c
p

N + N(N − 1)c
, (3)

i. e.,c can be computed from an estimater(X1, X
N ) by

c =
N · r(X1, X

N )2 − 1

N − 1
. (4)

When trained with a single labeller’s annotationX1, the regres-
sion system output̂X1 and the combined annotationXN from
N labellers,includingX1, correlate with

Corr(X̂1, X
N )) = (5)

1 + (N − 1)c
p

N + N(N − 1)c
p

1 + ei + el(1 − c)
=: ρ1.

Training the regression system with the combined annotation
XN from N labellers and testing with thesamecombined an-
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Figure 1: Left: Feature reduction with PCA; Right: Feature Selection. ‘Labellers’: Estimated labeller correlationr(XN , Y M ) be-
tween average melody annotations ofN = 1 . . . 30 (x-axis) andM = 30 independent labellers. ‘SR’, ‘Iso’, etc.: Estimated cor-
relation r(X̂N , Y M ) between output of regression system and averaged annotations fromM = 30 labellers when training with
N = 1, 3, 5, 10, 30 independent labellers, for the different feature sets ‘SR’, ‘Iso’, etc. as input.

notationXN yields
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ei and el can be computed from estimatesr(X̂1, X
N )) and

r(X̂N , XN ) of ρ1 andρN by solving (5) and (6) for
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Note that the performance of the system w. r. t. the ground truth
is lower than w. r. t. the annotations, namely

Corr(X̂N , L) =
r

c

( 1
N

+ N−1
N

c)
· ρN . (9)

Using (9), we can now predict how performance will increase
when collecting annotations from more labellers. AsN ap-
proaches infinity, the performance of the regression system is
predicted to approachCorr(L̂, L) = 1√

1+ei
.

Summing up, using the parametersc, ei andel, we mod-
elled the correlation between annotations composed from mul-
tiple labellers, and the performance of a regression system
trained with those composed annotations, depending on the
number of labellers involved. We started with annotations
formed from disjunct groups of labellers,Corr(XN , Y M )

andCorr(X̂N , Y M ), and ended up with the more convenient
expressions for the case ofoverlappinggroups of labellers,
Corr(X1, X

N ), Corr(X̂1, X
N ) andCorr(X̂N , XN ).

5. Experiments and Results
In the following, we experimentally evaluate inter-labeller cor-
relation and performance of the two different regression sys-
tems with various input features and annotations when varying

the number of labellers. For estimatingCorr(XN , Y M ), we
shuffle and split the60 labellers into two halves, and compute
annotationsXN with N ≤ 30 from the first half of labellers,
and Y M with M = 30 from the second half, and compute
r(XN , Y M ). This process is repeated for 20 random partitions,
and the results are averaged.

For estimatingCorr(X̂N , Y M ), we train the system with
XN computed from the first half of labellers, and compare its
outputs2 with Y M computed from the second half of labellers,
and averager(X̂N , Y M ) over 20 random partitions.

In Figure 1 the estimated valuesr(XN , Y M ) for the corre-
lation between combined annotations from independent groups
of N = 1 . . . 30 andM = 30 labellers are plotted, and the es-
timated performancer(X̂N , Y M ) of the automatic system de-
pending on the number of labellersN = 1, 3, 5, 10, 30 used for
training, for different input features. Apart from some noise,
the inter-labeller correlation (‘Labellers’ in Figure 1) rises as
expected with growingN ; the improvement fromr = 0.72 to
r = 0.97 asN increases from 1 to 30 is quite notable. The per-
formance of the regression system also rises with growingN ,
generally speaking (apart from some noise), but obviously the
behaviour depends strongly on the used features and the regres-
sion system. For example, the PCA system (Figure 1 left) with
SRfeatures cannot make much use of more labellers:r = 0.75
for bothN = 1 andN = 30, while the same system improves
dramatically fromr = 0.55 to 0.88 when usingPros features.
The behaviour ofSRandPros is again different for the system
using feature selection (Figure 1 right): here, performance rises
moderately in both cases, fromr = 0.63 to r = 0.73 (SRfea-
tures) and fromr = 0.61 to r = 0.73 (Prosfeatures).

Especially for the generally better performing PCA features
(Figure 1, left), the “simple”SRfeatures perform best amongst
the special-purpose features;Pros andAll are, however, supe-
rior, maybe because they can model specifities of the data better
– but for doing that, they need more labellers: both sets display
a pronounced rising from 1 to approx. 10 labellers, compared to
all other feature sets.

Figure 2 shows estimated inter-labeller correlation and esti-
mated system performance for the example of the PCA system

2In order not to get optimistic results, we compute all outputs on the
unseen test data of each cross-validation fold



using Pros features (‘Pros’ in Figure 1 left; ‘System’ in Fig-
ure 2) along with predictions made by our models using the
parametersc, ei andel. For predicting the inter-labeller cor-
relation Corr(XN , Y M ) according to (1), we computec =
0.52 from r(XN , Y M ) = 0.97 at N = 30. The prediction
(‘Lab. pred’) matches the values estimated from the annotation
data (‘Labellers’) very closely acrossN = 1 . . . 30. This is re-
markable as it is just tuned with one single parameter from the
estimate atN = 30. This is a strong indication that the coarse
model of the labellers adopted is sufficient for our purposes.

In order to predict the system’s performance
Corr(X̂N , Y M ) according to (2) we computed the pa-
rametersei = 0.20 andel = 1.1 from r(X̂N , Y M ) at N = 1
and N = 30. The prediction (‘System pred.’ in Figure 2)
matches the values estimated from experimental evaluation
(‘System’ in Figure 2) relatively closely which makes the
model obviously a useful one, e. g. for predicting which
performance could maximally be acquired by increasing the
number of labellers (‘System∞’ in Figure 2).

To give an illustrative example: the model predicts that,
given a pair-wise labeller correlation ofc = 0.52 and that
particular PCA regression system usingPros features with
ei = 0.20 andel = 1.1, maximal performanceCorr(L̂, L) =
1/

√
1 + ei ≈ 0.91, and using one labeller for training will on

average yield 60% (relative) of that upper limit, 5 labellers 85%,
10 labellers 90%, 20 labellers 95%, and 40 labellers 96%. In
terms of explained variance, this corresponds to 36% (relative)
for one labeller, 72% for 5 labellers, 83% for 10 labellers, 89%
for 20 labellers, and 93% for 40 labellers.

In practice, estimating the model parametersa, ei andel by
iterating over multiple labeller partitions is cumbersome. We
can estimate the parameters more conveniently with the help of
(4), (7) and (8). Doing so withN = 60, we are still able to pre-
dict Corr(XN , Y M ) precisely (therefore not shown in Figure
2) and the predictions forCorr(X̂N , Y M ) are still reasonably
good (‘System pred. 2’ and ‘System∞ 2’ in Figure 2).

6. Discussion and Concluding Remarks
Strictly speaking, it might not be possible to give a general rec-
ommendation as for the number of labellers one should hire – it
depends on the difficulty of the annotation task, the regression
system used, and the accuracy that is needed by the applica-
tion. But given a working regression system and labels from
a non-trivial number of labellers, we can make some educated
guesses (see penultimate paragraph of Section 5). As a rule of
thumb, the improvement from one to five labellers is marked,
and still clearly visible from six to some ten; thus, this might be
the region where it definitely pays off to employ more labellers.

As we have shown, the correlation between groups of la-
bellers is very much predictable from the average pairwise cor-
relation, which can conveniently be estimated by comparing
each single labeller with all labellers using (3). For predicting
the performance of a regression system, however, used input
features and used regression system have to be taken into ac-
count as well. Our model parametrizes these dependencies and
is able to approximately predict performance as a function of
the number of labellers. The plausibility of our approach has
been demonstrated by experimental evaluation. This model can
serve as a valuable basis for decision-making when trying to
improve an existing regression system as efficiently as possi-
ble (e.g. should one invest money in more labellers or rather try
to improve the input features and/or the regression technique).
An interesting direction of future research is to incorporate the
sample size into our model.
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Figure 2: ‘Labellers’: Estimated inter-labeller correlation
r(XN , XM ) for N = 1 . . . 30 (x-axis) and M = 30.
‘Lab. pred.’ (almost coincides with ‘Labellers’):Predicted
inter-labeller correlationCorr(XN , Y M ) using Eq. (1); ‘Sys-
tem’: Estimatedcorrelationr(X̂N , Y M ) between output of re-
gression system (PCA,Prosfeatures) and averaged annotations
from M = 30 labellers when training withN = 1 . . . 30 la-
bellers. ‘System pred.’:PredictedcorrelationCorr(X̂N , Y M )
between regression system and labellers using Eq. (2). ‘System
∞’: Predicted correlation between regression system and la-
bellers when training withN → ∞ labellers. ’System pred. 2’
and ’System∞ 2’ refer to predictions using the more conve-
nient Eqs. (7) and (8) for estimating the model parameters.
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