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ABSTRACT

Huber, C, Göpfert, B, Kugler, P, and von Tscharner, V. The

effect of sprint and endurance training on EMG signal analysis

by wavelets. J Strength Cond Res 24(X): 000–000, 2010—The

purpose of this study was to relate the spectral changes of

surface electromyograms (EMGs) to training regimes. The

EMGs of M. vastus medialis and M. vastus lateralis of 8 female

sprint-trained and 7 female endurance-trained athletes (ST and

ET athletes) were examined while performing isokinetic knee

extension on a dynamometer under 4 different loading

conditions (angular velocity and load). The EMG signals were

wavelet transformed, and the corresponding spectra were

classified using a spherical classification, support vector

machines (SVMs) and mean frequencies (MFs). Consistent

differences in the EMG spectra between the 2 groups were

expected because of the difference in the muscle features

resulting from the various training regimes. On average, the ST

athletes showed a downshift in the EMG spectra compared

with the ET athletes. The spectra of the ST and ET athletes were

classifiable by spherical classification and SVM but not by the

MF. Thus, the different shapes of the EMG spectra contained

the information for the classification. The hypothesis that

specific muscle differences caused by various training regimes

are consistent and lead to systematic changes in surface EMG

spectra was confirmed. With the availability of new apparels,

ones with integrated EMG electrodes, a measurement of the

EMG will be available to coaches more frequently in the near

future. The classification of wavelet transformed EMGs will

allow monitoring training-related spectral changes.

KEY WORDS isokinetic knee extension, EMG spectra, wavelet

analysis, pattern recognition, classification, apparels

INTRODUCTION

M
uscle properties are known to change with
training. For example, properties such as diam-
eter and fiber-type distribution do change (27).
In a study on ET athletes such as marathon

runners, the relative fiber type I percentage was higher than
in ST athletes (22). A high-velocity isokinetic strength
training results in an increase of the cross-sectional area of the
elbow flexors (25), and marathon training increased the
cross-sectional area of M. gastrocnemius lateralis (27). These
changes of muscle properties are reflected in the spectra of an
electromyogram (EMG). A study of Wakeling et al. (34) on
fish showed that fast twitch fibers generally have a higher
mean frequency (MF) than do slow twitch fibers. Von
Tscharner and Nigg (33) concluded that the EMG spectra,
among other aspects, reflected the task-specific selection
of muscle fibers. For instance, the muscle tuning of the
M. tibialis anterior before heel strike resulted in the
expression of higher frequencies in the EMG signal than
those observed after heel strike (32). One can therefore
expect that training by using fast or slow movements could
affect the distribution of muscle properties that generate high
and low frequency components in the EMG spectra.
There are 2 questions that are of interest: First, ‘‘Can one

use the spectra to assess whether an athlete did speed or
endurance training?’’ and second, ‘‘What can one deduce from
the spectra about the muscle properties?’’ The present study
primarily addresses the first question, because this may lead
to practical applications such as following training results of
athletes or assessing their predisposition. However, the
second question may yield further insight in a controversial
interpretation of EMG spectra. The controversial interpre-
tation has recently been debated in a point counterpoint
article (7,33). The authors summarized the properties of the
muscles that generate and affect the EMG spectra. The point
was ‘‘Spectral properties of the surface EMG can characterize
motor unit (MU) recruitment strategies and muscle fiber
type’’ (33). According to the ‘‘point,’’ the spectral differences
should allow the classification of speed or endurance-trained
athletes.
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interpret the frequency changes, one has to be aware
that the spectrum of an EMG is primarily determined by the
shapes of the MU action potentials (MUAPs) as generated
along the muscle. A MUAP in turn translates to a shape in
time (MUAPt), which is observed by the measuring device
at a fixed position. The translation from MUAPs to MUAPt
results from the conduction velocity (CV) (18). An in-
terference EMG is generated by a superposition of the
different MUAPts. The type of training may change many of
the properties of a muscle, especially properties that change
the size of the muscle and its composition and neuromus-
cular control. However, most frequently, discussions were
boiled down to changes of CV that then alter the MF of the
spectra. The CV is influenced by the type (8), proportion (22),
and the cross-sectional area of the muscle fiber (17) among
other factors. However Troni et al. (28) showed that the CVs
were almost normally distributed and form a single peak and
thus contained not much of a detailed structure. One
has therefore to consider that fiber type, proportion, and cross
sectional area also change the shape of the MUAP and thus
the spectra. Farina et al. (9) commented on various reasons
for changing the MF of the EMG spectra. In a study on the
M. abductor pollicis brevis, it was clearly shown that besides
changes of conduction velocities also the shape of the spectra
changed with fatigue (1) thus indicating changes in the shape
of the MUAP. One of the factors that strongly determines the
shape and the size of the MUAP is the endplate distribution
in the innervation zone. The area of the innervation zone (26)
represents a primary component affecting the shape of the
MUAP and thus the spectra. All the features of the muscle
may somehow change during the training of the athletes.
One can therefore expect that the spectra of speed and
endurance-trained athletes will be of different shapes. The
qAU4 uestion remains whether these different shapes are consis-
tently different and allow the assessment of the training status.
In many studies, the assessment of spectral differences was

reduced to measuring the MF (e.g., [13,21]). However,
different spectral shapes resulting from alteredMUAP cannot
be represented by a single variable. These sAU5 pectral differences
can be expected to be very subtle if the groups comprise
noninjured athletes. To be able to discuss the spectral
differences recorded for 2 different groups, the EMG spectra
have to be characteristic for the training of the groups. A
pattern recognition method has to be applied to the spectra
to decide whether they correlate with a training regime.
Nowadays, very complex pattern recognition methods are
available (2,5,6,10); one of them, the spherical classification
was previously applied to EMG signals (16,30). Classification
is not necessarily possible by using one muscle at a time.
Muscles work in concert, and therefore, multiple muscles
were included for classification purposes (31). As the theory
of classification evolves, the selected methods have to be
carefully evaluated against one another. In some cases,
a projection to higher dimensional spaces lead to a linear
classification of the samples, whereas in other cases, a

reduction of dimensionality is more appropriate. For the
classification of EMGs, some propositions have beenmade (19).
The purpose of this study was to test the hypothesis

that the spectra of EMG recordings of female athletes that
were trained for sprinting (ST athletes) or endurance tasks
(ETathletes) were sufficiently different to allow assigning an
athlete to one of the groups. Specifically, the spectral differ-
ences in M. vastus lateralis (VL) and M. vastus medialis (VM)
muscles resulting from the different training regimes were of
interest for the 2 different running tasks. It was hypothesized
that the differences become classifiable by using nonlinearly
scaled wavelet analysis of the EMGs (29) combined with
a spherical classification method (30) or a support vector
machine (SVM) (3). Both methods have been recently
developed and were to our knowledge not previously applied
to EMG signals. They are important because new apparels
with integrated EMG electrodes become available to ath-
letes; however, the analysis methods that yield relevant infor-
mation for coaches have not yet been sufficiently developed.
It is important to validate and discuss new analysis methods
that will enable the coaches to deduce from EMGs whether
the training resulted in an EMG that is typical for the training
regimes.

METHODS

Experimental Approach to the Problem

This study was designed to address the question of how
endurance and sprint training affect themuscle activity during
knee extensions.

Subjects

Athletes who trained by fast movements, for example,
sprinters and bobsleigh pushers, were referred to as ST
athletes, whereas marathon runners and triathlon athletes
were referred to as ET athletes. Eight female ST athletes
(mean 6 SD age = 24.1 6 3.5 years; mean 6 SD height =
170.8 6 7.2 cm; mean 6 SD mass = 65.7 6 8.8 kg) and 7
female ET athletes (mean 6 SD age = 26.7 6 5.0 years;
mean 6 SD height = 169.9 6 4.0 cm; mean 6 SD mass =
57.0 6 5.4 kg) volunteered for this study. The ST and ET
athletes were in the Swiss national top 15 of their distance
and age group and were training for the winter season
competition (December 2006 to early March 2007). They
all have at least 4 years of experience in participating in
competitions. The ST group consists of athletes from track
and field (100 m and 100-m hurdles) and athletes of the
Swiss national world cup team in bobsleigh. The ETathletes
were either runners on the track (distances longer than
1,500 m) or road runners (triathlon athletes and marathon
runners). The exclusion criterion was that the athletes had
no previous knee or leg injury.
The investigation was approved by the official Ethics

Committee of Basel (EKBB), Basel, Switzerland. Subjects
were informed of the experimental risks and signed an
informed consent document before the investigation. All

2 Journal of Strength and Conditioning Research
the TM

Sprint and Endurance Training



athletes indicated their age and dominant leg side, and their
height and weight were measured.

Procedures

The mAU6 easurements were made on a hydraulic isokinetic
dynamometer of type Cybex Orthotron KT 2 (Cybex,
Medway, MA, USA). The athletes were seated with flexed
legs on the dynamometer with a hip flexion angle of 100°.
Trunk and both thighs were fixed with belts to minimize
muscular compensation and evasive moments. The 2 knee
adapters were fixed at half the distance from the fibula head
to the lateral maleoli.
The athletes executed knee extensions under 4 different

conditions: (a) velocity . 105 °�s21 and load , 27 N�m,
(b) velocity . 105 °�s21 and load . 50 N�m, (c) velocity ,
32 °�s21 and load , 27 N�m, and (d) velocity , 32 °�s21 and
load . 50 N�m (T1 Table 1). For each condition, the subjects
performed 8 trials, starting with condition 1 and finishing
with condition 4, through a movement range of 90° knee
extension (start and end knee angles were 90° and 0°,
respectively). Bad trials were repeated if the load output and
angular velocity was not within the range of the requested
condition. One ETathlete was unable to reach the load level
under the given angular velocity in condition 2; therefore, the
ET group consists only of 6 ET athletes that have fulfilled
condition 2. For further analysis, the 5 trials closest to the
median value (Table 1) were used, thus minimizing the effects
of outliers. The knee extension from 60° to 30° was employed.
Kinematic and kinetic signals of the knee were simulta-

neously measured by using the following equipment: Goni-
ometer (LOB2, Basel, Switzerland) for measuring knee
angle over time, Acceleration sensor (Biovision, Wehrheim,
Germany) for controlling dynamometer angle, Torque sensor
(Cybex, Medway, MA, USA) for measuring torque over time
in the knee and in the dynamometer axe, respectively. The
kinematic and kinetic signals were smoothed with a 50-Hz
high-pass Butterworth filter (fourth order) and resampled at
500 Hz.
The muscle activity of the VL and the VM were measured

on the dominant leg side using an EMG system (Biovision,
Wehrheim, Germany). The placement of the bipolar
Ag/AgCl surface electrodes with a diameter of 10 mm and
an interelectrode distance of 22 mm (Noraxon USA Inc.,

Scottsdale, AZ, USA) were in accordance with SENIAM
r AU7ecommendations (14). The reference electrode was placed
on the tibial tuberosity of the dominant leg. All electrodes
were connected to single differential amplifiers with a band
path of 10–700 Hz (Biovision, Wehrheim, Germany). The
EMG was sampled at 2,520 Hz using a DAQ-Card (DAQ-
Card-6036E, National Instruments Corporation, Austin, TX,
USA) and saved on a laptop computer.
The EMG signals were submitted to a time–frequency

analysis described by von Tscharner (29). This analysis
method consists of a filter bank of 14 nonlinearly scaled
wavelets (Cauchy wavelets) indexed by j. Each EMG signal
was filtered by the 14 wavelets that were characterized by
their center frequency (cfj) (7, 19, 38, 62, 92, 128, 170, 218,
272, 331, 395, 457, 542, 624, and Hz). The wavelets were
abbreviated as, for example, w457Hz indicating that this wave-
let had a center frequency of 457 Hz. The bandwidth of the
filter and the time resolution were computed previously (29).
The EMG signal was convolved by these wavelets yielding
an intensity pj,n, where n represents the index for the time
points. The intensity of w7Hz was not further considered
because it is most likely affected by movement artifacts (4).
The intensity pj,n is proportional to the EMG power within
the frequency band. The intensities pj,n for one specific n are
called a wavelet spectrum, which is equivalent to a power
spectrum. The magnitude of an intensity pattern is the square
root of the sum of all intensities squared. During the wavelet
transformation, the data were resampled at 500 Hz. The
results pj,n were visualized as EMG intensity patterns by
showing contour plots where the abscissa represents time,
the ordinate the frequency, and the contours and gray shades
the intensity.
Electromyogram wavelet spectra were used to monitor

changes in the MU properties resulting from the training.
To obtain representative spectra, an averaging procedure
was used.
The average of the wavelet spectra obtained for the

movement range of 60–30° knee extension was called the
spectral vector (s_vector) of an intensity pattern. All s_vectors
were normalized to total power of 1 by dividing the s_vector
through the sum of its components. For each athlete indexed
by k and condition, a mean_s_vector was computed by
building the average of the 5 s_vectors. To use the

TABLE 1. Angular velocity and load range for conditions 1–4.

Condition 1 2 3 4

Angular velocity High High Low Low
Load level Small Heavy Small Heavy
Angular velocity (°�s21) [105.6–263.2] [100.7–180.7] [12.8–32.0] [8.2–32.4]
Load level (N�m) [9.0–26.9] [50.8–94.3] [5.4–20.9] [50.2–89.7]
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mean_s_vectors for classification purposes, only a limited
range containing the information is required, and the data
have to be appropriately rearranged. The power of the
mean_s_vectors of wstart Hz up to wend Hz of the VL and VM
were stacked on top of each other to form one long vector.
The range of frequencies (start to end) was selected based on
the results shown later. These vectors were arranged as
columns in a matrix WST and WET, respectively.
The group mean across the subjects was computed forWST

and WET. The group mean spectra were visually inspected.
Two spectra were considered to have different shapes if they
could not be brought to superposition by normalization and
rescaling of the frequency axis. There were 4 matrices for
WST and WET representing the spectra of the 4 conditions.
These matrices were used as input to the classification
methods (spherical classification, SVM classification and MF
classification).
Spherical classification of the wavelet transformed EMG

intensity pattern was presented previously by von Tscharner
(30). The spherical classification was described in general by
Fukunaga (10). In this study, the spherical classification of
von Tscharner (30) was adapted to the EMG spectra,
whereas the vector ÔgÕ represents the distances of a mean_
s_spectra to the midpoint of the shell of each of the spheres.
If gST,k is larger than gET,k, then athlete k belongs to the ST
group, otherwise to the ETgroup. This assignment criterion
was used to assess separability and classification. A cross-
validation was done by using a leave-one-out method (10,30).
In the leave-one-out method, one subject, the one left out,
was used as a new test subject and eliminated from the WST

and WET. The separability was computed for the subjects in
the reduced WST and WET, whereas the classification of the
test subject was performed using the spheres obtained from
the reducedWSTandWET. This procedure was repeated using
each subject once as a test subject. Thus, for each subject, one
gets to know (a) whether it was correctly assigned to its
group (classifiable) and (b) the separability of the remaining
subjects that were used as controls. The final result of the
crossvalidation was (a) the average separability of each
of these tests and (b) the crossvalidation rate (number of
classifiable test subjects divided by the total number of
subjects). To visualize the spherical classification process, the
distances |gST,k| and |gET,k| were plotted logarithmically
against each other. A 45° diagonal line separates the 2 groups.
If there is 100% separability, the 2 groups appeared on each
side of the diagonal line.
Support vector machines have attracted great attention

over the last decade (11). The SVM software was down-
loaded as freeware from the internet (3). In the SVM, one still
has to decide which kernel to use, and there is an adjustable
parameter C that controls the performance of classification.
We selected a linear kernel and tested C values between 1 and
1,000. A C value of 50 was selected as an educated guess by
an experienced user. The W matrices were used as input to
the SVM. The same crossvalidation using the leave-one-out

method described above was used. The results were, as for
the spherical classification, the average separability and the
crossvalidation rate.
In the more classical EMG analysis, the MF was used as

a measure of spectral differences. The group MF for the
differentmuscles was computed for the classical comparisons.
The purpose of this study, however, requires a classification of
an athlete as belonging to the STor ETgroup. Therefore, the
following classification method based on MF was used. The
MFs for the group mean ofWST and WETwere computed for
each condition as a weighted average of the center fre-
quencies. Thus 2 MFs were obtained, one for the VL, MFVL,
the other for VM, MFVM. A subject was deemed correctly
assigned to its group if both, MFVL and MFVM were closer to
their respective group mean. Some subjects were not assign-
able because both MFs were not simultaneously closer to
their respective means. A crossvalidation using the leave-
one-out method was used to compute the crossvalidation
rate of the assignable subjects and an overall crossvalidation
rate. In this case, the group mean of MFVL and MFVM of the
control subjects did not contain the MFVL and MFVM of
the subject that was left out to be tested. The result of the
crossvalidation for MF were (a) the rounded average assign-
able control subjects, (b) the average separability (correctly
assigned control subjects divided by the assignable control
subjects), (c) the assignable test subjects (d), the cross-
validation rate (classifiable test subjects divided by average
assignable subjects), and (e) the overall crossvalidation rate
(classifiable test subjects divided by number of subjects). The
overall crossvalidation rate corresponds to the product of the
prior probability of a subject being assignable with the prob-
ability being assigned to the correct group (crossvalidation rate).
All signal processing was performed using programs

written in the Matlab programming software (MathWorks,
Version 7.1).

Statistical Analyses

Statistical analyses typical for pattern recognition methods
were applied. In a high-dimensional vector space, one can
often obtain perfect separability (100%) by a discriminant.
However, a new subject is not necessarily assigned to the
correct group by this discriminant. A correctly assigned new
subject was called classifiable. A leave-one-out crossvalida-
tion procedure (10) was used to obtain the crossvalidation
rate (classifiable subjects divided by total subjects) that
indicates the probability of correctly assigning an unknown
subject to the ST or ET group. If the assignment would be
random, one would obtain a 50% crossvalidation rate. A
binomial test with equal probability for the 2 conditions
(belonging to group #1 or group #2) was used to determine
the statistical significance of the classifiable subjects and thus
of the crossvalidation rate. The computed one sided p value
indicated the cumulative probability of getting a number of
classifiable subjects greater or equal to the reported
classification as a result of random assignments. If the p
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value was below 0.05, then the
hypothesis that the classifica-
tion was a result caused by
random assignments can be
rejected and thus the cross-
validation rate was deemed
significant. The binomial test
was applied to the crossvalida-
tion rate of all 3 classification
methods. Whether the mean of
the MF of the 2 groups were
significantly different was irrel-
evant for the classification.
However, because the MF
was one of the most important
variables in the past, the group
differences for the MF variables
were analyzed with an
unpaired Student t-test with
Microsoft Excel 2002 (Micro-
soft Inc., Redmond, WA, USA). Figure 1. Individual electromyogram wavelet intensity patterns for t60° to t30° knee extension for VL and condition 3,

A) an ST and B) an ET athlete. White indicates low intensity and black high intensity.

Figure 2. Normalized mean electromyogram wavelet spectra of the VL (left) and VM (right) (interpolation of the cfj by a cubic spline) for the ST (black) and ET

group (gray, dash), A) condition 1, B) condition 2, C) condition 3, and D) condition 4.
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RESULTS

Typical intensity patterns for STathletes and ETathletes are
shown inF1 Figures 1A, B, respectively. These patterns were
recorded for the movement range of 60°–30° knee extension
for VL. These examples were recorded for condition 3, thus
representing low angular velocity and small load. The
patterns showed a series of muscle activities that were

spread over the duration of the movement. They seem to be
arranged in regular time intervals of about 0.08 seconds.
These typical repetitive muscle activities can be found in both
muscles of all subjects, irrespective of the conditions.

F2

These
patterns were so variable that one could not visually assign
them to one or the other condition. The spectra in the range
60°–50°, and in the range 40°–30° knee extension indicated
that there was a slight frequency increase with the knee angle

(results not shown). The in-
creases are small enough that
the following analysis could
be limited to the mean spectra
recorded over the full range of
60°–30° knee extension. These
spectra were normalized to a
total power of 1.
The averaged normalized

EMG wavelet spectra of the
VL and VM were shown in
Figures 2A–D for each condi-
tion of the ST and the ET
group, respectively. Visual as-
sessment of the spectra be-
tween the 2 groups showed
that significant power was only
observed up to w170Hz. In gen-
eral, although not for spectra in
Figure 2A for VL, the spectra of
both groups revealed a different
shape. Higher proportions of
the lower frequency compo-
nents can be seen for the ST
group. The detailed analysis
showed that the average MFVL

was significantly higher in the
ETgroup than in the STgroup,
whereas the average MFVM

TABLE 2. Mean frequencies for conditions 1–4.*

Condition 1 2 3 4

Number of subjects 15 14 15 15
M. vastus lateralis (MF (SE) [Hz])

ST 62.86 (3.31) 67.11 (5.08) 66.80 (3.32) 72.66 (4.51)
ET 69.03 (2.40) 75.23 (4.82) 75.27 (2.65) 73.04 (1.47)
p value of t-test 0.16 0.27 0.07 0.94

M. vastus medialis (MF (SE) [Hz])
ST 67.65 (4.11) 72.86 (6.53) 69.72 (3.28) 73.58 (5.92)
ET 89.19 (3.15) 96.20 (4.17) 88.92 (3.56) 89.65 (2.50)
p value of t-test 0.001† 0.01† 0.002† 0.03†

*ET = endurance-trained; MF = mean frequency; SE = standard error in parentheses; ST = sprint trained.
†Significant different mean frequency between the 2 groups (p , 0.05).

Figure 3. The separability of the normalized mean electromyogram wavelet spectra of the ST (dot) and ET (triangle)

group using the spherical classification. The 45° diagonal line represents the line separating the 2 groups.
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showed the same trend but was not significantly different
(T2 Table 2).
Whether the visually observed differences in the shape of

the spectra contained enough information to decide about the
training status of the athletes had to be assessed numerically.
The 3 possible classification methods, spherical classification,
SVM, and the MF classification
yielded the following results.
The separability of the spectra

obtained by the spherical classi-
fication method was shown for
condition 1 inF3 Figure 3. The ST
subjects (dots) have a smaller
distance from the shell center of
their group and are therefore
located closer to the ordinate.
The ET subjects (triangle) have
a smaller distance from the shell
center of their group and are
therefore located closer to the
abscissa. The 45° diagonal line
represents the line separating
the 2 groups.
The spherical classification

indicated that the spectra of
the athletes of the 2 groups were
over 83% separable and over
73% classifiable for unknown
subjects as shown inT3 Table 3.
According to a binomial test,
there was a significant classifi-
cation as indicated by the p
values of the crossvalidation rate
for conditions1–3. For condition
4, there were 11 classifiable
subjects which was a similar
absolute number than for the
other conditions. According to
Fukunaga (10), the spherical
classification does not necessar-
ily lead to the absolute best
classification. Therefore, the re-
sults had to be compared using
mathematically more demand-
ing methods.
The SVMusing 4 eigenvalues

indicated that the spectra of the
athletes of the 2 groups were
100% separable as shown in
TableT4 4. The crossvalidation
rate was between 71% and
93% for the classification of
unknown subjects. The results
of the SVM were for all con-
ditions except for condition 2

higher than for the spherical classification. Reanalysis of the
data without subject 14 altered the crossvalidation rate of
condition 2 from 71% to 93%. Thus, subject 14 most likely
represented an outlier.
The classification based on MFs was more cumbersome

because only a limited number of subjects could be assigned to

TABLE 3. Results of the spherical separation and classification for conditions 1–4
(using 4 eigenvalues).

Condition 1 2 3 4

Number of subjects 15 14 15 15
Average separability (%) 90.5 87.4 99.5 83.3
Classifiable 12 11 12 11
Crossvalidation rate (%) 80* 78.6* 80* 73.3
p Value of crossvalidation rate 0.02 0.03 0.02 0.06

*Significant crossvalidation rate (p , 0.05). The classification was done by the leave-one-
out method.

TABLE 4. Results of the support vector machine classification for conditions 1–4.

Condition 1 2 3 4

Number of subjects 15 14 15 15
Average separability (%) 100 100 100 100
Classifiable 14 10 14 14
Crossvalidation rate (%) 93.3* 71.4 93.3* 93.3*
p Value of crossvalidation rate 0.0005 0.09 0.0005 0.0005

*Significant crossvalidation rate (p , 0.05). The classification was done by the leave-one-
out method.

TABLE 5. Results of the mean frequency classification for conditions 1–4.

Condition 1 2 3 4

Number of subjects 15 14 15 15
Average assignable (rounded) 11 10 13 8
Average separability (%) 84 90 90 85
Assignable test subjects 10 10 13 4
Classifiable test subjects 8 9 11 3
Crossvalidation rate (%) 73 90* 85* 38
p Value of crossvalidation rate 0.11 0.01 0.01 0.85
Overall crossvalidation rate (%) 53 64 73† 20
p Value of overall crossvalidation rate 0.50 0.21 0.06 0.99

*Significant crossvalidation rate.
†Significant overall crossvalidation rate (p , 0.05). The classification was done by the

leave-one-out method.
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one or the other group (T5 Table 5). In contrast to the spherical
classification and the SVM classification, there was one-
quarter of the cases (subject and condition) not assignable.
The analyses of those subjects that were assignable yielded
a crossvalidation rate that was significant for 2 conditions
only. However, the overall crossvalidation rate indicated that
the subjects that were either not assignable or miss-assigned
were very large. Considering the p values of the overall
crossvalidation rate, an assignment of an unknown subject
based on MF was not reliable.

DISCUSSION

Our results confirmed the hypothesis that specific muscle
differences caused by various training regimes in sprinting and
running are reflected in systematic differences in surface
EMG spectra when a filter bank of wavelets was used to
extract them. These differences were sufficiently distinct to
allow detecting whether an athlete has been trained for
a sprinting or an endurance task, irrespective of the details of
the training regime. However, the isometric EMG measure-
ments published by various researchers (e.g., [21]) could not
explain the spectral changes that we observed during
dynamic movements. Different kinds of dynamic movements
do change the muscle features as discussed below. Shepstone
et al. (25) measured larger diameter in muscle fibers after
a fast strength training for both the type I and type II fibers.
According to classical EMG theory, larger fiber diameter
should lead to higher CV (17) and shifts to higher frequencies
were experimentally confirmed (12). These results were
obtained for isometric contractions using a force that
corresponded to 70% of maximal voluntary contraction.
Based on these 2 relationships, increase of fiber diameter for
ST athletes and increase in CV, one would expect that ST
subjects would have higher MFs in their spectra. However,
our results showed on average lower MFs for the ST subjects
than for the ET subjects (Table 2). According to these results,
one would be inclined to conclude that the usual explanation
of the relationship between fiber type, CV, and frequency are
not sufficiently understood to explain the results. However,
the present results are in accordance with studies that
showed that even though the CVdid change, the MF did not
(10). In some cases, the MF was independent of the fiber
diameter (34). One might argue that the basic relationships
were usually measured during nondynamic loading con-
ditions. It could therefore be that sprint training has increased
the ability to synchronize the MUAP, thus decreasing the
MF. It is not known under what circumstances the
synchronization increases and should be considered to
explain the effect. As stated previously, the riddle will only
be resolvable by simultaneously measuring the EMG spectra
and the CV (7,33). These inconsistencies may suggest that
the spectra may not be characteristic for the trained task.
However, our results clearly showed that the spectra were
sufficiently consistent to be able in most cases to correctly
assign an unknown EMG spectrum to the STor ETgroup by

using a spherical classification or SVM classification. For
a correct classification, the information contained in the
whole spectra was relevant, whereas the MF contained not
enough information. The information was therefore con-
tained in the shape of the spectra. These shapes were visibly
different for the 2 groups, as shown in Figure 2, and the
differences cannot be explained by a change in CVonly. The
detection of differences in shape required using pattern
recognition methods. The advantage of using the spherical
classification was its simplicity. The advantage of the SVM, as
long as one only considers a linear kernel and an appropriate
value of C, is that it might in future also reveal which part
of the spectra contained the information required for the
classification.
The shape of the spectra depends on the recruitment of the

selected MUs (central control) and on the peripheral buildup
of the interference EMG. A high correlation of MUs can also
be described as synchronization (15). Semmler and Nord-
strom (24) were able to show that strength trained subjects
had a greater degree of synchronization of MU than
untrained subjects. The higher the synchronization of
MUs, the more the muscle fibers became activated. This
helped in performing a fast force production (23), such as that
needed in sprinting, where muscles have to work in concert.
Synchronization of MU ‘‘leads to an absolute increase of
power in the EMG spectra at lower frequencies, and to
a relative decrease of power at high frequencies’’ (35).
Synchronization results in a downshift of the MF (15). These
findings are in contrast to the increase inMF during isometric
contractions observed for many years (18). It is often
supposed that during isometric contractions performed at
maximum voluntary contraction, all muscle fibers will be
activated. However, in dynamic conditions, spectral changes
may result from specifically selected muscle fibers during the
actual movement of the performing athlete. The selected
muscle fibers strongly depend on their availability. Muscle
biopsies indicate which fibers are available and how the
proportion changes over the training period (27). They do
not reflect the immediate selection of fibers. Although we
may not be able to explain and fully understand the details
behind the spectra, this work clearly shows that the spectra
change in a systematic way and therefore contain practical
reliable information about the training of the athlete. One can
therefore conclude that an EMG spectrum recorded during
a dynamic sports movement yields its own information about
the muscle condition in addition to the information obtained
by EMG spectra recorded for isometric contractions or
muscle biopsies. The analysis of the condition of muscles will
become a multifactorial task.

PRACTICAL APPLICATIONS

The coaches would always like to know whether an athlete’s
muscle response is in accordance to the chosen training
regime and whether an athlete has reached the optimal
muscular adaptation. The athletes would like to optimally
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tune their muscles for the competition to gain an advantage
over the other competing athletes because it is known that the
tuning of muscular system can be actively influenced (20).
With the availability of new apparels, ones with integrated
EMG electrodes, a measurement of the EMG will be
available to coaches more frequently in the near future. This
work shows that the classical analysis of an EMG based on
MFs is not able to assess the training status of an athlete. It
was therefore important to develop, validate, and discuss
analysis methods. The new wavelet based methods that are
currently being tested represent such analysis methods. In
combination with the newest pattern recognition methods, it
allows the classification of the wavelet EMG spectra that
result from different trainings regimes and levels.
The interpretation of the results indicates that ST athletes

may improve the ability to synchronize their muscle
activation. Because of the better synchronization, the
movement might be more precise, and therefore, less energy
is used for adjustments. It can be assumed that the training of
fast movements and synchronization hAU8 elps in improving the
energy efficiency in normal tasks.
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