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ABSTRACT

Learning and programming environments used in compu-
ter science education give feedback to the users by system
messages. These are triggered by programming errors and
give only “technical” hints without regard to the learners’
problem solving process. To adapt the messages not only
to the factual but also to the procedural knowledge of the
learners, their problem solving strategies have to be iden-
tified automatically and in process. This article describes a
way to achieve this with the help of pattern recognition me-
thods. Using data from a study with 65 learners aged 12 to
13 using a learning environment for programming, a classi-
fication system based on hidden Markov models is trained
and integrated in the very same environment. We discuss
findings in that data and the performance of the automa-
tic online identification, and present first results using the
developed software in class.

Categories and Subject Descriptors

K.3.2 [Computers And Education]: Computer and In-
formation Science Education—computer science education

General Terms

Algorithms, Measurement, Performance, Human Factors

Keywords

Computer Science Education, Secondary Education, Pro-
blem Solving Strategies, Algorithms, Tool-Based Analysis,
Pattern Recognition

1. INTRODUCTION
Computer science tutors often employ learning and pro-

gramming environments that provide visual programming
such as Alice [5], Scratch [11] or Kara, the programmable
ladybug [13]. In some federal states of Germany (e.g., Bava-
ria), the basics of algorithms are taught as early as in the 7th
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grade (age 12 to 13 years). During their first steps in pro-
gramming using age-based learning and programming envi-
ronments, learners solve small programming tasks. Although
they had learned a certain approach from their teacher, ma-
ny different problem solving strategies can be observed while
the learners complete the tasks.

From a constructivist perspective, teachers should not ig-
nore the learners’ existing knowledge [3] but have to find out
what the learners’ concepts are and then guide the learner
to an independent problem solution.

1.1 Problem Solving Strategies
Problem solving is finding a correct path through the pro-

blem space from an unrequested initial state to the reques-
ted goal state [12]. In the field of psychology, the problem
solving process is divided in two not necessarily separated
phases which are processed consecutively:

1. Construct (or evoke, if present in solvers’ long time
memory [12]) the problem space.

2. Search for the path through the problem space leading
to the problem solution.

Real problem solving does not require the complete problem
space to be built before looking for the correct path. The au-
thor described in [10] the range of problem solving strategies
that are noticeably related to the learners’ approach to solve
the given tasks. There are two (pre-)structured problem sol-
ving methods – the top down and the bottom up strategy. For
top down, learners search for the correct path through the
problem space using a breadth first search. Vice versa, bot-
tom up is to explore the problem space depth first. Learners
using the hill climbing strategy neither structure the whole
problem nor the sub problems but they have in mind how
their program should work in general. The learners actively
control the program execution to verify each step of their in-
cremental solution. For that, they do not need a compulsory
system error message. In contrast to the above, trial and er-
ror strategy means testing the whole solution approach and
fixing errors in a rather random order.

1.2 Learning and Programming Environment
In the field of computer science, creativity is an important

factor for arousing the learners interest, to motivate them
and fostering this motivation [14]. In [15], Shneiderman des-
cribes criteria for creativity supporting software (in this ca-
se: learning and programming environments). They should
provide immediate and helpful feedback to the learners, fea-
ture pain-free exploration and experimentation, use visual



Table 1: Categorization and grouping of the learner-
system-interactions (LSI).

cat. LSI
0 STATE ADDED

STATE REMOVED

1 TRANSITION TO CHANGED

2 TRANSITION ADDED
TRANSITION REMOVED

3 TRANSITION INPUT CHANGED
STATE SENSORS SET

4 TRANSITION COMMAND ADDED
TRANSITION COMMAND REMOVED

5 PLAYING

6 STOPPED

7 AMBIGUOUS TRANSITION EXCEPTION
COMMAND EXCEPTION
NO TRANSITION EXCEPTION
NO START STATE EXCEPTION

programming and allow problem solving in a step-by-step
manner. All these conditions are complied in learning and
programming environments like Kara in the finite state au-
tomaton based version (FSMKara [13]). An example task
could be to move the ladybug Kara along a certain path,
eat something and come back. This procedure has to be
modeled using a finite state automata that can use Kara’s
sensors. FSMKara is the basic instrument for our research
as the learner-system-interactions are recorded for later use.

1.3 Categorizing Learner-System-Interactions
For our experiments, only a reasonable selection of learner-

system-interactions (LSI) is recorded – those which are re-
levant to the problem solving process. The categorization is
displayed in Table 1. As explained in [10], structuring the
problem as such is represented by the interactions “editing”
and“changing the final state machine”(cat. 0). Fine-structu-
ring the problem in several sub-problems is equivalent to the
interactions “creating” and“editing the conditions and bran-
ches” (cat. 1, 2 and 3). Iterations, branches and sequences of
command sequences are between the fine structure and the
solution of a sub-problem. These are modeled with the help
of editing transitions. The final solution of a sub-problem
is represented by the editing of command sequences (grou-
ped in cat. 4). Additional LSI are the program executions
(“play”, cat. 5) and terminations (“stop”, cat. 6) in order to
test the (partial) correctness of the solution. Category 7 ac-
cumulates the system error messages. The above results in
a total of eight LSI categories.

This article is structured as follows. After a description
of the data acquired using the programming environment
FSMKara, we give a brief insight to the observed problem
solving strategies. In Section 3, we describe the pattern reco-
gnition method used to automatically identify these problem
solving strategies in process, i.e., while the learner actually
interacts with the system. Section 4 describes a first eva-
luation using the proposed method in class. In Section 5,
we analyze the results using the proposed method and draw
possible conclusions. We end with an outlook on future work
presented in Section 6.

2. DATA

2.1 Observed Learners’ Strategies
The above introduced learning and programming environ-

ment FSMKara was extended by a module logging all LSI,
either to a file or for direct use within the software (see Secti-
on 3.5 and Figure 4). Exploiting that, we conducted a study
with 65 learners at German grammar schools, aged 12 to 13
years, as described in [10]. Each learner works on average on
two tasks during the study. In this setup, about 13000 LSI
were recorded in 188 sessions. Using the log files and addi-
tional data from “thinking aloud”and guided interviews, the
four learning strategies as described in Section 1.1 could be
identified throughout the sessions. For the FSMKara task
they can be described as follows.

• Top down – The problem is structured as a whole.
Thereby, the learners add and edit states and branches,
subsequently editing Kara’s sensors (fine structuring
the problem). Last, they fill in commands to solve the
problem.

• Bottom up – The learners create and edit only one
branch and subsequently fill in commands to solve this
sub-problem. They repeat this process until the last
sub-problem is solved.

• Hill climbing – The learners focus on a single step
of the program. With a general concept in mind, they
subsequently start the program execution and active-
ly stop the execution as soon as they realize whether
the currently tackled sub-problem is either correct or
incorrect. They correct their mistakes if necessary, or
proceed to the next step. This procedure is repeated
until the final solution is found.

• Trial and error – The learners focus on only one
step of the program and start the program after every
single step and wait for a system error message. They
try to correct their mistakes and repeat this process.
That way, they try to find the correct solution.

2.2 Annotation
While verifying the existence of the above problem solving

strategies, the log files were annotated to mark the occur-
rences of the strategies throughout the sessions. As a result,
instances of the specific pattern solving strategies could be
represented as extracts of the log file in an XML-like man-
ner. Figure 1 shows an example extract from the log files
representing an instance of the “bottom up” pattern. For
the completeness of the annotation, all interactions between
instances of the defined four strategies are accumulated in
instances of an “unidentified” pattern.

<HMMBU>

12:04:43 Kara and... (easy) TRANS ADDED
12:04:43 Kara and... (easy) TRANS INPUT CHANGED
12:04:44 Kara and... (easy) TRANS INPUT CHANGED
12:04:45 Kara and... (easy) TRANS INPUT CHANGED
12:04:49 Kara and... (easy) TRANS COMMAND ADD
</HMMBU>

Figure 1: Instance of a labeled “bottom up” pattern
in an XML-like format showing the time stamps, the
current task and the learners interaction.



2; 3; 3; 3;

3; 3; 4; 4; 4; 4; 4;

0; 2; 3; 3; 3; 4;

Figure 2: Example LSI sequences for the “bottom
up” pattern.

In a next step, these XML-like instances were reduced to
sequences of LSI and grouped by problem solving strategy in
order to get an idea how the strategies are expressed in terms
of sequences of LSI. This is necessary for the later automatic
identification which will be introduced in the next section.
Figure 2 shows three instances of the “bottom up” pattern.
Note that the patterns have different lengths and have a
similar but possibly different structure.

2.3 Statistical Analysis
We now observe two important things. First, a sequence

of LSI can be classified as one of the four problem solving
strategies or to the “undefined” pattern. Second, each lear-
ner seems to use different strategies, i.e., learners change
the way how they approach the problem. This confirms fin-
dings in [7], that there are general problem solving strategies
but each learner applies an individual method using these.
Equivalent to this, there are different patterns identifiable
in the chronology of the LSI during the learners work on a
single task. The probability to which pattern the learners’
interactions change is variable. Table 2 shows the probabi-
lities for every possible transition between two patterns as
counted in the acquired data. It is remarkable that learners
whose chronology of LSI show a special pattern in problem
solving, it is very likely that the same pattern is applied mo-
re than one time (see diagonal elements of Table 2) – with
the exception that the “top down” pattern is not repeated
but often changed to “bottom up” (for further discussion of
this fact see Section 5). At least, when a learner starts a new
solution attempt he will use the same strategy as used in the
first place, which is often further repeated. This indicates an
individual preferred strategy.

3. METHOD

3.1 Introduction
The manual annotation and analysis of the data confirmed

the four problem solving strategies (“bottom up”,“top down”,
“hill climbing”, and “trial and error”) which are made up by

Table 2: Transition matrix between patterns. Read
“transition from row to column strategy”. TD: “top
down”, BU: “bottom up”, HC: “hill climbing”, TE:
“trial and error”, UI: “unidentified”. The UI pattern
has to be considered separately as it usually appears
as a transition between two other strategies.

TD BU HC TE UI
start 0.127 0.530 0.052 0.030 0.261
TD 0.017 0.414 0.103 0.172 0.275
BU 0.016 0.518 0.069 0.153 0.216
HC 0.011 0.156 0.218 0.117 0.413
TE 0.003 0.117 0.075 0.482 0.270
UI 0.007 0.094 0.169 0.135 0.397

categorized LSI sequences coded by symbols 0-7. To allow for
sequences of LSI that cannot be associated with any of these
four classes, a garbage strategy “unidentified” is introduced
to account for the rest. Our task is now to automatically
identify the strategies used by the learner given the history
of LSI.

This is a fundamental pattern recognition problem which
comes in many flavors, the most widely known is continuous
spoken digit recognition. Here, the computer needs to reco-
gnize the digits spoken by the speaker (the learners’ applied
strategies), given a spoken utterance (the observed sequence
of LSI). Similarly to the “unidentified” strategy, digit reco-
gnition usually makes use of a silence or noise class to ac-
count for sound between two digits.

3.2 Hidden Markov Models
The key part of a successful model is to allow for variati-

ons in the sequences, distinguishing it from strict sequence
matching. This is necessary as the observed sequences may
vary – for speech recognition, the speaker or the microphone
may change (resulting in different sound), for problem sol-
ving strategy identification, similar LSI sequences may be
associated with the same strategy.

To overcome these variations, the pattern recognition com-
munity successfully used statistical automata, i.e., automa-
ta that change states according to a certain probability.
Though these exists in many variations, the most popular
are so-called hidden Markov models (HMM) [4] that can
model temporal statistical dependencies1.

Figure 3: A left-to-right hidden Markov model with
transition probabilities a and output distributions
b(·).

So how do HMM work? In general, an HMM is an auto-
mata made up by states and transitions (similar to the one
shown in Figure 3). In contrast to a regular automata that
has defined transitions for input symbols, HMM transitions
depend on the transition probability aij from state i to state j
and the output distribution bj(Ot) providing the probability
that the current symbol Ot is emitted of state j. Additio-
nally, the model may have entrance probabilities π instead of
a defined start state. Given these parameters and a certain
observation sequence, one can compute the likelihood that
the model actually generated the observation.

Without going into details, the training of the models,
i.e., estimating the transition and output probabilities to
match a certain pattern, can be done for example using the

1Usually, a first order Markov assumption is made, i.e., the
probability of a certain transition is dependent on the next
input token and the current state



iterative Baum-Welch algorithm [2]. Given training instan-
ces, in this case LSI sequences associated with a certain pro-
blem solving strategy, initial model parameters are impro-
ved step by step to increase the likelihood that the model
generated these examples. This optimization is based on the
expectation maximization principle [6] rooted in information
theory. Interestingly, though the optimization only finds a
local optimum, random or uniform initializations of the pa-
rameters usually yield a good performance. These and other
training algorithms can be found in the literature (e.g., [9]).

3.3 Decoding
Up to now, we trained one HMM for each strategy which

can be used to determine the most likely strategy given a
fixed sequence of LSI. Back to continuous digit recognition
this means, we have one model for each digit. However, from
Section 2 we know that the LSI sequence can contain on
the one hand the “unidentified” pattern and on the other
hand multiple occurrences of all strategy patterns. Recalling
the digit recognition example, the audio stream can contain
several digits and noise events.

The process of finding the sequence of HMM (resp. digits,
strategy patterns) in the whole observation sequence (resp.
audio signal, overall LSI sequence) is called decoding. Basi-
cally, we search the most likely HMM sequence (and thus
the applied problem solving strategies) matching the whole
LSI sequence. This search problem can be efficiently solved
using the Viterbi algorithm [16] that produces the most li-
kely state sequence q∗ given an HMM and an observation
sequence. The algorithm is based on dynamic programming
and uses the stack variables ϑt(j) and ψt(j) which are com-
puted in an iterative way. The index t denotes the LSI within
the sequence and j denotes the state index.

• Initialization

∀j ϑ1(j) = πjbj(O1) ; ψ1(j) = 0

• Recursion

∀j ϑt(j) = max
i

(ϑt−1(i)aij)bj(Ot)

∀j ψt(j) = argmaxiϑt−1(i)aij

• Termination

q
∗

T = argmaxjϑT (j)

• Backtracking The optimal sequence is given by

q
∗

t = ψt+1(q
∗

t+1) ; t ∈ {(T − 1), . . . , 1} .

3.4 Putting Things Together
For our experiments, we use a limited topology allowing

only left-to-right transitions (i.e., aij = 0 for i > j within
strategy models) to account for the temporal structure of the
problem solving strategies. An example is shown in Figure 3.

While the “trial and error” and “unidentified”models only
contain three states, the other patterns are modeled by five
states with regard to their variety of training samples.

From a uniform distribution and transition initialization,
we used the JAHMM

2 toolkit to train the strategy models
with the annotated data described in Section 2.

2http://code.google.com/p/jahmm/

For the decoding, the five models were combined to one
large HMM, introducing additional transition probabilities
at the beginning and end of each strategy model to allow for
any sequence of strategy patterns. The entrance probabili-
ties are constrained to only allow initial states of strategy
modules. This enables the LSI sequence to start with any
strategy. They were set to the probabilities observed in the
data (cf. Table 2). For a given LSI sequence of arbitrary
length, the Viterbi algorithm is applied using this combi-
ned HMM. The optimal state sequence within the combined
HMM can be translated into the sequence of strategy mo-
dels and thus into the sequence of problem solving strategies
applied by the learner.

3.5 IdentiKara
The whole software architecture is depicted in Figure 4.

The original FSMKara software is extended by the Tracking-
Kara module that receives all interaction events from the
main program using an observer pattern. TrackingKara can
now either just record the data to log files (for later ana-
lysis), or pass them to the integrated IdentiKara module,
that uses the trained HMM and the above introduced Vi-
terbi algorithm to determine the past and current problem
solving strategies. Using manually labeled log files and the
JAHMM library, the HMM can be trained (or updated in
case of existing models).

Figure 4: Software architecture including FSMKara,
TrackingKara and IdentiKara

4. FIRST EVALUATION
IdentiKara was applied in a first study with a group of 15

learners at a German grammar school. They solved the same
tasks as in the studies mentioned in Section 2. The resulting
data written by TrackingKara and IdentiKara was saved in
folders marked by the number of their computer. Provided
with a seating plan showing the students and computers
in the classroom, their teacher was interviewed concerning
their behavior in lessons especially during problem solving.
Considering all these statements, the preferred problem sol-
ving strategy of each learner was inferred by the teacher.
These results were conform in 93% with the problem sol-
ving strategies identified by IdentiKara. To confirm these
results, we currently run a study with a larger sample size
(see also Section 6).



5. CONCLUSIONS
The applied pattern recognition methods allow for the au-

tomatic identification of learners’ problem solving strategies
in process. Not only the individual patterns as described in
Section 2.1 but also certain sequences of patterns are identi-
fied. These sequences indicate different problem solving stra-
tegies used by the particular learner. The rows of Table 2
show the probability that learners change from one strat-
egy pattern to another. One can notice that the top down
pattern is rarely repeated (only in 1.7% of the cases). This
can be explained by the comparing the structure of this pat-
tern to the others. All other patterns describe single steps
during the problem solving process. More than one of them
are needed to reach a complete solution of a problem. The
“top down” strategy is typically applied just once. The high
probability (41.4%) of switching from“top down”to“bottom
up” reflects the fact that this strategy is hardly to be main-
tained even by programming experts like described in [8].
Another interesting fact is that most learners at the age of
12 to 13 years prefer the bottom up strategy.

5.1 Usage For Individual System Feedback
An evaluation module embedded in the research software

provides the automated assessment oft the learners’ soluti-
on attempts. Concerning the quality of the learners’ solution
attempts the automatically identified problem solving stra-
tegy can be used to create individual system messages for
every combination of quality and strategy. This feedback is
adapted to the learners’ problem solving strategy and en-
courages them finding the solution by themselves without
additional help. Learners will get these messages not only in
case of programming errors but also on demand.

5.2 Transfer to Other Learning Environments
For the application with learning and programming envi-

ronments which are based on other programming paradigms
the reasonable selection of learner-system-interactions men-
tioned in Section 1.3 have to be adapted. A promising option
is to use the control structures of algorithms (sequence, ite-
ration, conditional branch). Additionally starting/stopping
program runs for testing the solution attempt and the sys-
tem (error-)messages during run-time of tests have to be
recorded. The categories of interactions furthermore will be
“structuring on the whole”, “fine structuring”,“solving a sub-
problem”, “testing the program”, “getting feedback”. The
HMM and the pattern recognition algorithms will be the
same independent of the choice of the learning and program-
ming environment. Only the models have to be trained one
time like described in Section 3. To realize the automated
assessment the test cases have to be adapted additionally.

6. OUTLOOK
The attribution of the patterns’ sequences to the individu-

al problem solving strategies was generated and discussed by
experts (teachers of computer science). An additional valida-
tion requires a different way of obtaining information about
the learners’ problem solving strategies than observing the
problem solving process step by step as it is done by the
research software described in this article. A good idea is to
get information about the learners’ problem solving strategy
with the help of questionnaires which the learners have to
fill in is described in [10]. The questionnaires are based on

the fundamental concepts of Ajzen’s and Fishbeins’s Theo-
ry of Reasoned Action and Theory of Planned Behavior [1].
In this way information about the learners’ problem solving
strategies can be used without considering certain steps du-
ring the problem solving process.
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