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Abstract

Image-based rendering methods such as light fields
are used in computer graphics for the computation
of new views of a scene out of a set of recorded im-
ages with known camera positions. The quality of the
rendered images depends on the accuracy of informa-
tion about the structure of the scene, consisting of a
geometric 3-D model. In order to accurately recon-
struct and optimize such a 3-D model, we define a
residual function which represents the difference be-
tween an image rendered with the light field from a
known viewpoint, and the original image at the same
position. In order to get optimal results, we mini-
mize this particular function by defining a non-linear
least-squares problem which is solved by an appro-
priate optimization method. Here, we use a largely
unknown, non-monotone variant of the Levenberg-
Marquardt method. Thus, starting from a flat 3-D
model in our experiments the non-monotone variant
decreases the error by a factor of up to 3 in compari-
son to the monotone variant.

Keywords: Non-linear optimization, image-based
rendering, 3-D reconstruction, light field

1 Introduction

Modeling of virtual environments has long been the
sole domain of computer graphics when explicit ge-
ometric modeling was the prevalent technique. With
the emergence of so-called image-based rendering tech-
niques, reconstructing a virtual environment from im-
ages and video sequences of real scenes using computer
vision methods became feasible. The light field, which
is one of the most common representations of image-
based models, stores scene appearance in a set of im-
ages, and generates novel views by combining these
images based on the known circumstances of record-
ing. These are the pose of the camera during recording

and its internal parameters. Computer vision provides
techniques such as structure-from-motion and camera
self-calibration to obtain this information.

Quality of images rendered from a light field thus
depends on one hand on the accuracy of camera pa-
rameter estimation. On the other hand, quality is fur-
ther improved if some information about scene geom-
etry is available, which consists at least of the distance
of objects from the camera for each image. This ap-
plies the more the further the originally recorded im-
ages are apart, corresponding to a sparser sampling of
the scene. While reconstructing scene geometry from
the input images is possible, it usually lacks dense in-
formation as well as accuracy and thus leads to blur-
ring, distortions and superpositions in rendered im-
ages. We therefore propose an improved scheme based
on errors in output image intensity using non-linear
optimization to generate and refine scene geometry.

Finding a way to measure the quality of images
rendered from a light field is an essential part of our
approach. The light field generates an output image
by combining intensity values of the closest neighbor-
ing input images. Leaving out one input image, ren-
dering a new image at exactly the same position and
computing the difference between the two therefore
yields the difference between the real appearance of
the scene and an artificial view. The smaller this dif-
ference, the better the underlying geometric model.
The comparison of the two images is performed pixel
by pixel. We define the difference between two pix-
els as the absolute mean difference between their in-
tensities. The residual vector used in the following
optimization step is composed of all these differences.

Scene geometry itself is represented by a global tri-
angle mesh, the so-called global proxy. Our objective
is to reconstruct this triangle-mesh in such a way that
the differences between the rendered and the original
image are minimized, which corresponds to a mini-
mization of the result of the residual function. As
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we deal here with an overdetermined system of equa-
tions, there may be no unique solution. This objective
is formulated as a non-linear least-squares problem,
where the sum of the squares of the residual function
result is minimized, in order to optimize scene geom-
etry as a whole. We solve this problem by applying a
non-monotone extension of the Levenberg-Marquardt
method in order to improve the results. This exten-
sion allows for a partial increase of the residual values,
often resulting in a more global solution as it does not
necessarily converge to the nearest local minimum. To
our knowledge, this particular extension has not been
introduced in the literature as a solution to similar
problems so far.

This article is structured as follows. In Section 2,
an overview over the literature regarding light field
rendering and reconstruction as well as similar ap-
proaches to geometry improvement is given. The
computation of residual vector and objective func-
tion is presented in Section 3, while in Section 4, the
optimization process using the extended Levenberg-
Marquardt algorithm is described. Section 5 cov-
ers implementation issues such as the exploitation of
sparse matrices, and in Section 6, we present exper-
imental results. The contribution is completed by a
summary and an outlook to possible improvements.

2 Related Work

The underlying motivation of this contribution is an
improvement of rendering quality in the context of
image-based modeling. Light fields, as the represen-
tative of image-based models used here, were first in-
troduced by Levoy et al. [10] using a two-plane param-
eterization, thereby restricting camera positions and
focal planes to these planes. Gortler et al. [4] added
scene depth per input image in order to improve ren-
dering quality. Global scene geometry, however, was
introduced some years later by Buehler et al. [1] in
the form of a global, geometric proxy as part of the
Unstructured Lumigraph. It is therefore the render-
ing method of choice here. A quite comprehensive
and still up-to-date summary of model variants and
rendering methods can be found there as well, the
light field renderer actually used here is described in
[17]. An even broader view of image-based rendering
is given in [14].

Light field models may be reconstructed from in-
put images of real scenes using structure-from-motion
approaches. These are usually based on the availabil-
ity of point feature correspondences, which can be
acquired automatically using feature tracking meth-
ods, such as the Kanade-Lucas-Tomasi tracker [15].
Camera poses and other parameters may be estimated
from these by means of factorization methods [16] and
self-calibration [5]. As a by-product, simple geometry
meshes per image can be generated by triangulating
the tracked features [8]. Detailed descriptions of the

reconstruction method used for the examples in the
experiments section are given in [6] and [13].

An early approach to generating depth informa-
tion from multiple images using image appearance is
the space-sweeping approach [2]. Given that the cam-
era positions for a set of images showing the same
scene from different view points are known, a depth
plane is moved from back to fore through the scene.
Projecting all images onto this plane, the correct
depth is found when all color values projected to a
pixel coincide. Yang et al. [18] apply this technique
to light field rendering, generating depth for each ren-
dered image on the fly and in real-time using graphics
hardware.

Improving geometry meshes using appearance-
based methods has been proposed before likewise.
Considering that a 2-D mesh generated from a point
cloud has many solutions, Morris and Kanade [12]
implement a search algorithm for improving a given
triangulation using edge swapping. Consistency with
recorded images is verified by applying a texture map
onto the 3-D object. The task is formulated as a maxi-
mum likelihood problem and solved by a greedy search
algorithm.

An approach similar to the one we propose in
the following was published by Eckert et al. [3]. A
3-D model of an object is first reconstructed using
the shape-from-silhouette reconstruction technique,
and the resulting, fine-grained mesh is subsequently
refined using an appearance-based method as well.
However, the shape silhouette serves here as an ad-
ditional constraint which is not available in our ex-
amples, and only a conventional, monotone gradient
descent technique is applied.

3 The objective function

3.1 Scene geometry and input images

The global scene geometry for light field generation
is represented by a triangle mesh of V vertices vi =
(vx

i , vy
i , vz

i )⊤ (1 ≤ i ≤ V ). These vertices can be
shifted in all three dimensions in space. Therefore,
the geometry may be determined by 3V parameters

x := (vx
1 , vy

1 , vz
1 , . . . , vx

V , vy
V , vz

V )⊤ (1)

If, as in our experiments, an 8 × 8 triangle mesh is
used, the total number of parameters is 192.

The color model used for the images is RGB with
three channels per pixel. Each image has a resolution
of w × h pixels. In our experiments, we use image
resolutions of 256 × 256 and 512 × 512 pixels.

3.2 Image rendering

In order to generate a new, virtual image from its
neighboring images we use the Unstructured Lumi-
graph renderer by Buehler et al. [1] as implemented in
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Figure 1: Rendering of virtual views using the Un-
structured Lumigraph. The virtual image is subdi-
vided and corresponding texture triangles are selected
by intersecting the viewing rays with the geometric
model.

the lgf3 library [17]. The data required for rendering
are the neighboring images along with their camera
parameters, and the triangle mesh which represents
the scene geometry.

Image formation is performed as shown in figure 1.
The image to be rendered is subdivided by a regular
grid of triangles and for each vertex, depth is calcu-
lated by intersecting a viewing ray with the geom-
etry mesh. By back-projecting the intersection into
the previously selected neighboring images, the cor-
responding pixel positions are determined from each
of them. Thus, for each triangle of the regular grid,
a contributing texture triangle is selected from each
source image and superimposed according to previ-
ously computed weights.

Here, we define the rendering as a mapping

f : R3V → R
3wh

x 7→ f(x) =: y

where x is the parameter vector defined in equation
(1) determining scene geometry. The vector y result-
ing from f represents the color values of the pixels of
the rendered image in the form

y = (y1,1, . . . ,y1,w, . . . ,yh,1, . . . ,yh,w)⊤, (2)

where yi,j denotes the color values of the pixel in the
i-th row and j-th column. It is defined in RGB color
space as

yi,j = (yR
i,j , y

G
i,j , y

B
i,j)

⊤. (3)

The three components denote the red, green and blue
color channels of the pixel. Each of the channels may
be an integral value between 0 and 255. Thus, each
pixel may have one of 2563 different colors.

3.3 Image comparison

In order to determine the quality of a rendered, vir-
tual image, the virtual camera pose is chosen to be
one of the camera poses of the original images. The
original image is not used for image formation, i. e.,
it is removed from the light field for the time being.
Thus, if the mapping from neighboring to new image
were flawless, original and rendered image would be
equal.

For the comparison of rendered and original image
we compute the L1 distance (Manhattan distance) be-
tween the intensities of corresponding pixels and di-
vide it by three, averaging over the color channels.
This reduces the relative weight of outliers and large
differences in a single color channel.

g : R3wh → R
wh

y 7→ g(y)

with

g(y) =




g1(y
R
1 , yG

1 , yB
1 )

...
gwh(yR

wh, yG
wh, yB

wh)


 (4)

and

gi(yi) =
1

3

(
|yR

i − ŷR
i | + |yG

i − ŷG
i | + |yB

i − ŷB
i |

)
, (5)

∀i = 1, . . . , wh.

The pixel intensities of the original image are stored
in ŷ and the rendered ones in y.

The smaller the difference between the channels
of yi and ŷi, the smaller the value of gi(yi). If the
difference of all channels is equal to zero, gi(yi) equals
to zero as well.

Note that since the color of each pixel is described
by three integral values, the range of gi consists of 766
possible elements {0, 1

3
, 2

3
, 1, . . . , 255}. This disconti-

nuity has an impact on the computability of the Jaco-
bian matrix of Section 3.6. Its treatment will therefore
be described more specifically in 5.

3.4 The residual function

We define the residual function as a composition of
image rendering and subsequent image comparison

R : R3V → R
wh

x 7→ R(x) := (g ◦ f)(x). (6)

In order to find the optimal global scene geometry x∗,
we have to solve the overdetermined system

R(x) = 0 (7)
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which has fewer degrees of freedom than equations
(3V < wh) so that an exact solution usually does not
exist.

3.5 The objective function

A solution x∗ has to be found for which the value
‖R(x)‖ becomes minimal. Here as well as for the re-
mainder of this article, ‖ · ‖ denotes the Euclidean
norm. We define the objective function as

F : R3V → R

x 7→ F (x) :=
1

2
‖R(x)‖2 (8)

with the goal to determine the vector x∗ which min-
imizes F . This leads to a non-linear optimization
problem without constraints, i. e., the non-linear least-
squares problem

min
x∈R3V

F (x), F (x) =
1

2
‖R(x)‖2 . (9)

3.6 Derivatives of the objective func-

tion

In order to solve the function of equation (9) we need
information about the derivatives of first and second
order of F . The first derivative is given as

F ′(x)⊤ = J(x)⊤R(x) ∈ R3V (10)

where J(x) is the wh × 3V Jacobian matrix of R(x).
The second derivative is given as

F ′′(x) = J(x)⊤J(x) + B(x) ∈ R3V ×3V (11)

where B(x) contains derivatives of second order of
R(x). Computing all of these is very expensive. Since
‖B(x)‖ → 0, if ‖R(x)‖ → 0, which happens in the
vicinity of an optimal solution x∗, we omit B(x) in
equation (11).

4 Optimization

For the optimization we use the Levenberg-Marquardt
method [9, 11]. This is an iterative method, whose
search direction is interpolated between the direc-
tion of the gradient method and the Gauss-Newton
method. Thus, it combines the positive properties of
both methods. First, it ensures the convergence far
away from a minimizer point, and second, it exhibits
fast local convergence near a minimizer point. In the
Levenberg-Marquardt method, both, the search direc-
tion and the step length are computed simultaneously.
In order to compute one step dk, we solve the system
of equations

(J⊤
k Jk + λI)dk = −J⊤

k Rk (12)

based on the second order Taylor approximation of
the objective function in xk. In our case, Jk = J(xk)
and Rk = R(xk). From now on, this shorter notation
will be used. Jk denotes the Jacobian matrix of Rk,
and I the identity matrix. The step length and search
direction of dk depend on the choice of the Levenberg-
Marquardt parameter λ. If λ = 0, the direction dk is
the same as if we used the Gauss-Newton method.
The step length is maximal. If we let λ → ∞, the
search direction is the direction of the steepest descent
with a very small step length, since limλ→∞(JT

k Jk +
λI)−1 → 0.

In contrast to the original Levenberg-Marquardt
algorithm we employ a scheme proposed by Kelley
[7] to determine the parameter λ. Its choice depends
on the ratio of the actual reduction to the predicted
reduction of the objective function. The actual reduc-
tion ∆a is defined as

∆a = Fk − Fk+1 , (13)

where Fk = F (xk) from equation (8). The predicted
reduction ∆p, based on the quadratic approximation
of F in the k-th iteration point xk,

F̃ (xk + dk) = F̃k(dk) =

= Fk + d⊤
k J⊤

k Rk +
1

2
d⊤

k (J⊤
k Jk)dk,

is defined as

∆p = −
1

2
d⊤

k J⊤
k Rk +

1

2
λ‖dk‖

2 . (14)

The ratio ∆a/∆p specifies the quality of the approx-

imation F̃k. The bigger the ratio, the better F is
approximated by F̃ in a neighborhood of xk.

In order to minimize the objective function of
equation (9) given the problem of optimizing scene
geometry we considered three different variants of the
Levenberg-Marquardt algorithm. The first one is the
standard monotone variant (MLM) which reduces the
residual error Fk in each iteration. In contrast to that,
the non-monotone approach Zhang and Chen [19] al-
lows for an increase of the error for a limited number
of iterations, and may thus find a better minimizer
point. The non-monotone approach is described in
two variants NMLM1 and NMLM2, pointing out the
differences to the monotone approach.
Algorithm 4.1 (MLM) Given are µ > 0, ν > 1,
λ > 0, F (x0) and an initial state vector x0. Set k = 0.

1. Compute Rk, Jk and F ′
k = J⊤

k Rk. If the stop
criterion is fulfilled, STOP!

2. Solve (J⊤
k Jk + λI)dk = −J⊤

k Rk to obtain dk.

3. Compute Fk+1 = F (xk + dk).

4. Compute ∆a = Fk − Fk+1, ∆p = (λ‖dk‖
2 −

F ′
kdk)/2.
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5. If ∆a/∆p < µ, set λ = λ · ν, GOTO 2.

6. If µ ≤ ∆a/∆p, set λ = λ/ν and k = k + 1,
GOTO 1.

In Section 5.3 we provide more information on the
stop criterion used for this algorithm.

We now relax the criterion for accepting dk. The
actual reduction is defined as

∆a = Fmax − Fk+1 (15)

where Fmax is defined by

Fmax = max (Fk, Fk−1, · · · , Fk−M ) (16)

and Fi does not exist for negative i. Let M ≥ 0 be
given, a parameter which defines the maximum num-
ber of consecutive iterations for which an increase of
the objective function value is allowed. The follow-
ing partial algorithms only describe the differences to
algorithm MLM.
Algorithm 4.2 (NMLM1) Additionally to MLM,
η > 0 and M ≥ 0 are given. Set k = 0.

4. Compute ∆a = Fmax − Fk+1,
∆p = (λ‖dk‖

2 + F ′
kdk)/2.

5. Compute

µ̃k =

{
µ, if M = 0

min
(
µ, η

‖F ′

k‖
2 ‖dk‖

2

∆p

)
, if M > 0

6. If ∆a/∆p < µ̃k, set λ = λ · ν, GOTO 2.

7. If µ̃k ≤ ∆a/∆p, set λ = λ/ν and k = k + 1,
GOTO 1.

For a further relaxation, ∆p is set to

∆p = −
1

2
d⊤

k J⊤
k Rk (17)

which is based on the quadratic Levenberg-Marquardt
model of F in xk,

F̂ (xk + dk) = Fk + d⊤
k J⊤

k Rk +
1

2
d⊤

k (J⊤
k Jk + λI)dk.

This leads to the following second non-linear algo-
rithm.
Algorithm 4.3 (NMLM2) In addition to NMLM1,
λmin > 0 is given. Set k = 0.

4. Compute ∆a = Fmax − Fk+1, ∆p = −F ′
kdk/2.

5. Compute µ̂k with

µ̂k =






µ, if M = 0

min{µ, η
‖F ′

k‖
2 ‖dk‖

2

∆p
‖J⊤

k Jk + λI‖∞},

if M > 0

6. If ∆a/∆p < µ̂k, set λ = λ · ν, GOTO 2.

7. If µ̂k ≤ ∆a/∆p, set λ = max(λ/ν, λmin) and
k = k + 1, GOTO 1.

5 Implementation Issues

5.1 Computing the Jacobian matrix

We compute the Jacobian matrix J of the residual
function numerically since we have no information
about analytical derivatives. For this, we favor the
use of central differences over the use of forward dif-
ferences. Although the computation of central differ-
ences is twice as expensive, we get a smaller trunca-
tion error so that the iteration points will be computed
more exactly.

The adaption of the step length is important dur-
ing the computation of the Jacobian matrix. If the
changes in vector x are sufficiently small, they do not
result in changes in the rendered image, because an
image consists of finite color values. Expressed more
mathematically, f maps to discrete values.

Thus, if we compute all columns Jj , 1 ≤ j ≤ 3V ,
of J with a small change δ, determined by machine
precision, such that f(x + δej) = f(x) = f(x − δej),
where ej denotes the j-th unit vector, this results in

R(x + δej) = R(x − δej) (18)

and therefore, J contains only zeros.
The optimal step length δ = 0.01, which is used in

our experiments, was determined experimentally.

5.2 Efficient storage of the Jacobian

matrix

In our experiments, the percentage of elements of J

equal to zero was about 99%. Therefore, we store it
as a sparse matrix. This has two advantages.

To begin with, the matrix-matrix multiplication is
distinctly accelerated. In each iteration we multiply
the transposed Jacobian matrix of R with the Jaco-
bian matrix itself. In our experiments, the Jacobian
matrix has 262 144× 192 entries. Stored as a full ma-
trix, the time to multiply the two matrices is about
300 seconds, which is not an acceptable time, consid-
ering that we compute up to 100 iterations. Stored as
a column oriented sparse matrix, one multiplication
takes only about 0.5 seconds.

Moreover, the amount of memory required is re-
duced considerably. Each entry of the Jacobian ma-
trix is represented by a double value of 8 bytes.
Stored as a full matrix, it requires about 384MB, but
stored as a column oriented sparse matrix it requires
only 8MB. Note that more refining of the mesh or
a higher resolution of the images yields a Jacobian
matrix, whose size quickly exceeds the main memory
available, if we were to save it as a full matrix.

5.3 Choice of the stop criterion

The most widely used stop criterion ‖F ′(xk)‖ < ǫ,
where ǫ > 0 is a small number, cannot be used for our
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(a) original image (b) rendered image before op-
timization

(c) rendered image after op-
timization with the monotone
algorithm

(d) rendered image af-
ter optimization with the
non-monotone algorithm

Figure 2: Example sequence Milk and optimization using the two different optimization algorithms. Rendered
images are generated from five neighboring images.

problem. The reason is the finite difference approx-
imation of ‖F ′(x)‖, which can only obtain a finite
number of values.

We let the algorithm stop if the Levenberg-
Marquardt parameter λ exceeds the threshold λmax =
1014. At this point, the computed length of dk is so
small that there is no difference between Fk+1 and Fk

because of the discrete state of the residual function.

6 Experimental Results

In the following we demonstrate the reconstruction of
scene geometry on three example light fields. For the
preceding camera parameter estimation to work well
the surfaces of objects in the scenes are mostly lamber-
tian. However, minor parts of the scene, such as the
CD case in example 1, may be reflective. The lighting
conditions are mostly constant in all light fields. The
experiments are conducted on an Intel Pentium 4 pro-
cessor with 3GHz, 2GB main memory, and an nVidia
GeForce MX440SE graphics card.

For the optimization algorithm we choose the fol-
lowing set of parameters:

µ = 0.55, ν = 2.0, η = 10−3, λmin = 1.0, λmax = 1014

For the numerical computation of the Jacobian matrix
we set δ = 0.01. As initial value we set the Levenberg-
Marquardt parameter λ = 1.0. We represent the scene
geometry with a regular 8 × 8 triangle mesh. As ini-
tial data for the optimization we choose a flat mesh
parallel to the virtual image plane.

6.1 Example 1: Milk

The first example sequence, named Milk, originally
contains 190 images recorded with a hand-held digital
video (DV) camera. Only one of the images, shown
in figure 2(a), is used to optimize a global proxy, but
each of the two following experiments is performed
with a different number of neighboring images. All
images have a resolution of 512 × 512 pixels.

Experi- Algorithm Error
ment initial final
Milk 1 MLM 17.4 · 107 10.9 · 107

NMLM1 17.4 · 107 3.81 · 107

NMLM2 17.4 · 107 3.47 · 107

Milk 2 MLM 21.1 · 107 11.9 · 107

NMLM1 21.1 · 107 5.75 · 107

NMLM2 21.1 · 107 5.58 · 107

Perrier MLM 9.93 · 107 1.26 · 107

NMLM1 9.93 · 107 1.25 · 107

NMLM2 9.93 · 107 1.27 · 107

Santa MLM 1.97 · 107 0.273 · 107

NMLM1 1.97 · 107 0.246 · 107

NMLM2 1.97 · 107 0.262 · 107

Table 1: Objective function values of all experiments
before and after optimization given as the squared
sum of mean differences per color channel.

As outlined in Section 3, a new image is gener-
ated in the same position and with the same camera
parameters as the original image 2(a). In the first
experiment, 5 source images are used. Figure 2(b)
shows the rendered image before optimization of the
scene geometry. The blurring and superpositions can
be seen clearly, which arise due to the wrong scene
geometry. Figure 2(c) was generated using the op-
timized scene geometry after applying the monotone
optimization algorithm. In order to generate image
2(d) the scene geometry which results from optimiza-
tion with the non-monotone algorithm NMLM2 with
M = 4 was utilized.

It can be seen that after applying the monotone
algorithm blurring is reduced significantly, although
some superpositions remain, like, e. g., the text on
the milk carton. Even better results are achieved af-
ter applying the non-monotone algorithm. The ob-
vious blurring is removed entirely in the optimized
image. This impression is confirmed by the numbers
of table 1. While the monotone variant only achieves
a moderate reduction, the error is reduced consider-
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Figure 3: Progression of the objective function values
while applying algorithms MLM and NMLM2 to the
Milk1 image sequence. Allowing for a partial increase
of the values results in a more global solution.

ably by the non-monotone algorithms. Figure 3 shows
the progression of the objective function values dur-
ing the optimization, comparing algorithms MLM and
NMLM2. As can be seen, the monotone algorithm
runs into the nearest local minimum, whereas the non-
monotone algorithm has the ability to reach a more
global minimum because of allowing for an increase of
the objective function values during the optimization.

As a second experiment on this data, the results of
figure 4 were generated from the same camera position
as the images in figure 2, but this time, 10 source im-
ages were used. In figure 4(a) this results in even more
superpositions and blurring than in figure 2(b) due to
the wrong scene geometry. Again, the non-monotone
Levenberg-Marquardt algorithm NMLM2 yields very
good results, this time with M = 8. Images 4(c) and
4(d) show the difference between the original image
2(a) and the rendered images 4(a) and 4(b), respec-
tively.

However, the figures in table 1 show that an in-
creased number of sample images does not reduce the
final error. There are two possible causes for this ef-
fect. Firstly, the greater the difference of the view-
ing angle of the contributing images, the greater the
impact of wrong scene depth. The low resolution,
8×8 vertices mesh constitutes the main limiting factor
here. Secondly, the limited accuracy of the estimated
camera parameters additionally increases the residual
error the farther the views are apart. Further experi-
ments with even larger numbers of sample images and
on different light fields confirmed these observations.

Figure 5 shows the optimized scene geometry for a
side view of the scene. Image 5(a) depicts the geom-
etry as used by the light-field renderer for rendering
this single view, along with the corresponding texture
mapped onto it. Image 5(b) constitutes the triangle
mesh of the complete proxy after optimization.

(a) rendered image before op-
timization

(b) rendered image af-
ter optimization with the
non-monotone algorithm

(c) difference image before
optimization

(d) difference image after
optimization with the non-
monotone algorithm

Figure 4: Geometry optimization of the Milk sequence
rendered with 10 contributing, neighboring images.
Rendered images and difference images before and af-
ter optimization are shown.

(a) textured geometry (b) optimized proxy

Figure 5: Optimized geometry after applying the
non-monotone Levenberg-Marquardt algorithm to the
Milk scene.
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(a) rendered image before
optimization

(b) rendered image after op-
timization with the mono-
tone algorithm

(c) difference image before
optimization

(d) difference image after op-
timization with the mono-
tone algorithm

Figure 6: Geometry optimization of the Perrier se-
quence rendered with 10 contributing, neighboring im-
ages. Rendered images and difference images before
and after optimization are shown.

6.2 Example 2: Perrier

Similarly to the second Milk sequence example, we use
10 source images to generate the results for the Per-
rier sequence in figure 6. Again, the first two images
show the rendered images before and after optimiza-
tion, respectively, both with a resolution of 512× 512
pixels. Likewise, the bottom row images of figure 6
show the difference between the original image and
the rendered images.

In this example light field, there were hardly any
differences between the results of the non-monotone
and the monotone algorithm. As can be seen in ta-
ble 1, both of them yield good results, with the non-
monotone algorithm yielding slightly smaller objective
function values.

In figure 7 the optimized scene geometry is pre-
sented in the same way as in figure 5. The left
hand image shows a textured per-image depth map
as generated by the Unstructured Lumigraph, while
the complete proxy is given in the right hand image.
In this case, the object is not as easily recognizable
in the geometry mesh as in the former example. This
is due to a lack of further constraints, such as the
consistency with more than one input image. A num-
ber of possible improvements of the approach will be
discussed in Section 7.

(a) textured geometry (b) optimized proxy

Figure 7: Optimized geometry after applying the
monotone Levenberg-Marquardt algorithm to the
Perrier image sequence.

6.3 Example 3: Santa

The third example sequence consists of only 8 images
of a small Santa Claus figure which were recorded with
a turn-table setup. Therefore, we used all 7 remaining
source images to generate the geometric proxy base
on one of the input images. All images have a smaller
resolution of 256× 256 pixels. The example images of
figure 8 again demonstrate the improvement of ren-
dering quality using our optimization scheme. Both
the rendered and the difference images illustrate the
reduction of superposition artifacts.

Here, the differences between the results of the
non-monotone and the monotone algorithms are again
more distinct compared to the Perrier example light
field. But even though the objective function’s value
after optimization with the non-monotone algorithm
is about 10 percent smaller than that of the mono-
tone algorithm, the visible difference between the two
is minor.

Finally, figure 9 again gives an impression of the
geometry resulting from the optimization process.

7 Summary and Future Work

In this contribution we have shown an approach to
image-based 3-D geometry reconstruction based on
the light field model. Starting with a flat 3-D mesh
we improve the geometry of a scene by comparing ren-
dered and original images and defining an objective
function on the difference image. The geometry mesh
is modified in order to minimize the difference using
a non-monotone variant of the Levenberg-Marquardt
algorithm. To our knowledge, this variant has not
been applied to any similar problems so far.

In order to demonstrate the success of our method,
we applied it to three light fields generated from dif-
ferent image sequences using structure-from-motion.
In all three cases, the appearance of rendered images
was improved considerably. In two out of three cases,
the non-monotone variant was superior to the conven-
tional, monotone Levenberg-Marquardt algorithm, as
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(a) rendered image before
optimization

(b) rendered image after op-
timization with the mono-
tone algorithm

(c) difference image before
optimization

(d) difference image after op-
timization with the mono-
tone algorithm

Figure 8: Geometry optimization of the Santa se-
quence rendered with 7 contributing, neighboring im-
ages. Rendered images and difference images before
and after optimization are shown.

it does not converge to the nearest local minimum,
but is able to reach a more global minimum.

So far, we did not impose any further constraints
on the optimization but applied it to the geometry
mesh as a whole. Mesh inconsistencies such as over-
lapping faces are not prevented and occluded faces are
not excluded from optimization. These effects occur
more frequently if the number of vertices in the ge-
ometry model is increased. The 8 × 8 grid selected
for the experiments proved to be a good compromise.
In the literature, appropriate constraints have been
successfully applied and therefore, we expect further
improvements from similar measures. Significant per-
formance gains can be achieved by exclusively render-
ing image patches which are affected during numeric
computation of the Jacobian matrix.
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